
1

CS473 - Algorithms I

CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Lecture 7

Medians and Order Statistics

View in slide-show mode

2CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Medians and Order Statistics

ith order statistic: ith smallest element of a set of n elements

minimum: first order statistic

maximum: nth order statistic

median: “halfway point” of the set

i = (n+1)/2 or (n+1)/2

3CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Selection Problem

 Selection problem: Select the ith smallest of n elements

 Naïve algorithm: Sort the input array A; then return A[i]

T(n) = Θ(nlgn)

using e.g. merge sort (but not quicksort)

 Can we do any better?

4CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Selection in Expected Linear Time

 Randomized algorithm using divide and conquer

 Similar to randomized quicksort

 Like quicksort: Partitions input array recursively

 Unlike quicksort: Makes a single recursive call

Reminder: Quicksort makes two recursive calls

 Expected runtime: Θ(n)

Reminder: Expected runtime of quicksort: Θ(nlgn)

5CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Selection in Expected Linear Time: Example 1

i = 26 10 13 5 8 3 2 11

Select the 2nd smallest element:

Partition the input array:

2 3 5 13 8 10 6 11

make a recursive call to

select the 2nd smallest

element in left subarray

6CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Selection in Expected Linear Time: Example 2

i = 76 10 13 5 8 3 2 11

Select the 7th smallest element:

Partition the input array:

2 3 5 13 8 10 6 11

make a recursive call to

select the 4th smallest

element in right subarray

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University

Computer Engineering Department

7

Selection in Expected Linear Time

R-SELECT(A,p,r,i)

if p = r then

return A[p]

q ← R-PARTITION(A, p, r)

k ← q–p+1

if i ≤ k then

return R-SELECT(A, p, q, i)

else

return R-SELECT(A, q+1, r, i-k)

x = pivot≤ x (k smallest elements) ≥ x

p q r

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University

Computer Engineering Department

8

Selection in Expected Linear Time

x = pivot

≤ x ≥ x

p q r

L R

• All elements in L ≤ all elements in R

• L contains |L| = q–p+1 = k smallest elements of A[p...r]

if i ≤ |L| = k then

search L recursively for its i-th smallest element

else

search R recursively for its (i-k)-th smallest element

9CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Runtime Analysis

 Worst case:

Imbalanced partitioning at every level

and the recursive call always to the larger partition

1 2 3 4 5 6 7 8

recursive call

2 3 4 5 6 7 8

recursive call

i=8

i=7

10CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Runtime Analysis

 Worst case:

T(n) = T(n-1) + Θ(n)

 T(n) = Θ(n2)

Worse than the naïve method (based on sorting)

 Best case: Balanced partitioning at every recursive level

T(n) = T(n/2) + Θ(n)

 T(n) = Θ(n)

 Avg case: Expected runtime – need analysis

11CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Reminder: Various Outcomes of H-PARTITION

P(rank(x) = i) = 1/n for 1≤ i ≤ n

if rank(x) = 1 then |L| = 1

if rank(x) > 1 then |L| = rank(x) - 1

x: pivot

|L|: size of left region

P(|L| = 1) = P(rank(x) = 1) + P(rank(x) = 2) P(|L| = 1) = 2/n

P(|L| = i) = P(rank(x) = i+1)

for 1< i < n

P(|L| = i) = 1/n

for 1< i < n

12CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Average Case Analysis of Randomized Select

 To compute the upper bound for the avg case, assume that the

ith element always falls into the larger partition.

array A

qp r

left partition right partition

We will analyze the case where the recursive call is always

made to the larger partition

 this will give us an upper bound for the avg case

13CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Various Outcomes of H-PARTITION

rank(x) prob. T(n) .

1 1/n ≤ T(max(1, n-1)) + Θ(n)

2 1/n ≤ T(max(1, n-1)) + Θ(n)

3 1/n ≤ T(max(2, n-2)) + Θ(n)
. . .
. . .
. . .

i+1 1/n ≤ T(max(i, n-i)) + Θ(n)
. . .
. . .
. . .

n 1/n ≤ T(max(n-1, 1)) + Θ(n)

1 n-1

1 n-1

2 n-2

i n-i

1n-1

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University

Computer Engineering Department

14

Average-Case Analysis of Randomized Select

2/n for i =1

1/n for i = 2,3,... ,n–1
Recall: P(|L|=i) =

Upper bound: Assume i-th element always falls into the larger part

T(n) ≤ T(max(1, n–1)) + Σ T(max(q, n–q)) + O(n)

Note: T(max(1, n–1)) = T(n–1) = O(n²) = O(n)

n -1

q = 1

1

n

1

n

1

n

1

n

1

n
... T(n) ≤

1

n
Σ T(max(q, n–q))+O(n)
n -1

q = 1

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University

Computer Engineering Department

15

Average-Case Analysis of Randomized Select

Σ T(max(q, n–q))+O(n)
n-1

q = 1

1

n
T(n) ≤...

n is odd: T(k) appears twice for k = n/2 +1, n/2 +2,...,n–1

n is even:T(n/2) appears once T(k) appears twice for

k = n/2 +1, n/2 +2,...,n–1

Hence, in both cases:

max(q, n–q) =
n–q if q < n/2

q if q ≥ n/2

Σ T(max(q, n–q))+O(n) ≤ 2 Σ T(q) + O(n)
n-1

q=1

...

n-1

q= n/2

T(n) ≤
2

n
Σ T(q)+O(n)
n-1

q= n/2

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University

Computer Engineering Department

16

Average-Case Analysis of Randomized Select

T(n) ≤ 2

n
Σ T(q)+O(n)

n -1

q= n/2

By substitution guess T(n) = O(n)

Inductive hypothesis: T(k) ≤ ck, k < n

(2/n) Σck + O(n)
n-1

k= n/2

T(n) ≤

=
2c

n
Σk – Σk
n -1

k=1

n/2 -1

k=1

+ O(n)

2c

n

1

2
n (n-1) –

1

2

n

2

n

2
– 1 + O(n)

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University

Computer Engineering Department

17

Average-Case Analysis of Randomized Select

T(n) ≤
2c

n

1

2
n(n-1) –

1

2

n

2
– 1 + O(n)

n

2

n≤ c(n-1) –
c

4
+

c

2

c

2
n –= cn –

c

4
+ O(n)

+ O(n)

= cn – c

4
n +

c

2
– O(n)

≤ cn

since we can choose c large enough so that (cn/4+c/2) dominates O(n)

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University

Computer Engineering Department

18

Summary of Randomized Order-Statistic Selection

• Works fast: linear expected time

• Excellent algorithm in practise

• But, the worst case is very bad: Θ(n²)

Q: Is there an algorithm that runs in linear time in the worst

case?

A: Yes, due to Blum, Floyd, Pratt, Rivest & Tarjan[1973]

Idea: Generate a good pivot recursively..

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University

Computer Engineering Department

19

Selection in Worst Case Linear Time

SELECT(S, n, i) return i-th element in set S with n elements

if n ≤ 5 then

SORT S and return the i-th element

DIVIDE S into groups

first n/5 groups are of size 5, last group is of size n mod 5

FIND median set M={m , …, m } m : median of j-th group

x ← SELECT(M, , (n/5 +1)/2)

PARTITION set S around the pivot x into L and R

if i ≤ |L| then

return SELECT(L, |L|, i)

else

return SELECT(R, n–|L|, i–|L|)

n/5

n/51 j

n/5

20CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Selection in Worst Case Linear Time - Example

Input: Array S and index i

Output: The ith smallest value

S = {25 9 16 8 11 27 39 42 15 6 32 14 36 20 33 22 31 4 17 3 30 41

2 13 19 7 21 10 34 1 37 23 40 5 29 18 24 12 38 28 26 35 43}

21CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Selection in Worst Case Linear Time - Example

Step 1: Divide the input array into groups of size 5

25

9

16

8

11

27

39

42

15

6

32

14

36

20

33

22

31

4

17

3

30

41

2

13

19

7

21

10

34

1

37

23

40

5

29

18

24

12

38

28

26

35

43

22CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Selection in Worst Case Linear Time - Example

Step 2: Compute the median of each group

9

8

11

16

25

15

6

27

42

39

14

20

32

33

36

4

3

17

31

22

2

13

19

30

41

7

1

10

34

21

5

23

29

40

37

18

12

24

28

38

26

35

43

Let M be the set of the medians computed:

M = {11, 27, 32, 17, 19, 10, 29, 24, 35}

 Θ(n)

23CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Selection in Worst Case Linear Time - Example

x SELECT (M, |M|,) where

9

8

11

16

25

15

6

27

42

39

14

20

32

33

36

4

3

17

31

22

2

13

19

30

41

7

1

10

34

21

5

23

29

40

37

18

12

24

28

38

26

35

43

The runtime of the recursive call: T(|M|)

M +1() / 2ê
ë

ú
û M = n / 5éê ùú

M

=T n / 5éê ùú()

 median = 24

Step 3: Compute the median of the median group M

24CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Selection in Worst Case Linear Time - Example

Step 4: Partition the input array S around the median-of-medians x

S = {25 9 16 8 11 27 39 42 15 6 32 14 36 20 33 22 31 4 17 3 30 41

2 13 19 7 21 10 34 1 37 23 40 5 29 18 24 12 38 28 26 35 43}

Partition S around x = 24

Claim: Partitioning around x is guaranteed to be well-balanced.

25CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Selection in Worst Case Linear Time - Example

Claim: Partitioning around x=24 is guaranteed to be well-balanced.

2

13

19

30

41

7

1

10

34

21

4

3

17

31

22

9

8

11

16

25

14

20

32

33

36

5

23

29

40

37

15

6

27

42

39

26

35

43

18

12

24

28

38

About half

of the medians

greater than x

about n/10

2 out of 5 in each group greater

than the median in the group,

which is greater than x

about 2n/10 About 3n/10 elts

greater than x

26CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Selection in Worst Case Linear Time - Example

Claim: Partitioning around x=24 is guaranteed to be well-balanced.

2

13

19

30

41

7

1

10

34

21

4

3

17

31

22

9

8

11

16

25

14

20

32

33

36

5

23

29

40

37

15

6

27

42

39

26

35

43

18

12

24

28

38

About half

of the medians

less than x

about n/10

2 out of 5 in each group less

than the median in the group,

which is less than x

about 2n/10

About 3n/10 elts

less than x

27CS 473 – Lecture 7 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Selection in Worst Case Linear Time - Example

Step 5: Make a recursive call to one of the partitions

S = {25 9 16 8 11 27 39 42 15 6 32 14 36 20 33 22 31 4 17 3 30 41

2 13 19 7 21 10 34 1 37 23 40 5 29 18 24 12 38 28 26 35 43}

Partitioning S around x = 24 will lead to partitions

of sizes ~3n/10 and ~7n/10 in the worst case.

if i ≤ |L| then

return SELECT(L, |L|, i)

else

return SELECT(R, n–|L|, i–|L|)

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University

Computer Engineering Department

28

Selection in Worst Case Linear Time

SELECT(S, n, i) return i-th element in set S with n elements

if n ≤ 5 then

SORT S and return the i-th element

DIVIDE S into groups

first n/5 groups are of size 5, last group is of size n mod 5

FIND median set M={m , …, m } m : median of j-th group

x ← SELECT(M, , (n/5 +1)/2)

PARTITION set S around the pivot x into L and R

if i ≤ |L| then

return SELECT(L, |L|, i)

else

return SELECT(R, n–|L|, i–|L|)

n/5

n/51 j

n/5

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University

Computer Engineering Department

29

Choosing the Pivot

1. Divide S into groups of size 5

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University

Computer Engineering Department

30

Choosing the Pivot

lesser

greater

1. Divide S into groups of size 5

2. Find the median of each group

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University

Computer Engineering Department

31

Choosing the Pivot

x

≥ x

1. Divide S into groups of size 5

2. Find the median of each group

3. Recursively select the median x of the medians

x

≥ x

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University

Computer Engineering Department

32

Choosing the Pivot

x

x

≥ x
≥ x

At least half of the medians ≥ x

Thus m = n/5 / 2 groups contribute 3 elements to

R except possibly the last group and

the group that contains x

|R| ≥ 3 m – 2 ≥ – 6
3n

10

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University

Computer Engineering Department

33

Analysis

Similarly

|L| ≥ – 6

Therefore, SELECT is recursively called on at most

n – – 6 = + 6 elements

3n

10

3n

10

7n

10

x

x

≥ x
≥ x

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University

Computer Engineering Department

34

Selection in Worst Case Linear Time

SELECT(S, n, i) return i-th element in set S with n elements

if n ≤ 5 then

SORT S and return the i-th element

DIVIDE S into groups

first n/5 groups are of size 5, last group is of size n mod 5

FIND median set M={m , …, m } m : median of j-th group

x ← SELECT(M, n/5 , (n/5 +1)/2)

PARTITION set S around the pivot x into L and R

if i ≤ |L| then

return SELECT(L, |L|, i)

else

return SELECT(R, n–|L|, i–|L|)

n/5

n/51 j

Θ(n)

7n

10
T(+6)

n/5T()

Θ(n)

Θ(n)

CS473 – Lecture 7 Cevdet Aykanat - Bilkent University

Computer Engineering Department

35

Inductive step: T(n) ≤ c n/5 + c (7n/10+6) + Θ(n)

≤ cn/5 + c + 7cn/10 + 6c + Θ(n)

= 9cn/10 + 7c + Θ(n)

= cn – [c(n/10 – 7) – Θ(n)] ≤ cn for large c

Thus recurrence becomes

T(n) ≤ T + T + 6 + Θ(n)
7n

10

Work at each level of recursion is a constant factor (9/10) smaller

Selection in Worst Case Linear Time

Guess T(n) = O(n) and prove by induction

n

5

