CS473 - Algorithms I

Lecture 7 Medians and Order Statistics

View in slide-show mode

CS 473 – Lecture 7

Medians and Order Statistics

ith order statistic: *ith smallest* element of a set of **n** elements

<u>minimum</u>: first order statistic <u>*maximum*</u>: nth order statistic

<u>median</u>: "halfway point" of the set $i = \lfloor (n+1)/2 \rfloor$ or $\lceil (n+1)/2 \rceil$

CS 473 – Lecture 7

Selection Problem

□ *Selection problem*: Select the ith smallest of n elements

Naïve algorithm: Sort the input array A; then return A[i]
 T(n) = ⊖(nlgn)
 using e.g. merge sort (but not quicksort)

□ Can we do any better?

Selection in Expected Linear Time

□ Randomized algorithm using divide and conquer

Similar to randomized quicksort
 Like quicksort: Partitions input array recursively
 Unlike quicksort: Makes a single recursive call
 <u>Reminder</u>: Quicksort makes two recursive calls

\Box Expected runtime: $\Theta(n)$

<u>*Reminder*</u>: Expected runtime of quicksort: $\Theta(nlgn)$

CS 473 – Lecture 7

Selection in Expected Linear Time: Example 1

Select the 2nd smallest element:

Partition the input array:

make a recursive call to select the 2nd smallest element in left subarray

Selection in Expected Linear Time: Example 2

Select the 7th smallest element:

6
 10
 13
 5
 8
 3
 2
 11

$$i = 7$$

Partition the input array:

Selection in Expected Linear Time

```
R-SELECT(A,p,r,i)
       if p = r then
           return A[p]
     q \leftarrow \text{R-PARTITION}(\mathbf{A}, p, r)
     \mathbf{k} \leftarrow q - p + 1
     if i \leq k then
           return R-SELECT(A, p, q, i)
   else
          return R-SELECT(A, q+1, r, i-k)
                                                                                 x = pivot
     \leq x (k smallest elements)
                                                  \geq \chi
                                                                      r
                                    \boldsymbol{q}
    p
CS473 – Lecture 7
                                Cevdet Aykanat - Bilkent University
                                                                                                  7
```

Computer Engineering Department

Selection in Expected Linear Time

- All elements in $L \leq$ all elements in R
- L contains |L| = q−p+1 = k smallest elements of A[p...r] if i ≤ |L| = k then

search L recursively for its *i*-th smallest element

else

```
search R recursively for its (i-k)-th smallest element
```

CS473 – Lecture 7

Runtime Analysis

Imbalanced partitioning at every level and the recursive call always to the larger partition

CS 473 – Lecture 7

Runtime Analysis

□ <u>Worst case:</u>

- $T(n) = T(n-1) + \Theta(n)$
- \rightarrow T(n) = $\Theta(n^2)$

Worse than the naïve method (based on sorting)

■ <u>Best case</u>: Balanced partitioning at every recursive level T(n) = T(n/2) + Θ(n) → T(n) = Θ(n)

□ **<u>Avg case</u>**: Expected runtime – need analysis

CS 473 – Lecture 7

Reminder: Various Outcomes of H-PARTITION

$$P(\operatorname{rank}(x) = i) = 1/n \quad \text{for } 1 \le i \le n$$

$$if \operatorname{rank}(x) = 1 \text{ then } |L| = 1$$

$$if \operatorname{rank}(x) > 1 \text{ then } |L| = \operatorname{rank}(x) - 1$$

$$P(|L| = 1) = P(\operatorname{rank}(x) = 1) + P(\operatorname{rank}(x) = 2) \quad \longrightarrow \quad P(|L| = 1) = 2/n$$

$$P(|L| = i) = P(\operatorname{rank}(x) = i+1)$$

$$for 1 < i < n$$

$$P(|L| = i) = 1/n$$

$$for 1 < i < n$$

CS 473 – Lecture 7

To compute the upper bound for the avg case, assume that the ith element always falls into the larger partition.

We will analyze the case where the recursive call is always made to the larger partition

 \rightarrow this will give us an upper bound for the avg case

CS 473 – Lecture 7

Various Outcomes of H-PARTITION

<u>rank(x)</u>	prob.	T(n)	1	1
1	1/n	$\leq T(\max(1, n-1)) + \Theta(n)$		n-1
2	1/n	$\leq T(\max(1, n-1)) + \Theta(n)$	1	n-1
3	1/n	$\leq T(\max(2, n-2)) + \Theta(n)$	2	n-2
•	•	•		
•	•	• • • • • • • • • • • • • • • • • • •		
i+1	1/n	$\leq T(\max(i, n-i)) + \Theta(n)$	i	n-i
•	•			
•	•	•		
n	1/n	$\leq T(\max(n-1, 1)) + \Theta(n)$	1	n-1 1

CS 473 – Lecture 7

Recall:
$$P(|L|=i) = \begin{cases} 2/n & \text{for } i = 1 \\ 1/n & \text{for } i = 2,3,...,n-1 \end{cases}$$

Upper bound: Assume *i*-th element always falls into the larger part

$$T(n) \leq \frac{1}{n} T(\max(1, n-1)) + \frac{1}{n} \sum_{q=1}^{n-1} T(\max(q, n-q)) + O(n)$$

Note: $\frac{1}{n} T(\max(1, n-1)) = \frac{1}{n} T(n-1) = \frac{1}{n} O(n^2) = O(n)$
 $\therefore T(n) \leq \frac{1}{n} \sum_{q=1}^{n-1} T(\max(q, n-q)) + O(n)$

CS473 – Lecture 7

Cevdet Aykanat - Bilkent University Computer Engineering Department 14

$$\therefore T(n) \leq \frac{1}{n} \sum_{q=1}^{n-1} T(\max(q, n-q)) + O(n)$$
$$\max(q, n-q) = \begin{cases} q & \text{if } q \geq \lfloor n/2 \rfloor \\ n-q & \text{if } q < \lfloor n/2 \rfloor \end{cases}$$

n is odd: T(k) appears twice for $k = \lceil n/2 \rceil + 1, \lceil n/2 \rceil + 2, ..., n-1$ *n* is even: $T(\lceil n/2 \rceil)$ appears once T(k) appears twice for $k = \lceil n/2 \rceil + 1, \lceil n/2 \rceil + 2, ..., n-1$ Hence, in both cases: $\sum_{q=1}^{n-1} T(\max(q, n-q)) + O(n) \le 2 \sum_{q=\lceil n/2 \rceil}^{n-1} T(q) + O(n)$ $\therefore T(n) \le \frac{2}{n} \sum_{q=\lceil n/2 \rceil}^{n-1} T(q) + O(n)$

CS473 – Lecture 7

Cevdet Aykanat - Bilkent University Computer Engineering Department 15

$$T(n) \leq \frac{2}{n} \sum_{q=\lfloor n/2 \rfloor}^{n-1} T(q) + O(n)$$

By substitution guess T(n) = O(n)Inductive hypothesis: $T(k) \le ck$, $\forall k < n$

$$T(n) \leq (2/n) \sum_{k=\lceil n/2 \rceil}^{n-1} \sum_{k=\lceil n/2 \rceil-1}^{\lceil n/2 \rceil-1} = \frac{2c}{n} \left(\sum_{k=1}^{n-1} \sum_{k=1}^{\lceil n/2 \rceil-1} \right) + O(n)$$
$$= \frac{2c}{n} \left(\frac{1}{2} n (n-1) - \frac{1}{2} \left[\frac{n}{2} \right] \left[\frac{n}{2} - 1 \right] \right) + O(n)$$

CS473 – Lecture 7

Cevdet Aykanat - Bilkent University Computer Engineering Department 16

$$T(n) \leq \frac{2c}{n} \left(\frac{1}{2} n(n-1) - \frac{1}{2} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n}{2} - 1 \right\rceil \right) + O(n)$$

$$\leq c(n-1) - \frac{c}{4}n + \frac{c}{2} + O(n)$$

$$= cn - \frac{c}{4}n - \frac{c}{2} + O(n)$$
$$= cn - \left(\frac{c}{4}n + \frac{c}{2} \right) - O(n)$$
$$\leq cn$$

since we can choose c large enough so that (cn/4+c/2) dominates O(n)

CS473 – Lecture 7

Summary of Randomized Order-Statistic Selection

- Works fast: linear expected time
- Excellent algorithm in practise
- But, the worst case is very bad: $\Theta(n^2)$

Q: Is there an algorithm that runs in linear time in the worst case?

A: Yes, due to Blum, Floyd, Pratt, Rivest & Tarjan[1973] Idea: Generate a good pivot recursively..

Selection in Worst Case Linear Time

Input: Array **S** and index **i** *Output*: The **i**th smallest value

$S = \{25 \ 9 \ 16 \ 8 \ 11 \ 27 \ 39 \ 42 \ 15 \ 6 \ 32 \ 14 \ 36 \ 20 \ 33 \ 22 \ 31 \ 4 \ 17 \ 3 \ 30 \ 41 \\ 2 \ 13 \ 19 \ 7 \ 21 \ 10 \ 34 \ 1 \ 37 \ 23 \ 40 \ 5 \ 29 \ 18 \ 24 \ 12 \ 38 \ 28 \ 26 \ 35 \ 43 \}$

<u>Step 1</u>: Divide the input array into groups of size 5

25	27	32	22	30	7	37	18	26
9	39	14	31	41	21	23	24	35
16	42	36	4	2	10	40	12	43
8	15	20	17	13	34	5	38	
11	6	33	3	19	1	29	28	

<u>Step 2</u>: Compute the median of each group

Let M be the set of the medians computed: $M = \{11, 27, 32, 17, 19, 10, 29, 24, 35\}$

```
CS 473 – Lecture 7
```

<u>Step 3</u>: Compute the median of the median group M

 $x \leftarrow \text{SELECT}(\mathbf{M}, |\mathbf{M}|, \hat{g}(|M|+1)/2\hat{g}) \text{ where } |M| = \hat{g}n/5\hat{g}$

The runtime of the recursive call: $T(|M|) = T(\hat{e}n / 5\hat{y})$

CS 473 – Lecture 7

<u>Step 4</u>: Partition the input array S around the median-of-medians x

S = {25 9 16 8 11 27 39 42 15 6 32 14 36 20 33 22 31 4 17 3 30 41 2 13 19 7 21 10 34 1 37 23 40 5 29 18 24 12 38 28 26 35 43}

Partition S around x = 24

<u>*Claim*</u>: Partitioning around x is guaranteed to be *well-balanced*.

CS 473 – Lecture 7

<u>*Claim*</u>: Partitioning around x=24 is guaranteed to be *well-balanced*.

CS 473 – Lecture 7

<u>*Claim*</u>: Partitioning around x=24 is guaranteed to be *well-balanced*.

S = {25 9 16 8 11 27 39 42 15 6 32 14 36 20 33 22 31 4 17 3 30 41 2 13 19 7 21 10 34 1 37 23 40 5 29 18 24 12 38 28 26 35 43}

Partitioning S around x = 24 will lead to partitions of sizes $\sim 3n/10$ and $\sim 7n/10$ in the worst case.

<u>Step 5</u>: Make a recursive call to one of the partitions

if $i \leq |L|$ then return SELECT(L, |L|, i) else return SELECT(R, n-|L|, i-|L|)

CS 473 – Lecture 7

Selection in Worst Case Linear Time

1. Divide S into groups of size 5

- 1. Divide S into groups of size 5
- 2. Find the median of each group

- 1. Divide S into groups of size 5
- 2. Find the median of each group
- 3. Recursively select the median x of the medians

At least half of the medians $\ge x$ Thus $m = \lceil n/5 \rceil / 2 \rceil$ groups contribute 3 elements to R except possibly the last group and the group that contains x $|R| \ge 3 \lfloor m-2 \rfloor \ge \frac{3n}{10} - 6$

CS473 – Lecture 7

Analysis

Similarly $|L| \ge \frac{3n}{10} - 6$ Therefore, SELECT is recursively called on at most $n - \left(\frac{3n}{10} - 6\right) = \frac{7n}{10} + 6$ elements

Cevdet Aykanat - Bilkent University Computer Engineering Department $\geq x$

Selection in Worst Case Linear Time

Selection in Worst Case Linear Time

Thus recurrence becomes

$$T(n) \le T\left(\left\lceil \frac{n}{5} \right\rceil\right) + T\left(\frac{7n}{10} + 6\right) + \Theta(n)$$

Guess T(n) = O(n) and prove by induction

Inductive step:
$$T(n) \le c \lceil n/5 \rceil + c (7n/10+6) + \Theta(n)$$

 $\le cn/5 + c + 7cn/10 + 6c + \Theta(n)$
 $= 9cn/10 + 7c + \Theta(n)$
 $= cn - [c(n/10 - 7) - \Theta(n)] \le cn$ for large c

Work at each level of recursion is a constant factor (9/10) smaller