CS473 - Algorithms I

Lecture 6-a Analysis of Quicksort

View in slide-show mode

Analysis of Quicksort

```
QUICKSORT (A, p, r)

if p < r then

q \leftarrow \text{H-PARTITION}(A, p, r)

QUICKSORT(A, p, q)

QUICKSORT(A, p, q)
```

Assume *all elements are distinct* in the following analysis

Question

```
QUICKSORT (A, p, r)

if p < r then

q \leftarrow \text{H-PARTITION}(A, p, r)

QUICKSORT(A, p, q)

QUICKSORT(A, p, q)
```

Q: Remember that H-PARTITION always chooses A[p] (the first element) as the **pivot**. What is the runtime of QUICKSORT on an already-sorted array?

(a) $\Theta(n)$

 \checkmark c) $\Theta(n^2)$

 \bigstar b) Θ (nlogn)

* d) cannot provide a tight bound

Example: An Already Sorted Array

Partitioning always leads to 2 parts of size 1 and n-1

Worst Case Analysis of Quicksort

- □ Worst case is when the PARTITION algorithm always returns imbalanced partitions (of size 1 and n-1) in every recursive call
 - This happens when the pivot is selected to be either the min or max element.
 - > This happens for H-PARTITION when the input array is already sorted or reverse sorted

$$T(n) = T(1) + T(n-1) + \Theta(n)$$

$$= T(n-1) + \Theta(n)$$

$$= \Theta(n^2)$$
(arithmetic series)

Worst Case Recursion Tree

$$T(n) = T(1) + T(n-1) + cn$$

Worst Case Recursion Tree

$$T(n) = T(1) + T(n-1) + cn$$

Best Case Analysis (for intuition only)

☐ If we're <u>extremely lucky</u>, H-PARTITION splits the array <u>evenly</u> at <u>every</u> recursive call

$$T(n) = 2 T(n/2) + \Theta(n)$$
$$= \Theta(n \lg n)$$

→ same as merge sort

□ Instead of splitting 0.5:0.5, what if every split is 0.1:0.9?

$$T(n) = T(n/10) + T(9n/10) + \Theta(n)$$

→ solve this recurrence

"Almost-Best" Case Analysis

"Almost-Best" Case Analysis

"Almost-Best" Case Analysis

- □ We have seen that if H-PARTITION always splits the array with 0.1-to-0.9 ratio, the runtime will be $\Theta(nlgn)$.
- \square Same is true with a split ratio of 0.01-to-0.99, etc.
- □ Possible to show that if the split has always constant $(\Theta(1))$ proportionality, then the runtime will be $\Theta(\text{nlgn})$.
- □ In other words, for a <u>constant</u> α (0 < α ≤ 0.5): α —to—(1- α) proportional split yields Θ (nlgn) total runtime

- □ In the rest of the analysis, assume that *all input permutations* are equally likely.
 - This is only to gain some intuition
 - We cannot make this assumption for average case analysis
 - We will revisit this assumption later
- □ Also, assume that all input elements are distinct.

□ What is the probability that H-PARTITION returns a split that is more balanced than 0.1-to-0.9?

<u>Reminder</u>: H-PARTITION will place the pivot in the right partition unless the pivot is the smallest element in the arrays.

<u>Question</u>: If the pivot selected is the m^{th} smallest value $(1 < m \le n)$ in the input array, what is the size of the left region after partitioning?

Question: What is the probability that the pivot selected is the mth smallest value in the array of size n?

1/n (since all input permutations are equally likely)

<u>Question</u>: What is the probability that the left partition returned by H-PARTITION has size m, where 1 < m < n?

1/n (due to the answers to the previous 2 questions)

Question: What is the probability that H-PARTITION returns a split that is more balanced than 0.1-to-0.9?

The partition boundary will be in this region for a more balanced split than 0.1-to-0.9

Probability =
$$\mathop{\text{a}}_{q=0.1n+1}^{0.9n-1} \frac{1}{n} = \frac{1}{n} (0.9n - 1 - 0.1n - 1 + 1) = 0.8 - \frac{1}{n}$$

 ≈ 0.8 for large n

- □ The probability that *H-PARTITION* yields a split that is more balanced than 0.1-to-0.9 is 80% on a random array.
- □ Let P_{α} be the probability that H-PARTITION yields a split more balanced than α -to- $(1-\alpha)$, where $0 < \alpha \le 0.5$
- Repeat the analysis to generalize the previous result

Question: What is the probability that H-PARTITION returns a split that is more balanced than α -to- $(1-\alpha)$?

The partition boundary will be in this region for a more balanced split than αn -to- $(1-\alpha)n$

Probability =
$$\mathring{a}$$
 $\frac{1}{n} = \frac{1}{n}((1-a)n - 1 - an - 1 + 1) = (1-2a) - \frac{1}{n}$

$$q = an + 1$$

$$\approx (1-2a) \text{ for large } n$$

 \approx (1-2 α) for large n

 \square We found $P_{\alpha} = 1 - 2\alpha$

Examples: $P_{0.1>} = 0.8$

$$P_{0.01>} = 0.98$$

- □ Hence, *H-PARTITION* produces a split
 - > more balanced than a
 - > 0.1-to-0.9 split 80% of the time
 - > 0.01-to-0.99 split 98% of the time
 - > less balanced than a
 - > 0.1-to-0.9 split 20% of the time
 - > 0.01-to-0.99 split 2% of the time

- □ <u>Assumption</u>: All permutations are equally likely
 - Only for intuition; we'll revisit this assumption later
- □ <u>Unlikely</u>: Splits always the same way at every level

□ Expectation:

Some splits will be reasonably balanced Some splits will be fairly unbalanced

Average case: A mix of good and bad splits
 Good and bad splits distributed randomly thru the tree

□ *Assume for intuition*: Good and bad splits occur in the alternate levels of the tree

Good split: Best case split

Bad split: Worst case split

Compare 2-successive levels of avg case vs. 1 level of best case

- □ In terms of the remaining subproblems, two levels of avg case is slightly better than the single level of the best case
- \Box The avg case has extra divide cost of $\Theta(n)$ at alternate levels

- □ The extra divide cost $\Theta(n)$ of bad splits absorbed into the $\Theta(n)$ of good splits.
- \Box Running time is still $\Theta(nlgn)$

- \Box Running time is still $\Theta(nlgn)$
 - > But, slightly larger hidden constants, because the height of the recursion tree is about twice of that of best case.

□ Another way of looking at it:

Suppose we alternate lucky, unlucky, lucky, unlucky, ...

We can write the recurrence as:

$$L(n) = 2 U(n/2) + \Theta(n)$$
 lucky split (best)

$$U(n) = L(n-1) + \Theta(n)$$
 unlucky split (worst)

Solving:

$$L(n) = 2 (L(n/2-1) + \Theta(n/2)) + \Theta(n)$$
$$= 2L(n/2-1) + \Theta(n)$$
$$= \Theta(n\lg n)$$

How can we make sure we are usually lucky for all inputs?

Worst case: Unbalanced split at every recursive call

$$T(n) = T(1) + T(n-1) + \Theta(n)$$

$$\rightarrow$$
 T(n) = Θ (n²)

<u>Best case</u>: Balanced split at <u>every</u> recursive call (extremely lucky)

$$T(n) = 2T(n/2) + \Theta(n)$$

$$\rightarrow$$
 T(n) = Θ (nlgn)

Almost-best case: Almost-balanced split at every recursive call

$$T(n) = T(n/10) + T(9n/10) + \Theta(n)$$

$$\underline{or} \quad T(n) = T(n/100) + T(99n/100) + \Theta(n)$$

$$\underline{or} \quad T(n) = T(\alpha n) + T((1-\alpha)n) + \Theta(n)$$

$$for \ any \ constant \ \alpha, \ 0 < \alpha \le 0.5$$

$$\rightarrow$$
 T(n) = Θ (nlgn)

For a <u>random</u> input array, the probability of having a split

```
more balanced than 0.1 - to - 0.9 : 80\%
```

more balanced than 0.01 - to - 0.99 : 98%

more balanced than
$$\alpha - to - (1-\alpha) : 1 - 2\alpha$$

for any constant α *,* $0 < \alpha \le 0.5$

Avg case intuition: Different splits expected at different levels
 → some balanced (good), some unbalanced (bad)

Avg case intuition: Assume the good and bad splits alternate i.e. good split \rightarrow bad split \rightarrow good split \rightarrow ...

 \rightarrow T(n) = Θ (nlgn)

(informal analysis for intuition)