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Medians and Order Statistics

ith order statistic: ith smallest element of a set of n elements

minimum: first order statistic

maximum: nth order statistic

median: “halfway point” of the set

i =   (n+1)/2 or (n+1)/2
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Selection Problem

 Selection problem: Select the ith smallest of n elements

 Naïve algorithm:  Sort the input array A; then return A[i]

T(n) = Θ(nlgn)

using e.g. merge sort (but not quicksort)

 Can we do any better?
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Selection in Expected Linear Time

 Randomized algorithm using divide and conquer

 Similar to randomized quicksort

 Like quicksort: Partitions input array recursively

 Unlike quicksort: Makes a single recursive call

Reminder: Quicksort makes two recursive calls

 Expected runtime: Θ(n)

Reminder: Expected runtime of quicksort: Θ(nlgn)
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Selection in Expected Linear Time: Example 1

i = 26 10 13 5 8 3 2 11

Select the 2nd smallest element:

Partition the input array:

2 3 5 13 8 10 6 11

make a recursive call to

select the 2nd smallest

element in left subarray
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Selection in Expected Linear Time: Example 2

i = 76 10 13 5 8 3 2 11

Select the 7th smallest element:

Partition the input array:

2 3 5 13 8 10 6 11

make a recursive call to

select the 4th smallest

element in right subarray
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Selection in Expected Linear Time

R-SELECT(A,p,r,i)

if p = r then 

return A[p]

q ← R-PARTITION(A, p, r)

k ← q–p+1

if i ≤ k then 

return R-SELECT(A, p, q, i)

else

return R-SELECT(A, q+1, r, i-k)

x = pivot≤ x (k smallest elements) ≥ x

p q r
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Selection in Expected Linear Time

x = pivot

≤ x ≥ x

p q r

L R

• All elements in L ≤ all elements in R

• L contains |L| = q–p+1 = k smallest elements of A[p...r]

if i ≤ |L| = k then

search L recursively for its i-th smallest element 

else 

search R recursively for its (i-k)-th smallest element 
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Runtime Analysis

 Worst case:

Imbalanced partitioning at every level

and the recursive call always to the larger partition

1 2 3 4 5 6 7 8

recursive call

2 3 4 5 6 7 8

recursive call

i=8

i=7
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Runtime Analysis

 Worst case:

T(n) = T(n-1) + Θ(n) 

 T(n) = Θ(n2)

Worse than the naïve method (based on sorting)

 Best case: Balanced partitioning at every recursive level

T(n) = T(n/2) + Θ(n)

 T(n) = Θ(n)

 Avg case: Expected runtime – need analysis
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Reminder: Various Outcomes of H-PARTITION

P(rank(x) = i) = 1/n for 1≤ i ≤ n

if rank(x) = 1 then |L| = 1

if rank(x) > 1 then |L| = rank(x) - 1

x: pivot

|L|: size of left region

P(|L| = 1) = P(rank(x) = 1) + P(rank(x) = 2) P(|L| = 1) = 2/n

P(|L| = i) = P(rank(x) = i+1)

for 1< i < n

P(|L| = i) = 1/n

for 1< i < n
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Average Case Analysis of Randomized Select

 To compute the upper bound for the avg case, assume that the 

ith element always falls into the larger partition.

array A

qp r

left partition right partition

We will analyze the case where the recursive call is always

made to the larger partition

 this will give us an upper bound for the avg case
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Various Outcomes of H-PARTITION

rank(x) prob. T(n)                    .

1              1/n        ≤ T(max(1, n-1)) + Θ(n)

2              1/n        ≤ T(max(1, n-1)) + Θ(n)

3              1/n        ≤ T(max(2, n-2)) + Θ(n)
. . .
. . .
. . .

i+1            1/n         ≤ T(max(i, n-i)) + Θ(n)
. . .
. . .
. . .

n             1/n         ≤ T(max(n-1, 1)) + Θ(n)

1 n-1

1 n-1

2 n-2

i n-i

1n-1
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Average-Case Analysis of Randomized Select

2/n  for i =1

1/n for i = 2,3,... ,n–1
Recall: P(|L|=i) =

Upper bound: Assume i-th element always falls into the larger part

T(n) ≤        T(max(1, n–1)) +         Σ T(max(q, n–q)) + O(n)

Note: T(max(1, n–1)) = T(n–1) = O(n²) = O(n)

n -1

q = 1

1

n

1

n

1

n

1

n

1

n
... T(n) ≤ 

1

n
Σ T(max(q, n–q))+O(n)
n -1

q = 1
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Average-Case Analysis of Randomized Select

Σ T(max(q, n–q))+O(n)
n-1

q = 1

1

n
T(n) ≤...

n is odd: T(k) appears twice for k = n/2  +1, n/2 +2,...,n–1

n is even:T(  n/2  )  appears once T(k) appears twice for

k = n/2  +1, n/2 +2,...,n–1

Hence, in both cases: 

max(q, n–q) =
n–q    if  q  <   n/2

q        if  q  ≥ n/2

Σ T(max(q, n–q))+O(n) ≤ 2 Σ T(q) + O(n)
n-1

q=1

...

n-1

q=  n/2

T(n) ≤ 
2

n
Σ T(q)+O(n) 
n-1

q=  n/2
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Average-Case Analysis of Randomized Select

T(n) ≤ 2

n
Σ T(q)+O(n)

n -1

q= n/2

By substitution guess T(n) = O(n)

Inductive hypothesis: T(k) ≤ ck, k < n

(2/n) Σck + O(n)
n-1

k= n/2

T(n) ≤

= 
2c

n
Σk – Σk
n -1

k=1

n/2 -1

k=1

+ O(n)

2c

n

1

2
n (n-1) –

1

2

n

2

n

2
– 1 + O(n)
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Average-Case Analysis of Randomized Select

T(n) ≤
2c

n

1

2
n(n-1) –

1

2

n

2
– 1 + O(n)

n

2

n≤ c(n-1) –
c

4
+

c

2

c

2
n –= cn –

c

4
+ O(n)

+ O(n)

= cn – c

4
n +

c

2
– O(n)

≤ cn 

since we can choose c large enough so that ( cn/4+c/2 ) dominates O(n)
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Summary of Randomized Order-Statistic Selection

• Works fast: linear expected time

• Excellent algorithm in practise

• But, the worst case is very bad: Θ(n²)

Q: Is there an algorithm that runs in linear time in the worst 

case?

A: Yes, due to Blum, Floyd, Pratt, Rivest & Tarjan[1973]

Idea: Generate a good pivot recursively..
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Selection in Worst Case Linear Time

SELECT(S, n, i)     return i-th element in set S with n elements

if n ≤ 5 then

SORT S and return the i-th element

DIVIDE S into groups

first n/5 groups are of size 5, last group is of size n mod 5

FIND median set M={m , …, m     } m : median of j-th group

x ← SELECT(M, , ( n/5 +1)/2)

PARTITION set S around the pivot x into L and R

if i ≤ |L| then

return SELECT(L, |L|, i)

else

return SELECT(R, n–|L|, i–|L|)

n/5

n/51 j

n/5
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Selection in Worst Case Linear Time - Example

Input: Array S and index i

Output: The ith smallest value

S = {25 9 16 8 11 27 39 42 15 6 32 14 36 20 33 22 31 4 17 3 30 41

2 13 19 7 21 10 34 1 37 23 40 5 29 18 24 12 38 28 26 35 43}
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Selection in Worst Case Linear Time - Example

Step 1: Divide the input array into groups of size 5

25

9

16

8

11

27

39

42

15

6

32

14

36

20

33

22

31

4

17

3

30

41

2

13

19

7

21

10

34

1

37

23

40

5

29

18

24

12

38

28

26

35

43
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Selection in Worst Case Linear Time - Example

Step 2: Compute the median of each group

9

8

11

16

25

15

6

27

42

39

14

20

32

33

36

4

3

17

31

22

2

13

19

30

41

7

1

10

34

21

5

23

29

40

37

18

12

24

28

38

26

35

43

Let M be the set of the medians computed: 

M = {11, 27, 32, 17, 19, 10, 29, 24, 35}

 Θ(n)
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Selection in Worst Case Linear Time - Example

x  SELECT (M, |M|,                   )     where 

9

8

11

16

25

15

6

27

42

39

14

20

32

33

36

4

3

17

31

22

2

13

19

30

41

7

1

10

34

21

5

23

29

40

37

18

12

24

28

38

26

35

43

The runtime of the recursive call: T(|M|)

M +1( ) / 2ê
ë

ú
û M = n / 5éê ùú

M

=T n / 5éê ùú( )

 median = 24

Step 3: Compute the median of the median group M
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Selection in Worst Case Linear Time - Example

Step 4: Partition the input array S around the median-of-medians x

S = {25 9 16 8 11 27 39 42 15 6 32 14 36 20 33 22 31 4 17 3 30 41

2 13 19 7 21 10 34 1 37 23 40 5 29 18 24 12 38 28 26 35 43}

Partition S around x = 24

Claim: Partitioning around x is guaranteed to be well-balanced.
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Selection in Worst Case Linear Time - Example

Claim: Partitioning around x=24 is guaranteed to be well-balanced.

2

13

19

30

41

7

1

10

34

21

4

3

17

31

22

9

8

11

16

25

14

20

32

33

36

5

23

29

40

37

15

6

27

42

39

26

35

43

18

12

24

28

38

About half

of the medians

greater than x

about n/10

2 out of 5 in each group greater

than the median in the group,

which is greater than x 

about 2n/10 About 3n/10 elts

greater than x
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Selection in Worst Case Linear Time - Example

Claim: Partitioning around x=24 is guaranteed to be well-balanced.

2

13

19

30

41

7

1

10

34

21

4

3

17

31

22

9

8

11

16

25

14

20

32

33

36

5

23

29

40

37

15

6

27

42

39

26

35

43

18

12

24

28

38

About half

of the medians

less than x

about n/10

2 out of 5 in each group less 

than the median in the group,

which is less than x 

about 2n/10

About 3n/10 elts

less than x
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Selection in Worst Case Linear Time - Example

Step 5: Make a recursive call to one of the partitions

S = {25 9 16 8 11 27 39 42 15 6 32 14 36 20 33 22 31 4 17 3 30 41

2 13 19 7 21 10 34 1 37 23 40 5 29 18 24 12 38 28 26 35 43}

Partitioning S around x = 24 will lead to partitions

of  sizes ~3n/10 and ~7n/10 in the worst case. 

if i ≤ |L| then

return SELECT(L, |L|, i)

else

return SELECT(R, n–|L|, i–|L|)
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Selection in Worst Case Linear Time

SELECT(S, n, i)     return i-th element in set S with n elements

if n ≤ 5 then

SORT S and return the i-th element

DIVIDE S into         groups

first  n/5 groups are of size 5, last group is of size n mod 5

FIND median set M={m , …, m     } m : median of j-th group

x ← SELECT(M, , ( n/5 +1)/2)

PARTITION set S around the pivot x into L and R

if i ≤ |L| then

return SELECT(L, |L|, i)

else

return SELECT(R, n–|L|, i–|L|)

n/5

n/51 j

n/5
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Choosing the Pivot

1. Divide S into groups of size 5
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Choosing the Pivot

lesser

greater

1. Divide S into groups of size 5

2. Find the median of each group



CS473 – Lecture 7 Cevdet Aykanat - Bilkent University 

Computer Engineering Department

31

Choosing the Pivot

x

≥ x

1. Divide S into groups of size 5

2. Find the median of each group

3. Recursively select the median x of the medians

x

≥ x
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Choosing the Pivot

x

x

≥ x
≥ x

At least half of the medians ≥ x

Thus m = n/5  / 2 groups contribute 3 elements to 

R except possibly the last group and

the group that contains x

|R| ≥ 3 m – 2 ≥ – 6
3n

10
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Analysis

Similarly

|L| ≥  – 6

Therefore, SELECT is recursively called on at most

n – – 6  =        + 6 elements

3n

10

3n

10

7n

10

x

x

≥ x
≥ x
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Selection in Worst Case Linear Time

SELECT(S, n, i)     return i-th element in set S with n elements

if n ≤ 5 then

SORT S and return the i-th element

DIVIDE S into         groups

first  n/5 groups are of size 5, last group is of size n mod 5

FIND median set M={m , …, m     } m : median of j-th group

x ← SELECT(M, n/5 , ( n/5 +1)/2)

PARTITION set S around the pivot x into L and R

if i ≤ |L| then

return SELECT(L, |L|, i)

else

return SELECT(R, n–|L|, i–|L|)

n/5

n/51 j

Θ(n)

7n

10
T(     +6)

n/5T(     )

Θ(n)

Θ(n)
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Inductive step: T(n) ≤ c  n/5 + c (7n/10+6) + Θ(n)

≤ cn/5 + c + 7cn/10 + 6c + Θ(n)

= 9cn/10 + 7c + Θ(n)

= cn – [c(n/10 – 7) – Θ(n)] ≤ cn for large c

Thus recurrence becomes

T(n) ≤ T + T          + 6 + Θ(n)
7n

10

Work at each level of recursion is a constant factor (9/10) smaller

Selection in Worst Case Linear Time

Guess T(n) = O(n) and prove by induction

n

5


