CS473-Algorithms I

Lecture 6-b Randomized Quicksort

View in slide-show mode

Randomized Quicksort

\square In the avg-case analysis, we assumed that all permutations of the input array are equally likely.

- But, this assumption does not always hold
- e.g. What if all the input arrays are reverse sorted?
\rightarrow Always worst-case behavior
\square Ideally, the avg-case runtime should be independent of the input permutation.
\square Randomness should be within the algorithm, not based on the distribution of the inputs.
i.e. The avg case should hold for all possible inputs

Randomized Algorithms

\square Alternative to assuming a uniform distribution:
\rightarrow Impose a uniform distribution
e.g. Choose a random pivot rather than the first element
\square Typically useful when:

- there are many ways that an algorithm can proceed
- but, it's difficult to determine a way that is always guaranteed to be good.
- If there are many good alternatives; simply choose one randomly.

Randomized Algorithms

\square Ideally:
\square Runtime should be independent of the specific inputs

- No specific input should cause worst-case behavior
- Worst-case should be determined only by output of a random number generator.

Randomized Quicksort

Using Hoare's partitioning algorithm:

```
R-QUICKSORT(A, p,r)
if }p<r\mathrm{ then
    q\leftarrow\textrm{R}-\textrm{PARTITION(A, p,r)}
    R-QUICKSORT(A, }p,q
    R-QUICKSORT(A, q+1,r)
```

```
R-PARTITION(A, p,r)
    s\leftarrow\operatorname{RANDOM}(p,r)
    exchange }\textrm{A}[p]\leftrightarrow\textrm{A}[s
    return H-PARTITION(A, p,r)
R-PARTITION(A, \(p, r\) )
\(s \leftarrow \operatorname{RANDOM}(p, r)\)
exchange \(\mathrm{A}[p] \leftrightarrow \mathrm{A}[s]\)
return H-PARTITION(A, \(p, r\) )
```

Alternatively, permuting the whole array would also work
\rightarrow but, would be more difficult to analyze

Randomized Quicksort

Using Lomuto's partitioning algorithm:

```
R-QUICKSORT(A, }p,r\mathrm{ )
if }p<r\mathrm{ then
    q\leftarrow\textrm{R}-\textrm{PARTITION(A, p,r)}
    R-QUICKSORT(A, p,q-l)
    R-QUICKSORT(A, q+1,r)
```

R-PARTITION(A, p, r)
$s \leftarrow \operatorname{RANDOM}(p, r)$
exchange $\mathrm{A}[r] \leftrightarrow \mathrm{A}[s]$
return L-PARTITION(A, p, r)

Alternatively, permuting the whole array would also work
\rightarrow but, would be more difficult to analyze

Notations for Formal Analysis

\square Assume all elements in A[p.r] are distinct
\square Let $\mathrm{n}=\mathrm{r}-\mathrm{p}+1$
\square Let $\operatorname{rank}(x)=\mid\{A[i]: p \leq i \leq r$ and $A[i] \leq x\} \mid$
i.e. $\operatorname{rank}(x)$ is the number of array elements with value less than or equal to x

p
 5 9 7 6 8 1 4

$\operatorname{rank}(5)=3$
i.e. it is the $3^{\text {rd }}$ smallest element in the array

Formal Analysis for Average Case

\square The following analysis will be for Quicksort using Hoare's partitioning algorithm.
$\square \underline{\text { Reminder: }}$ The pivot is selected randomly and exchanged with $\mathrm{A}[\mathrm{p}]$ before calling H-PARTITION
\square Let x be the random pivot chosen.
\square What is the probability that $\operatorname{rank}(\mathrm{x})=\mathrm{i}$ for $\mathrm{i}=1,2, \ldots \mathrm{n}$?

$$
\mathrm{P}(\operatorname{rank}(\mathrm{x})=\mathrm{i})=1 / \mathrm{n}
$$

Various Outcomes of H-PARTITION

Assume that $\operatorname{rank}(\mathrm{x})=1$
i.e. the random pivot chosen is the smallest element

What will be the size of the left partition (|L|)?
Reminder: Only the elements less than or equal to x will be in the left partition.

$$
\rightarrow|L|=1
$$

$$
\text { pivot }=x=2
$$

Various Outcomes of H-PARTITION

Assume that $\operatorname{rank}(x)>1$
i.e. the random pivot chosen is not the smallest element

What will be the size of the left partition (|L|)?
Reminder: Only the elements less than or equal to x will be in the left partition.
Reminder: The pivot will stay in the right region after H-PARTITION if $\operatorname{rank}(x)>1$
$\rightarrow|\mathrm{L}|=\operatorname{rank}(\mathrm{x})-1$

p						
2	4	7	6	8	5	9

Various Outcomes of H-PARTITION - Summary

$\mathbf{P}(\operatorname{rank}(\mathrm{x})=\mathrm{i})=1 / \mathrm{n} \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}$
if $\operatorname{rank}(x)=1$ then $|L|=1$
x : pivot
|L|: size of left region
if $\operatorname{rank}(\mathrm{x})>1$ then $|\mathrm{L}|=\operatorname{rank}(\mathrm{x})-1$
$\mathbf{P}(|\mathrm{L}|=1)=\mathbf{P}(\operatorname{rank}(\mathrm{x})=1)+\mathbf{P}(\operatorname{rank}(\mathrm{x})=2)$
$\mathbf{P}(|\mathrm{L}|=1)=2 / \mathrm{n}$

$$
\begin{aligned}
& \mathbf{P}(|\mathrm{L}|=\mathrm{i})=\mathbf{P}(\operatorname{rank}(\mathrm{x})=\mathrm{i}+1) \\
& \\
& \text { for } 1<\mathrm{i}<\mathrm{n}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}(|\mathrm{L}|=\mathrm{i})=1 / \mathrm{n} \\
& \quad \text { for } 1<\mathrm{i}<\mathrm{n}
\end{aligned}
$$

Various Outcomes of H-PARTITION - Summary

rank(x) probability
$T(n)$
$T(1)+T(n-1)+\Theta(n)$
$T(1)+T(n-1)+\Theta(n)$
$T(2)+T(n-2)+\Theta(n)$
\vdots
$T(i)+T(n-i)+\Theta(n)$
\vdots
$T(n-1)+T(1)+\Theta(n)$

Average - Case Analysis: Recurrence

$\mathrm{T}(n)$	$=\frac{\mathbf{1}}{\boldsymbol{n}}(T(1)+T(n-1))$	$\frac{\operatorname{rank}(x)}{1}$	
	$+\frac{\mathbf{1}}{\boldsymbol{n}}(T(1)+T(n-1))$	2	
$\boldsymbol{x}=$ pivot	$+\frac{\mathbf{1}}{\boldsymbol{n}}(T(2)+T(n-2))$	3	
	\vdots	\vdots	\vdots
	$+\frac{\mathbf{1}}{\boldsymbol{n}}(T(\mathrm{i})+T(n-\mathrm{i}))$	$\vdots+1$	
	\vdots	\vdots	n
	$+\frac{\mathbf{1}}{\boldsymbol{n}}(T(\mathrm{n}-1)+T(1))$		
	$+\Theta(n)$		

Recurrence

$$
\begin{aligned}
& \mathrm{T}(n)=\frac{\mathbf{1}}{n} \sum_{q=1}^{n-1}(T(q)+T(n-q))+\frac{\mathbf{1}}{\boldsymbol{n}}(T(1)+T(n-1))+\Theta(n) \\
& \text { Note: } \frac{\mathbf{1}}{\mathbf{n}}(T(1)+T(n-1))=\frac{\mathbf{1}}{n}\left(\Theta(1)+\mathrm{O}\left(n^{2}\right)\right)=\mathrm{O}(n) \\
& \Rightarrow \mathrm{T}(n)=\frac{\mathbf{1}}{n} \sum_{q=1}^{n-1}(T(q)+T(n-q))+\Theta(n)
\end{aligned}
$$

- for $k=1,2, \ldots, n-1$ each term $T(k)$ appears twice once for $q=k$ and once for $q=n-k$

$$
\mathrm{T}(n)=\frac{2}{n} \sum_{k=1}^{n-1} T(k)+\Theta(n)
$$

CS473 - Lecture 6-b

Solving Recurrence: Substitution

Guess: $T(n)=\mathrm{O}(n \lg n)$
I.H. : $T(k) \leq a k \lg k$ for $k<n$, for some constant $a>0$

$$
\begin{aligned}
T(n) & =\frac{2}{n} \sum_{k=1}^{n-1} T(k)+\Theta(n) \\
& \leq \frac{2}{n} \sum_{k=1}^{n-1}(a k \lg k)+\Theta(n) \\
& =\frac{2 a \sum_{k=1}^{n-1}}{n}(k \lg k)+\Theta(n)
\end{aligned}
$$

Need a tight bound for $\sum k \lg k$

Tight bound for $\sum k \lg k$

- Bounding the terms

$$
\sum_{k=1}^{n-1} k \lg k \leq \sum_{k=1}^{n-1} n \lg n=n(n-1) \lg n \leq n^{2} \lg n
$$

This bound is not strong enough because

$$
\text { - } \mathrm{T}(n) \leq \frac{2 \boldsymbol{a}}{n} n^{2} \lg n+\Theta(n)
$$

$$
=2 a n \lg n+\Theta(n) \quad \rightarrow \text { couldn't prove } T(n) \leq a n \lg n
$$

Tight bound for $\sum k \lg k$

- Splitting summations: ignore ceilings for simplicity

$$
\sum_{k=1}^{n-1} k \lg k \leq \sum_{k=1}^{n / 2-1} k \lg k+\sum_{k=n / 2}^{n-1} k \lg k
$$

First summation: $\quad \lg k<\lg (n / 2)=\lg n-1$
Second summation: $\lg k<\lg n$

$$
\text { Splitting: } \sum_{k=1}^{n-1} k \lg k \leq \sum_{k=1}^{\prime \prime 2-1} k \lg k+\sum_{k=n / 2}^{n-1} k \lg k
$$

$$
\begin{aligned}
\sum_{k=1}^{n-1} k \lg k & \leq(\lg n-1) \sum_{k=1}^{n / 2-1} k+\lg n \sum_{k=n / 2}^{n-1} k \\
& =\lg n \sum_{k=1}^{n-1} k-\sum_{k=1}^{n / 2-1} k=\frac{1}{2} n(n-1) \lg n-\frac{1}{2} \frac{n}{2}\left(\frac{n}{2}-1\right) \\
& =\frac{1}{2} n^{2} \lg n-\frac{1}{8} n^{2}-\frac{1}{2} n(\lg n-1 / 2)
\end{aligned}
$$

$$
\sum_{k=1}^{n-1} k \lg k \leq \frac{1}{2} n^{2} \lg n-\frac{1}{8} n^{2} \text { for } \lg n \geq 1 / 2 \Rightarrow n \geq \sqrt{2}
$$

Substituting: $\sum_{k=1}^{n-1} k \lg k \leq \frac{1}{2} n^{2} \lg n-\frac{1}{8} n^{2}$

$$
\begin{aligned}
T(n) \quad & \frac{2 a}{n}_{k=1}^{n} k \lg k+\quad(n) \\
& \frac{2 a}{n}\left(\frac{1}{2} n^{2} \lg n \quad \frac{1}{8} n^{2}\right)+\quad(n) \\
& =a n \lg n \quad \frac{a}{4} n \quad(n) \div
\end{aligned}
$$

We can choose a large enough so that $\frac{a}{4} n$

$T(n) \quad a n \lg n$

$$
T(n)=O(n \lg n)
$$

