CS473-Algorithms I

Lecture 6-a Analysis of Quicksort
 View in slide-show mode

Analysis of Quicksort

```
QUICKSORT (A, p,r)
    if }p<r\mathrm{ then
    q\leftarrowH-PARTITION(A, p,r)
    QUICKSORT(A, p,q)
    QUICKSORT(A, q+1,r)
```

	$\geq \boldsymbol{x}$
p	q

Assume all elements are distinct in the following analysis

Question

QUICKSORT (A, p, r)
 if $p<r$ then
 $q \leftarrow \mathrm{H}-\mathrm{PARTITION}(\mathrm{A}, p, r)$ QUICKSORT(A, $p, q)$
 QUICKSORT(A, $q+1, r$)

Q: Remember that H-PARTITION always chooses A[p] (the first element) as the pivot. What is the runtime of QUICKSORT on an already-sorted array?
*a) $\Theta(n)$
\checkmark c) $\Theta\left(n^{2}\right)$
*b) $\Theta(n \operatorname{logn})$

* d) cannot provide a tight bound

Example: An Already Sorted Array

$$
\text { pivot }=1
$$

recursive call recursive call

Partitioning always leads to 2 parts of size 1 and n-1

Worst Case Analysis of Quicksort

\square Worst case is when the PARTITION algorithm always returns imbalanced partitions (of size 1 and n-1) in every recursive call
> This happens when the pivot is selected to be either the min or max element.
> This happens for H-PARTITION when the input array is already sorted or reverse sorted

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =\mathrm{T}(1)+\mathrm{T}(\mathrm{n}-1)+\Theta(\mathrm{n}) \\
& =T(\mathrm{n}-1)+\Theta(\mathrm{n}) \\
& =\Theta\left(\mathrm{n}^{2}\right) \quad \text { (arithmetic series) }
\end{aligned}
$$

Worst Case Recursion Tree
 $$
\mathrm{T}(\mathrm{n})=\mathrm{T}(1)+\mathrm{T}(\mathrm{n}-1)+\mathrm{cn}
$$

Worst Case Recursion Tree

$$
\mathrm{T}(\mathrm{n})=\mathrm{T}(1)+\mathrm{T}(\mathrm{n}-1)+\mathrm{cn}
$$

Best Case Analysis (for intuition only)

\square If we're extremely lucky, H-PARTITION splits the array evenly at every recursive call

$$
\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n})
$$

$$
=\Theta(n \operatorname{lgn}) \quad \rightarrow \text { same as merge sort }
$$

\square Instead of splitting 0.5:0.5, what if every split is 0.1:0.9?

$$
\begin{aligned}
\mathrm{T}(\mathrm{n})= & \mathrm{T}(\mathrm{n} / 10)+\mathrm{T}(9 \mathrm{n} / 10)+\Theta(\mathrm{n}) \\
& \Rightarrow \text { solve this recurrence }
\end{aligned}
$$

"Almost-Best" Case Analysis

"Almost-Best" Case Analysis

"Almost-Best" Case Analysis

Balanced Partitioning

\square We have seen that if H-PARTITION always splits the array with 0.1 -to- 0.9 ratio, the runtime will be Θ (nlgn).
\square Same is true with a split ratio of 0.01-to-0.99, etc.
\square Possible to show that if the split has always constant $(\Theta(1))$ proportionality, then the runtime will be $\Theta(\mathrm{nlgn})$.
\square In other words, for a constant $\alpha(0<\alpha \leq 0.5)$:
$\alpha-$ to- $(1-\alpha)$ proportional split yields Θ (nlgn) total runtime

Balanced Partitioning

\square In the rest of the analysis, assume that all input permutations are equally likely.

- This is only to gain some intuition
- We cannot make this assumption for average case analysis
- We will revisit this assumption later
\square Also, assume that all input elements are distinct.
\square What is the probability that H-PARTITION returns a split that is more balanced than 0.1-to-0.9?

Balanced Partitioning

Reminder: H-PARTITION will place the pivot in the right partition unless the pivot is the smallest element in the arrays.

Question: If the pivot selected is the $\mathrm{m}^{\text {th }}$ smallest value $(1<\mathrm{m} \leq \mathrm{n})$ in the input array, what is the size of the left region after partitioning?

Balanced Partitioning

Question: What is the probability that the pivot selected is the $\mathrm{m}^{\text {th }}$ smallest value in the array of size n ?
$1 / \mathrm{n} \quad$ (since all input permutations are equally likely)

Question: What is the probability that the left partition returned by H-PARTITION has size m , where $1<\mathrm{m}<\mathrm{n}$?
$1 / n \quad$ (due to the answers to the previous 2 questions)

Balanced Partitioning

Question: What is the probability that H-PARTITION

 returns a split that is more balanced than 0.1 -to- 0.9 ?

The partition boundary will be in this region for a more balanced split than 0.1-to-0.9

Balanced Partitioning

\square The probability that H-PARTITION yields a split that is more balanced than 0.1 -to- 0.9 is 80% on a random array.
\square Let $\mathrm{P}_{\alpha>}$ be the probability that H-PARTITION yields a split more balanced than α-to- $(1-\alpha)$, where $0<\alpha \leq 0.5$
\square Repeat the analysis to generalize the previous result

Balanced Partitioning

Question: What is the probability that H-PARTITION returns a split that is more balanced than α-to-(1- α)?

The partition boundary will be in this region for a more balanced split than α n-to-(1- α)n

$$
\begin{aligned}
& \text { Probability }= \\
& q=n+1 \frac{1}{n}
\end{aligned}=\frac{1}{n}\left(\left(\begin{array}{lllll}
1 &) n & 1 & n & 1+1
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 &)
\end{array}\right) \frac{1}{n} .\right.
$$

Balanced Partitioning

\square We found $\mathrm{P}_{\alpha>}=1-2 \alpha$

$$
\text { Examples: } \mathrm{P}_{0.1>}=0.8 \quad \mathrm{P}_{0.01>}=0.98
$$

- Hence, H-PARTITION produces a split
$>$ more balanced than a
>0.1-to- 0.9 split 80% of the time
>0.01-to- 0.99 split 98% of the time
$>$ less balanced than a
>0.1-to- 0.9 split 20% of the time
>0.01-to- 0.99 split 2% of the time

Intuition for the Average Case

\square Assumption: All permutations are equally likely

- Only for intuition; we'll revisit this assumption later
\square Unlikely: Splits always the same way at every level
\square Expectation:
Some splits will be reasonably balanced
Some splits will be fairly unbalanced
\square Average case: A mix of good and bad splits
Good and bad splits distributed randomly thru the tree

Intuition for the Average Case

\square Assume for intuition: Good and bad splits occur in the alternate levels of the tree

Good split: Best case split
Bad split: Worst case split

Intuition for the Average Case

BEST CASE

Compare 2-successive levels of avg case vs. 1 level of best case

Intuition for the Average Case

\square In terms of the remaining subproblems, two levels of avg case is slightly better than the single level of the best case
\square The avg case has extra divide cost of $\Theta(n)$ at alternate levels

Intuition for the Average Case

\square The extra divide cost $\Theta(n)$ of bad splits absorbed into the $\Theta(n)$ of good splits.
\square Running time is still Θ (nlgn)

Intuition for the Average Case

\square Running time is still Θ (nlgn)
> But, slightly larger hidden constants, because the height of the recursion tree is about twice of that of best case.

Intuition for the Average Case

\square Another way of looking at it:
Suppose we alternate lucky, unlucky, lucky, unlucky, ...
We can write the recurrence as:

$$
\begin{array}{ll}
\mathrm{L}(\mathrm{n})=2 \mathrm{U}(\mathrm{n} / 2)+\Theta(\mathrm{n}) & \text { lucky split (best) } \\
\mathrm{U}(\mathrm{n})=\mathrm{L}(\mathrm{n}-1)+\Theta(\mathrm{n}) & \text { unlucky split (worst) }
\end{array}
$$

Solving:

$$
\begin{aligned}
\mathrm{L}(\mathrm{n}) & =2(\mathrm{~L}(\mathrm{n} / 2-1)+\Theta(\mathrm{n} / 2))+\Theta(\mathrm{n}) \\
& =2 \mathrm{~L}(\mathrm{n} / 2-1)+\Theta(\mathrm{n}) \\
& =\Theta(\mathrm{nlgn})
\end{aligned}
$$

How can we make sure we are usually lucky for all inputs?

Summary: Quicksort Runtime Analysis

Worst case: Unbalanced split at every recursive call

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =\mathrm{T}(1)+\mathrm{T}(\mathrm{n}-1)+\Theta(\mathrm{n}) \\
\Rightarrow \mathrm{T}(\mathrm{n}) & =\Theta\left(\mathrm{n}^{2}\right)
\end{aligned}
$$

Best case: Balanced split at every recursive call (extremely lucky)

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n}) \\
\Rightarrow & \mathrm{T}(\mathrm{n})=\Theta(\mathrm{n} \operatorname{lgn})
\end{aligned}
$$

Summary: Quicksort Runtime Analysis

Almost-best case: Almost-balanced split at every recursive call

$$
\begin{aligned}
& T(n)=T(n / 10)+T(9 n / 10)+\Theta(n) \\
& \text { or } T(n)=T(n / 100)+T(99 n / 100)+\Theta(n) \\
& \text { or } T(n)=T(\alpha n)+T((1-\alpha) n)+\Theta(n) \\
& \text { for any constant } \alpha, 0<\alpha \leq 0.5
\end{aligned}
$$

$\Rightarrow \mathrm{T}(\mathrm{n})=\Theta(\mathrm{nlgn})$

Summary: Quicksort Runtime Analysis

For a random input array, the probability of having a split more balanced than $0.1-$ to $-0.9: 80 \%$ more balanced than $0.01-$ to $-0.99: 98 \%$ more balanced than $\quad \alpha-$ to $-(1-\alpha): 1-2 \alpha$

$$
\text { for any constant } \alpha, 0<\alpha \leq 0.5
$$

Summary: Quicksort Runtime Analysis

Avg case intuition: Different splits expected at different levels
\Rightarrow some balanced (good), some unbalanced (bad)

Avg case intuition: Assume the good and bad splits alternate i.e. good split \rightarrow bad split \rightarrow good split $\rightarrow \ldots$ $\Rightarrow \mathrm{T}(\mathrm{n})=\Theta(\mathrm{nlgn})$
(informal analysis for intuition)

