
1

CS473 - Algorithms I

CS 473 – Lecture 4

Lecture 4

The Divide-and-Conquer Design
Paradigm

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

View in slide-show mode

2 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Reminder: Merge Sort

Divide

Input array A

Conquer

sort this half sort this half

merge two sorted halves

Combine

CS473 Lecture 4 3

The Divide-and-Conquer Design

Paradigm

1. Divide the problem (instance)

 into subproblems.

2. Conquer the subproblems by

 solving them recursively.

3. Combine subproblem solutions.

CS473 Lecture 4 4

Example: Merge Sort

1. Divide: Trivial.

2. Conquer: Recursively sort 2 subarrays.

3. Combine: Linear- time merge.

 T(n) = 2 T(n/2) + Θ(n)

subproblems
subproblem size

work dividing

and combining

5 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Master Theorem: Reminder

T(n) = aT(n/b) + f(n)

Case 1:
nlogb a

f (n)
= W(ne) T(n) = Q(nlogb a)

Case 2:
f (n)

n
logb a

= Q(lgk n) T(n) = Q(nlogb a lgk+1n)

)(
)(

log


n

n

nf

ab



Q(f (n))Case 3:

and a f (n/b)  c f (n) for c < 1

T(n) =

6 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Merge Sort: Solving the Recurrence

T(n) = 2 T(n/2) + Θ(n)

a = 2, b = 2, f(n) = Θ(n),

Case 2:
f (n)

n
logb a

= Q(lgk n) T(n) = Q(nlogb a lgk+1n)

n logba
= n

holds for k = 0

T(n) = Θ (nlgn)

CS473 Lecture 4 7

Binary Search

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9

 3 5 7 8 9 12 15

CS473 Lecture 4 8

Binary Search

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9

 3 5 7 8 9 12 15

CS473 Lecture 4 9

Binary Search

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9

 3 5 7 8 9 12 15

CS473 Lecture 4 10

Binary Search

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9

 3 5 7 8 9 12 15

CS473 Lecture 4 11

Binary Search

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9

 3 5 7 8 9 12 15

CS473 Lecture 4 12

Binary Search

Find an element in a sorted array:

1. Divide: Check middle element.

2. Conquer: Recursively search 1 subarray.

3. Combine: Trivial.

Example: Find 9

 3 5 7 8 9 12 15

CS473 Lecture 4 13

Recurrence for Binary Search

T(n) = 1 T(n/2) + Ө(1)

subproblems subproblem size
work dividing

and combining

14 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Binary Search: Solving the Recurrence

T(n) = T(n/2) + Θ(1)

a = 1, b = 2, f(n) = Θ(1),

Case 2:
f (n)

n
logb a

= Q(lgk n) T(n) = Q(nlogb a lgk+1n)

n logba
= n0= 1

holds for k = 0

T(n) = Θ (lgn)

15 CS 473 – Lecture 4

 Problem: Compute an, where n is a natural number

 Naive-Power (a, n)

 powerVal  1

 for i  1 to n

 powerVal  powerVal . a

 return powerVal

 What is the complexity?

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Powering a Number

T(n) = Θ (n)

16 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Powering a Number: Divide & Conquer

an/2 . an/2 if n is even

a(n-1)/2 . a(n-1)/2 . a if n is odd

an =

Basic idea:

17 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Powering a Number: Divide & Conquer

POWER (a, n)

 if n = 0 then return 1

 else if n is even then

 val  POWER (a, n/2)

 return val * val

 else if n is odd then

 val  POWER (a, (n-1)/2)

 return val * val * a

18 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Powering a Number: Solving the Recurrence

T(n) = T(n/2) + Θ(1)

a = 1, b = 2, f(n) = Θ(1),

Case 2:
f (n)

n
logb a

= Q(lgk n) T(n) = Q(nlogb a lgk+1n)

n logba
= n0= 1

holds for k = 0

T(n) = Θ (lgn)

CS473 Lecture 4 19

Matrix Multiplication

i , j = 1, 2, ... , n.

...

...

...

...

...

...

...

...

...
Input : A = [aij], B = [bij].

Output: C = [cij] = A.B.

 c11 c12 ... c1n a11 a12 ... a1n b11 b12 ... b1n

 c21 c22 ... c2n = a21 a22 ... a2n . b21 b22 ... b2n

 cn1 cn2 ... cnn an1 an2 ... ann bn1 bn2 ... bnn

 cij = ∑1≤ k ≤ n aik .bkj

CS473 Lecture 4 20

Standard Algorithm

for i ← 1 to n

 do for j ← 1 to n

 do cij ← 0

 for k ← 1 to n

 do cij ← cij + aik . bkj

Running time = (n3)

21 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Matrix Multiplication: Divide & Conquer

IDEA: Divide the n x n matrix into

 2x2 matrix of (n/2)x(n/2) submatrices

_
 _

 _
 _

= . _ _ _ _ _ _ _ _ _ _ _ _

_
 _

 _
 _

_
 _

 _
 _

c11

c21

c12

c22

a11

a21

a12

a22

b11

b21

b12

b22

C A B

c11 = a11 b11 + a12 b21

22 CS 473 – Lecture 4

b11 c11

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Matrix Multiplication: Divide & Conquer

IDEA: Divide the n x n matrix into

 2x2 matrix of (n/2)x(n/2) submatrices

c21

c12

c22

a11

a21

a12

a22 b21

b12

b22

C A B

c12 = a11 b12 + a12 b22

_
 _

 _
 _

= . _ _ _ _ _ _ _ _ _ _ _ _

_
 _

 _
 _

_
 _

 _
 _

23 CS 473 – Lecture 4

a12 a11 c11

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Matrix Multiplication: Divide & Conquer

IDEA: Divide the n x n matrix into

 2x2 matrix of (n/2)x(n/2) submatrices

c21

c12

c22 a21 a22

b11

b21

b12

b22

C A B

c21 = a21 b11 + a22 b21

_
 _

 _
 _

_
 _

 _
 _

_ _ _ _
= . _ _ _ _ _ _ _ _

_
 _

 _
 _

24 CS 473 – Lecture 4

a11 c12 b11 c11

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Matrix Multiplication: Divide & Conquer

IDEA: Divide the n x n matrix into

 2x2 matrix of (n/2)x(n/2) submatrices

c21 c22 a21

a12

a22 b21

b12

b22

C A B

c22 = a21 b12 + a22 b22

_
 _

 _
 _

= . _ _ _ _ _ _ _ _ _ _ _ _

_
 _

 _
 _

_
 _

 _
 _

25 CS 473 – Lecture 4

c11 a11

_
 _

 _
 _

= . _ _ _ _ _ _ _ _ _ _ _ _

_
 _

 _
 _

_
 _

 _
 _

b11

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Matrix Multiplication: Divide & Conquer

c21

c12

c22 a21

a12

a22 b21

b12

b22

C A B

c11 = a11 b11 + a12 b21

c12 = a11 b12 + a12 b22

c21 = a21 b11 + a22 b21

c22 = a21 b12 + a22 b22

8 mults of (n/2)x(n/2) submatrices

4 adds of (n/2)x(n/2) submatrices

26 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Matrix Multiplication: Divide & Conquer

MATRIX-MULTIPLY (A, B)

 // Assuming that both A and B are nxn matrices

 if n = 1 then return A * B

 else

 partition A, B, and C as shown before

 c11 = MATRIX-MULTIPLY (a11, b11) + MATRIX-MULTIPLY (a12, b21)

 c12 = MATRIX-MULTIPLY (a11, b12) + MATRIX-MULTIPLY (a12, b22)

 c21 = MATRIX-MULTIPLY (a21, b11) + MATRIX-MULTIPLY (a22, b21)

 c22 = MATRIX-MULTIPLY (a21, b12) + MATRIX-MULTIPLY (a22, b22)

 return C

27 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Matrix Multiplication: Divide & Conquer

Analysis

T(n) = 8 T(n/2) + Θ(n2)

8 recursive calls each subproblem

has size n/2

submatrix

addition

28 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Matrix Multiplication: Solving the Recurrence

T(n) = 8 T(n/2) + Θ(n2)

a = 8, b = 2, f(n) = Θ(n2), n logba
= n3

T(n) = Θ (n3)

Case 1:
nlogb a

f (n)
= W(ne) T(n) = Q(nlogb a)

No better than the ordinary algorithm!

29 CS 473 – Lecture 4

c11 a11

_
 _

 _
 _

= . _ _ _ _ _ _ _ _ _ _ _ _

_
 _

 _
 _

_
 _

 _
 _

b11

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Matrix Multiplication: Strassen’s Idea

c21

c12

c22 a21

a12

a22 b21

b12

b22

C A B

Compute c11, c12, c21, and c22 using 7 recursive multiplications

30 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Matrix Multiplication: Strassen’s Idea

P1 = a11 x (b12 - b22)

P2 = (a11 + a12) x b22

P3 = (a21 + a22) x b11

P4 = a22 x (b21 - b11)

P5 = (a11 + a22) x (b11 + b22)

P6 = (a11 - a22) x (b21 + b22)

P7 = (a11 - a21) x (b11 + b12)

Compute P1..P7 using

7 recursive calls to

matrix-multiply

Reminder: Each submatrix

is of size (n/2)x(n/2)

Each add/sub operation

takes Θ(n2) time

How to compute cij using P1.. P7 ?

31 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Matrix Multiplication: Strassen’s Idea

P1 = a11 x (b12 - b22)

P2 = (a11 + a12) x b22

P3 = (a21 + a22) x b11

P4 = a22 x (b21 - b11)

P5 = (a11 + a22) x (b11 + b22)

P6 = (a11 - a22) x (b21 + b22)

P7 = (a11 - a21) x (b11 + b12)

c11 = P5 + P4 – P2 + P6

c12 = P1 + P2

c21 = P3 + P4

c22 = P5 + P1 – P3 – P7

7 recursive multiply calls

18 add/sub operations

Does not rely on commutativity of multiplication

32 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Matrix Multiplication: Strassen’s Idea

P1 = a11 x (b12 - b22)

P2 = (a11 + a12) x b22

P3 = (a21 + a22) x b11

P4 = a22 x (b21 - b11)

P5 = (a11 + a22) x (b11 + b22)

P6 = (a11 - a22) x (b21 + b22)

P7 = (a11 - a21) x (b11 + b12)

c12 = P1 + P2

 = a11(b12–b22)+(a11+a12)b22

 = a11b12-a11b22+a11b22+a12b22

 = a11b12+a12b22

e.g. Show that c12 = P1+P2

33 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Strassen’s Algorithm

1. Divide: Partition A and B into (n/2) x (n/2) submatrices. Form

terms to be multiplied using + and –.

2. Conquer: Perform 7 multiplications of (n/2) x (n/2) submatrices

recursively.

3. Combine: Form C using + and – on (n/2) x (n/2) submatrices.

Recurrence: T(n) = 7 T(n/2) + Ө(n2)

34 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Strassen’s Algorithm: Solving the Recurrence

T(n) = 7 T(n/2) + Θ(n2)

a = 7, b = 2, f(n) = Θ(n2), n logba
= nlg7

T(n) = Θ (nlg7)

Case 1:
nlogb a

f (n)
= W(ne) T(n) = Q(nlogb a)

Note: lg7 ≈ 2.81

35 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Strassen’s Algorithm

 The number 2.81 may not seem much smaller than 3

 But, it is significant because the difference is in the
exponent.

 Strassen’s algorithm beats the ordinary algorithm on
today’s machines for n ≥ 30 or so.

 Best to date: (n2.376...) (of theoretical interest only)

36 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

VLSI Layout: Binary Tree Embedding

 Problem: Embed a complete binary tree with n leaves
into a 2D grid with minimum area.

 Example:

37 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Binary Tree Embedding

 Use divide and conquer

root

LEFT

SUBTREE

RIGHT

SUBTREE

1. Embed the root node

2. Embed the left subtree

3. Embed the right subtree

What is the min-area required for n leaves?

38 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Binary Tree Embedding

root

EMBED

LEFT

SUBTREE

HERE

EMBED

RIGHT

SUBTREE

HERE

W(n) = 2W(n/2) + 1

H
(n

)
=

 H
(n

/2
)

+
 1

W(n/2) W(n/2)

 H
(n

/2
)

39 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Binary Tree Embedding

 Solve the recurrences:

 W(n) = 2W(n/2) + 1

 H(n) = H(n/2) + 1

  W(n) = Ө(n)

  H(n) = Ө(lgn)

 Area(n) = Ө(nlgn)

40 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Binary Tree Embedding

W(n)

Example:

H(n)

41 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Binary Tree Embedding: H-Tree

 Use a different divide and conquer method

root

1. Embed root, left, right nodes

2. Embed subtree 1

3. Embed subtree 2

4. Embed subtree 3

5. Embed subtree 4

What is the min-area required for n leaves?

subtree

1

subtree

2

subtree

3

subtree

4

left right

42 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Binary Tree Embedding: H-Tree

SUBTREE 1 SUBTREE 2

SUBTREE 3 SUBTREE 4

W(n/4) W(n/4)

W(n) = 2W(n/4) + 1

H(n) = 2H(n/4) + 1

H
(n

/4
)

H
(n

/4
)

43 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Binary Tree Embedding: H-Tree

 Solve the recurrences:

 W(n) = 2W(n/4) + 1

 H(n) = 2H(n/4) + 1

  W(n) = Ө()

  H(n) = Ө()

 Area(n) = Ө(n)

n

n

44 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Binary Tree Embedding: H-Tree

Example:
W(n)

H(n)

45 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Correctness Proofs

 Proof by induction commonly used for D&C algorithms

 Base case: Show that the algorithm is correct when the

recursion bottoms out (i.e., for sufficiently small n)

 Inductive hypothesis: Assume the alg. is correct for any

recursive call on any smaller subproblem of size k (k < n)

 General case: Based on the inductive hypothesis, prove

that the alg. is correct for any input of size n

46 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example Correctness Proof: Powering a Number

POWER (a, n)

 if n = 0 then return 1

 else if n is even then

 val  POWER (a, n/2)

 return val * val

 else if n is odd then

 val  POWER (a, (n-1)/2)

 return val * val * a

47 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example Correctness Proof: Powering a Number

 Base case: POWER (a, 0) is correct, because it returns 1

 Ind. hyp: Assume POWER (a, k) is correct for any k < n

 General case:

 In POWER (a, n) function:

 If n is even:

 val = an/2 (due to ind. hyp.)

 it returns val . val = an

 If n is odd:

 val = a(n-1)/2 (due to ind. hyp.)

 it returns val. val . a = an

The correctness proof is complete

48 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Maximum Subarray Problem

 Input: An array of values

 Output: The contiguous subarray that has the largest sum of

elements

-3 13 -25 20 -3 -16 -23 18 20 -7 12 -22 -4 7

Input array:

the maximum contiguous subarray

49 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Maximum Subarray Problem: Divide & Conquer

 Basic idea:

 Divide the input array into 2 from the middle

 Pick the best solution among the following:

 1. The max subarray of the left half

 2. The max subarray of the right half

 3. The max subarray crossing the mid-point

A

Entirely in the left half Entirely in the right half

Crosses the mid-point

50 CS 473 – Lecture 4 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Maximum Subarray Problem: Divide & Conquer

 Divide: Trivial (divide the array from the middle)

 Conquer: Recursively compute the max subarrays of the
left and right halves

 Combine: Compute the max-subarray crossing the mid-
point (can be done in Θ(n) time). Return the max among
the following:

 1. the max subarray of the left subarray

 2. the max subarray of the right subarray

 3. the max subarray crossing the mid-point

See textbook for the detailed solution.

CS473 Lecture 4 51

Conclusion

• Divide and conquer is just one of several

powerful techniques for algorithm design.

• Divide-and-conquer algorithms can be

analyzed using recurrences and the master

method (so practice this math).

• Can lead to more efficient algorithms

