CS473-Algorithms I

Lecture 7
 Medians and Order Statistics

View in slide-show mode

Medians and Order Statistics

$i^{\text {th }}$ order statistic: $\mathrm{i}^{\text {th }}$ smallest element of a set of n elements
minimum: first order statistic
maximum: $\mathrm{n}^{\text {th }}$ order statistic
median: "halfway point" of the set

$$
\mathrm{i}=\lfloor(n+1) / 2\rfloor \text { or }\lceil(n+1) / 2\rceil
$$

Selection Problem

\square Selection problem: Select the $\mathrm{i}^{\text {th }}$ smallest of n elements
\square Naïve algorithm: Sort the input array A; then return A[i] $\mathrm{T}(\mathrm{n})=\Theta(\mathrm{nlgn})$ using e.g. merge sort (but not quicksort)
\square Can we do any better?

Selection in Expected Linear Time

\square Randomized algorithm using divide and conquer
\square Similar to randomized quicksort

- Like quicksort: Partitions input array recursively
- Unlike quicksort: Makes a single recursive call

Reminder: Quicksort makes two recursive calls

- Expected runtime: $\Theta(\mathrm{n})$

Reminder: Expected runtime of quicksort: Θ (nlgn)

Selection in Expected Linear Time: Example 1

Select the $2^{\text {nd }}$ smallest element:

| 6 | 10 | 13 | 5 | 8 | 3 | 2 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad i=2$

Partition the input array:

Selection in Expected Linear Time: Example 2

Select the $7^{\text {th }}$ smallest element:

| 6 | 10 | 13 | 5 | 8 | 3 | 2 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad i=7$

Partition the input array:

2	3	5	13	8	10	6	11

Selection in Expected Linear Time

```
R-SELECT(A,p,r,i)
    if p=r then
        return A[p]
q\leftarrowR-PARTITION(A,p,r)
k}\leftarrowq-p+
if }i\leqk\mathrm{ then
    return R-SELECT(A, p,q,i)
else
    return R-SELECT(A, q+1,r,i-k)
```

$\leq x$ (k smallest elements)	$\geq x$	$x=$ pivot
p	q	

Selection in Expected Linear Time

- All elements in $\mathrm{L} \leq$ all elements in R
- L contains $|\mathrm{L}|=q-p+1=\mathrm{k}$ smallest elements of $\mathrm{A}[p \ldots r]$ if $i \leq|\mathrm{L}|=\mathrm{k}$ then
search L recursively for its i-th smallest element else
search R recursively for its ($i-k$)-th smallest element

Runtime Analysis

\square Worst case:
Imbalanced partitioning at every level and the recursive call always to the larger partition

Runtime Analysis

\square Worst case:

$$
T(n)=T(n-1)+\Theta(n)
$$

$\Rightarrow \mathrm{T}(\mathrm{n})=\Theta\left(\mathrm{n}^{2}\right)$
Worse than the naïve method (based on sorting)
\square Best case: Balanced partitioning at every recursive level $T(n)=T(n / 2)+\Theta(n)$
$\Rightarrow \mathrm{T}(\mathrm{n})=\Theta(\mathrm{n})$
$\square \quad \underline{\text { Avg case }}$: Expected runtime - need analysis

Reminder: Various Outcomes of H-PARTITION

$\mathbf{P}(\operatorname{rank}(\mathrm{x})=\mathrm{i})=1 / \mathrm{n} \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}$
if $\operatorname{rank}(x)=1$ then $|L|=1$
if $\operatorname{rank}(x)>1$ then $|L|=\operatorname{rank}(x)-1$
$\mathbf{P}(|\mathrm{L}|=1)=\mathbf{P}(\operatorname{rank}(\mathrm{x})=1)+\mathbf{P}(\operatorname{rank}(\mathrm{x})=2)$

$$
\mathbf{P}(|\mathrm{L}|=1)=2 / \mathrm{n}
$$

$$
\begin{gathered}
\mathbf{P}(|\mathrm{L}|=\mathrm{i})=\mathbf{P}(\operatorname{rank}(\mathrm{x})=\mathrm{i}+1) \\
\text { for } 1<\mathrm{i}<\mathrm{n}
\end{gathered}
$$

Average Case Analysis of Randomized Select

\square To compute the upper bound for the avg case, assume that the $\mathrm{i}^{\text {th }}$ element always falls into the larger partition.

We will analyze the case where the recursive call is always made to the larger partition
\rightarrow this will give us an upper bound for the avg case

Various Outcomes of H-PARTITION

$\underline{\operatorname{rank}(\mathrm{x})}$	prob.	$\mathrm{T}(\mathrm{n})$
1	$1 / \mathrm{n}$	$\leq \mathrm{T}(\max (1, \mathrm{n}-1))+\Theta(\mathrm{n})$
2	$1 / \mathrm{n}$	$\leq \mathrm{T}(\max (1, \mathrm{n}-1))+\Theta(\mathrm{n})$
3	$1 / \mathrm{n}$	$\leq \mathrm{T}(\max (2, \mathrm{n}-2))+\Theta(\mathrm{n})$
\vdots	\vdots	\vdots
$\mathrm{i}+1$	$1 / \mathrm{n}$	$\leq \mathrm{T}(\max (\mathrm{i}, \mathrm{n}-\mathrm{i}))+\Theta(\mathrm{n})$
\vdots	\vdots	\vdots
n	$1 / \mathrm{n}$	$\leq \mathrm{T}(\max (\mathrm{n}-1,1))+\Theta(\mathrm{n})$

Average-Case Analysis of Randomized Select

Recall: $\mathrm{P}(|L|=i)= \begin{cases}2 / n & \text { for } \mathrm{i}=1 \\ 1 / n & \text { for } \mathrm{i}=2,3, \ldots, n-1\end{cases}$
Upper bound: Assume i-th element always falls into the larger part
$T(n) \leq \frac{1}{n} T(\max (1, n-1))+\frac{1}{n} \sum_{q=1}^{n-1} T(\max (q, n-q))+O(n)$
Note: $\frac{1}{\mathrm{n}} T(\max (1, n-1))=\frac{1}{\mathrm{n}} \quad T(n-1)=\frac{1}{\mathrm{n}} \quad \mathrm{O}\left(n^{2}\right)=\mathrm{O}(n)$
$\therefore \mathrm{T}(n) \leq \frac{1}{n}{ }_{q} \sum_{=1}^{n-1} T(\max (q, n-q))+\mathrm{O}(n)$

Average-Case Analysis of Randomized Select

$\therefore T(n) \leq \frac{1}{\mathrm{n}} \sum_{q_{=1}^{n-1}} T(\max (q, n-q))+\mathrm{O}(n)$

$$
\max (q, n-q)= \begin{cases}\mathrm{q} & \text { if } \mathrm{q} \geq\lceil n / 2\rceil \\ n-\mathrm{q} & \text { if } \mathrm{q}<\lceil n / 2\rceil\end{cases}
$$

n is odd: $T(k)$ appears twice for $k=\lceil n / 2\rceil+1,\lceil n / 2\rceil+2, \ldots, n-1$ n is even: $T(\lceil n / 2\rceil)$ appears once $T(k)$ appears twice for $k=\lceil n / 2\rceil+1,\lceil n / 2\rceil+2, \ldots, n-1$
Hence, in both cases: $\sum_{q=1} T(\max (q, n-q))+O(n) \leq \sum_{q=\{\mid n 21}^{2-1} T(q)+O(n)$
$\left.\therefore T(n) \leq \frac{2}{\mathrm{n}} \sum_{\mathrm{q}=\mathrm{F}_{n 2} \mathrm{n}-1}^{\mathrm{n}} \mathrm{q}\right)+\mathrm{O}(n)$

Average-Case Analysis of Randomized Select

$$
T(n) \leq \quad \frac{2}{\mathrm{n}} \sum_{\mathrm{a}=\ldots / 2 \backslash}^{n-1} T(q)+\mathrm{O}(n)
$$

By substitution guess $T(n)=\mathrm{O}(n)$
Inductive hypothesis: $T(k) \leq c k, \quad \forall k<n$

$$
\left.\begin{array}{rl}
\mathrm{T}(n) \leq(2 / n) & \sum_{\mathrm{k} \leqslant n / 2]}^{n-1} \mathrm{c} k \\
= & \frac{2 \mathrm{c}}{n}\left(\sum_{\mathrm{k}=1}^{n-1} k-\sum_{\mathrm{k}=1}^{\lceil n} k\right.
\end{array}\right)+\mathrm{O}(n) \quad \begin{aligned}
& {[n / 2]-1 } \\
& \frac{2 \mathrm{c}}{n}\left(\frac{1}{2} n(n-1)-\frac{1}{2}\left[\frac{n}{2}\right\rceil\left(\frac{n}{2}-1\right)\right]+\mathrm{O}(n)
\end{aligned}
$$

Average-Case Analysis of Randomized Select

$$
\begin{aligned}
T(n) & \leq \frac{2 c}{n}\left(\frac{1}{2} n(n-1)-\frac{1}{2}\left[\frac{n}{2}\right]\left(\frac{n}{2}-1\right)\right]+\mathrm{O}(n) \\
& \leq c(n-1)-\frac{c}{4} n+\frac{c}{2}+\mathrm{O}(n) \\
& =c n-\frac{c}{4} n-\frac{c}{2}+\mathrm{O}(n) \\
& =c n-\left(\left[\frac{c}{4} n+\frac{c}{2}\right)-\mathrm{O}(n)\right) \\
& \leq c n
\end{aligned}
$$

since we can choose c large enough so that ($c n / 4+c / 2$) dominates $\mathrm{O}(n)$

Summary of Randomized Order-Statistic Selection

- Works fast: linear expected time
- Excellent algorithm in practise
- But, the worst case is very bad: $\Theta\left(n^{2}\right)$

Q: Is there an algorithm that runs in linear time in the worst case?

A: Yes, due to Blum, Floyd, Pratt, Rivest \& Tarjan[1973]
Idea: Generate a good pivot recursively..

Selection in Worst Case Linear Time

$\operatorname{SELECT}(S, n, i) \triangleright$ return \boldsymbol{i}-th element in set S with \boldsymbol{n} elements if $n \leq 5$ then

SORT S and return the i-th element
DIVIDE S into $[\mathrm{n} / 5\rceil$ groups
\triangleright first $[\mathrm{n} / 5\rceil$ groups are of size 5, last group is of size $n \bmod 5$
FIND median set $\mathrm{M}=\left\{m_{1}, \ldots, m_{[n / 5]}\right\} \triangleright m_{\mathrm{j}}$: median of j-th group
$x \leftarrow \operatorname{SELECT}(\mathrm{M},\lceil\mathrm{n} / 5\rceil,\lfloor([n / 5)+1) / 2)$
PARTITION set S around the pivot x into L and R
if $i \leq|L|$ then
return $\operatorname{SELECT}(L,|L|, i)$
else
return $\operatorname{SELECT}(\mathrm{R}, \mathrm{n}-|L|, i-|L|)$

Selection in Worst Case Linear Time - Example

Input: Array S and index i

Output: The $\mathrm{i}^{\text {th }}$ smallest value

$$
\begin{aligned}
\mathrm{S}= & \{259168112739421563214362033223141733041 \\
& 21319721103413723405291824123828263543\}
\end{aligned}
$$

Selection in Worst Case Linear Time - Example

Step 1: Divide the input array into groups of size 5

25	27	32	22	30	7	37	18	26
9	39	14	31	41	21	23	24	35
16	42	36	4	2	10	40	12	43
8	15	20	17	13	34	5	38	
11	6	33	3	19	1	29	28	

Selection in Worst Case Linear Time - Example

Step 2: Compute the median of each group $\quad \rightarrow \Theta(\mathrm{n})$

9	15	14	4	2	7	5	18	
8	6	20	3	13	1	23	12	26
11	27	32	17	19	10	29	24	35
$\begin{aligned} & 16 \\ & 25 \end{aligned}$	$\begin{aligned} & 42 \\ & 39 \end{aligned}$	33 36	17 22	30 41	34 21	40 37	28 38	43

Let M be the set of the medians computed:

$$
\mathrm{M}=\{11,27,32,17,19,10,29,24,35\}
$$

Selection in Worst Case Linear Time - Example

Step 3: Compute the median of the median group M $\mathrm{x} \leftarrow \operatorname{SELECT}(\mathrm{M},|\mathrm{M}|,(|M|+1) / 2) \quad$ where $|M|=n / 5$

M | 9 | 15 | 14 | 4 | 2 | 7 | 5 | 18 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 6 | 20 | 3 | 13 | 1 | 23 | 12 | 26 |
| 11 | 27 | 32 | 17 | 19 | 10 | 29 | 24 | 35 |
| 16 | 42 | 33 | 31 | 30 | 34 | 40 | 28 | 43 |
| 25 | 39 | 36 | 22 | 41 | 21 | 37 | 38 | |

The runtime of the recursive call: $\mathrm{T}(|\mathrm{M}|)=T(n / 5)$

Selection in Worst Case Linear Time - Example

Step 4: Partition the input array S around the median-of-medians x

$$
\begin{aligned}
\mathrm{S}= & \{259168112739421563214362033223141733041 \\
& 21319721103413723405291824123828263543\}
\end{aligned}
$$

Partition S around $x=24$

Claim: Partitioning around x is guaranteed to be well-balanced.

Selection in Worst Case Linear Time - Example

Claim: Partitioning around $\mathrm{x}=24$ is guaranteed to be well-balanced.

Selection in Worst Case Linear Time - Example

Claim: Partitioning around $\mathrm{x}=24$ is guaranteed to be well-balanced.

Selection in Worst Case Linear Time - Example

$$
\begin{aligned}
\mathrm{S}= & \{259168112739421563214362033223141733041 \\
& 21319721103413723405291824123828263543
\end{aligned}
$$

Partitioning S around $x=24$ will lead to partitions of sizes $\sim 3 n / 10$ and $\sim 7 n / 10$ in the worst case.

Step 5: Make a recursive call to one of the partitions

> if $i \leq|L|$ then return $\operatorname{SELECT}(\mathrm{L},|L|, i)$ else return $\operatorname{SELECT}(\mathrm{R}, \mathrm{n}-|L|, i-|L|)$

Selection in Worst Case Linear Time

$\operatorname{SELECT}(S, n, i) \triangleright$ return \boldsymbol{i}-th element in set S with \boldsymbol{n} elements if $n \leq 5$ then

SORT S and return the i-th element
DIVIDE S into $[\mathrm{n} / 5\rceil$ groups
\triangleright first $[\mathrm{n} / 5\rceil$ groups are of size 5 , last group is of size $n \bmod 5$
FIND median set $\mathrm{M}=\left\{m_{1}, \ldots, m_{[n / 55}\right\} \triangleright m_{\mathrm{j}}$: median of j-th group
$x \leftarrow \operatorname{SELECT}(\mathrm{M},\lceil\mathrm{n} / 5\rceil,\lfloor([n / 5)+1) / 2)$
PARTITION set S around the pivot x into L and R
if $i \leq|L|$ then
return $\operatorname{SELECT}(L,|L|, i)$
else
return $\operatorname{SELECT}(\mathrm{R}, \mathrm{n}-|L|, i-|L|)$

Choosing the Pivot

1. Divide S into groups of size 5

Choosing the Pivot

Choosing the Pivot

1. Divide S into groups of size 5
2. Find the median of each group
3. Recursively select the median x of the medians

Choosing the Pivot

At least half of the medians $\geq x$
Thus $m=\lceil\lceil n / 5\rceil / 2\rceil$ groups contribute 3 elements to R except possibly the last group and the group that contains x

$$
|R| \geq 3(m-2) \geq \frac{3 n}{10}-6
$$

Analysis

Similarly

$$
|L| \geq \frac{3 n}{10}-6
$$

Therefore, SELECT is recursively called on at most $n-\left(\frac{3 n}{10}-6\right)=\frac{7 n}{10}+6$ elements

Selection in Worst Case Linear Time

Selection in Worst Case Linear Time

Thus recurrence becomes

$$
T(n) \leq T\left(\left[\frac{\mathrm{n}}{5}\right\rceil\right)+T\left(\frac{7 n}{10}+6\right)+\Theta(n)
$$

Guess $T(n)=\mathrm{O}(n)$ and prove by induction
Inductive step: $T(n) \leq \mathrm{c}\lceil\mathrm{n} / 5\rceil+\mathrm{c}(7 \mathrm{n} / 10+6)+\Theta(n)$

$$
\begin{aligned}
& \leq \mathrm{cn} / 5+c+7 \mathrm{cn} / 10+6 \mathrm{c}+\Theta(n) \\
& =9 \mathrm{cn} / 10+7 \mathrm{c}+\Theta(n) \\
& =\mathrm{cn}-[\mathrm{c}(\mathrm{n} / 10-7)-\Theta(n)] \leq \mathrm{cn} \text { for large } \mathrm{c}
\end{aligned}
$$

Work at each level of recursion is a constant factor (9/10) smaller

