
1

CS473 - Algorithms I

CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Lecture 8

Heapsort

View in slide-show mode

2CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heapsort

 Worst-case runtime: O(nlgn)

 Sorts in-place

 Uses a special data structure (heap) to manage

information during execution of the algorithm

Another design paradigm

3CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heap Data Structure

Complete binary tree
 Completely filled on all levels except possibly the lowest level

 The lowest level is filled from left to right

h h-1

16

14 10

8

2

7

4 1

9 3

4CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heap Data Structures

16

14 10

8

2

7

4 1

9 3

Height of node i: Length of the longest

simple downward path from i to a leaf

Height of the tree:

height of the root

h = 2 h = 1

h = 1 h = 0

h = 3

h = 0

5CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heap Data Structures

16

14 10

8

2

7

4 1

9 3

Depth of node i: Length of the simple

downward path from the root to node i

d = 1 d = 1

d = 2 d = 2

d = 0

d = 3

6CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heap Property: Min-Heap

1

2 4

3

10

7

14 16

9 8

Min heap: For every node i other than root, A[parent(i)] ≤ A[i]

 Parent node is always smaller than the child nodes

The smallest element

in any subtree is the root

element in a min-heap

7CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heap Property: Max-Heap

16

14 10

8

2

7

4 1

9 3

Max heap: For every node i other than root, A[parent(i)] ≥ A[i]

 Parent node is always larger than the child nodes

The largest element

in any subtree is the root

element in a max-heap

We will focus on max-heaps

8CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heap Property: Max-Heap

Max heap: For every node i other than root, A[parent(i)] ≥ A[i]

 Parent node is always larger than the child nodes

x
i

S
i

< x

The largest element

in any subtree is the root

element in a max-heap

9CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heap Data Structure

16

14 10

8

2

7

4 1

9 3

1

2 3

5 6

8 9

74

10

16 14 10 8 7 9 3 2 4 1A

1 2 3 4 5 6 7 8 9 10

Storage

Heap can be stored in a linear array

10CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heap Data Structure

16

14 10

8

2

7

4 1

9 3

1

2 3

5 6

8 9

74

10

16 14 10 8 7 9 3 2 4 1A

1 2 3 4 5 6 7 8 9 10

The links in the heap are implicit:

left(i) = 2i

right(i) = 2i+1

parent(i) = i / 2êë úû

11CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heap Data Structure

16

14 10

8

2

7

4 1

9 3

1

2 3

5 6

8 9

74

10

16 14 10 8 7 9 3 2 4 1A

1 2 3 4 5 6 7 8 9 10

left(i) = 2i

e.g. Left child of node 4 has index 8

right(i) = 2i+1

e.g. Right child of node 2 has index 5

parent(i) = i / 2êë úû

e.g. Parent of node 7 has index 3

12CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heap Data Structures

 Computing left child, right child, and parent indices very fast

 left(i) = 2i  binary left shift

 right(i) = 2i+1  binary left shift, then set the lowest bit to 1

 parent(i) = floor(i/2)  right shift in binary

 A[1] is always the root element

 Array A has two attributes:

 length(A): The number of elements in A

 n = heap-size(A): The number elements in heap

n ≤ length(A)

13CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heap Operations: Extract-Max

EXTRACT-MAX(A, n)

max A[1]

A[1] A[n]

n  n  1

HEAPIFY(A, 1, n)

return max

Return the max element,

and reorganize the heap

to maintain heap property

16

14 10

8

2

7

4 1

9 3

1

2 3

5 6

8 9

74

10

max=

14CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heap Operations: HEAPIFY

1

14 10

8

2

7

4

9 3

1

2 3

5 6

8 9

74

Heap property satisfied

for left and right subtrees

Heap property violated at the root
Maintaining heap property:

Subtrees rooted at left[i] and

right[i] are already heaps.

But, A[i] may violate the heap

property (i.e., may be smaller

than its children)

Idea: Float down the value at

A[i] in the heap so that subtree

rooted at i becomes a heap.

15CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heap Operations: HEAPIFY

HEAPIFY(A, i, n)

largest  i

if 2i  n and A[2i] A[i]

then largest  2i

if 2i 1  n and A[2i1] A[largest]
then largest  2i 1

if largest  i then

exchange A[i] A[largest]

HEAPIFY(A, largest, n)

check the left

child of node i

check the right

child of node i

initialize largest

to be the node i

exchange the largest

of the 3 with node i

compute the

largest of:

1) node i

2) left child

of node i

3) right child

of node i

recursive call on the subtree

16CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heap Operations: HEAPIFY

HEAPIFY(A, i, n)

largest  i

if 2i  n and A[2i] A[i]

then largest  2i

if 2i 1  n and A[2i1] A[largest]
then largest  2i 1

if largest  i then

exchange A[i] A[largest]

HEAPIFY(A, largest, n)

14 10

8

2

7

4

9 3

2 3

5 6

8 9

74

1

HEAPIFY(A, 1, 9)

1

recursive call

17CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heap Operations: HEAPIFY

HEAPIFY(A, i, n)

largest  i

if 2i  n and A[2i] A[i]

then largest  2i

if 2i 1  n and A[2i1] A[largest]
then largest  2i 1

if largest  i then

exchange A[i] A[largest]

HEAPIFY(A, largest, n)

10

8

2

7

4

9 3

2 3

5 6

8 9

74

1

HEAPIFY(A, 2, 9)

14

recursive call:

1

recursive call

18CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heap Operations: HEAPIFY

HEAPIFY(A, i, n)

largest  i

if 2i  n and A[2i] A[i]

then largest  2i

if 2i 1  n and A[2i1] A[largest]
then largest  2i 1

if largest  i then

exchange A[i] A[largest]

HEAPIFY(A, largest, n)

10

2

7

4

9 3

2 3

5 6

8 9

74

1

HEAPIFY(A, 4, 9)

14

recursive call:

8

1

recursive call

(base case)

19CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

HEAPIFY: Summary (Floating Down the Value)

HEAPIFY(A, i, n)

largest  i

if 2i  n and A[2i] A[i]

then largest  2i

if 2i 1  n and A[2i1] A[largest]
then largest  2i 1

if largest  i then

exchange A[i] A[largest]

HEAPIFY(A, largest, n)

14 10

8

2

7

4

9 3

2 3

5 6

8 9

74

1

HEAPIFY(A, 1, 9)

1

20CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heap Operations: HEAPIFY

HEAPIFY(A, i, n)

largest  i

if 2i  n and A[2i] A[i]

then largest  2i

if 2i 1  n and A[2i1] A[largest]
then largest  2i 1

if largest  i then

exchange A[i] A[largest]

HEAPIFY(A, largest, n)

10

2

7

1

9 3

2 3

5 6

8 9

74

1

14

after HEAPIFY:

8

4

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

21

Intuitive Analysis of HEAPIFY

• Consider HEAPIFY(A, i, n)

– let h(i) be the height of node i

– at most h(i) recursion levels

• Constant work at each level: (1)

– Therefore T(i)  O(h(i))

• Heap is almost-complete binary tree

 h(n)  O(lgn)

• Thus T(n)  O(lgn)

22CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Formal Analysis of HEAPIFY

 What is the recurrence?

Depends on the size of the subtree on which recursive call

is made

 In the next couple of slides, we try to compute an upper

bound for this subtree.

23CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Reminder: Binary trees

For a full binary tree:

of nodes at depth d: 2d

of nodes with depths less than d: 2d-1

Example:

d = 2

of nodes at depth d=2: 4

of nodes with depths d<2: 3

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

24

Formal Analysis of HEAPIFY

• Worst case occurs when last row of the subtree Si rooted at

node i is half full

• T(n)  T(| SL(i)|) + (1)

• SL(i) and SR(i) are complete

binary trees of heights

h(i) 1 and h(i) 2,

respectively

h(i)-2h(i)-1

i

L(i) R(i)

S
L(i)

S
R(i)

m leaf nodes
m / 2 leaf

nodes

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

25

• Let m be the number of leaf nodes in SL(i)

• | SL(i) | = m + (m – 1) = 2m – 1 ;

• | SR(i) | = m/2 + (m/2 – 1) = m – 1

• | SL(i) | + | SR(i) | +1= n

(2m – 1) + (m – 1) +1= n  m = (n+1)/3

| SL(i) | = 2m – 1=2(n+1)/3 – 1=(2n/3+2/3) –1=2n/3 –1/3  2n/3

• T(n)  T(2n/3) + (1)  T(n)  O(lgn)

Formal Analysis of HEAPIFY

ext int

By case 2 of

Master Thm

i

L(i) R(i)

S
L(i)

S
R(i)

m leaf nodes
m / 2 leaf

nodes

26CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

HEAPIFY: Efficiency Issues

 Recursion vs iteration:

 In the absence of tail recursion, iterative version is in

general more efficient

 because of the pop/push operations to/from stack at

each level of recursion.

27CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heap Operations: HEAPIFY

HEAPIFY(A, i, n)

largest  i

if 2i  n and A[2i] A[i]

then largest  2i

if 2i 1  n and A[2i1] A[largest]
then largest  2i 1

if largest  i then

exchange A[i]A[largest]

HEAPIFY(A, largest, n)

Recursive:

HEAPIFY(A, i, n)

j  i

while (true) do

largest  j

if 2j  n and A[2j] A[j]

then largest  2j

if 2j 1  n and A[2j1] A[largest]
then largest  2j 1

if largest  j then

exchange A[j]A[largest]

j  largest

else return

Iterative:

28CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heap Operations: Building Heap

 Given an arbitrary array, how to

build a heap from scratch?

 Basic idea: Call HEAPIFY on each

node bottom up

 Start from the leaves (which trivially

satisfy the heap property)

 Process nodes in bottom up order.

 When HEAPIFY is called on node i, the

subtrees connected to the left and right

subtrees already satisfy the heap

property.

node i

child subtrees already

satisfy heap property

29CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Where are the leaves stored?

16

14 10

8

2

7

4 1

9 3

1

2 3

5 6

8 9

74

10

16 14 10 8 7 9 3 2 4 1A

1 2 3 4 5 6 7 8 9 10

Storage

Lemma: The last n/2 nodes of

a heap are all leaves

30CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Proof of Lemma

Lemma: last n/2 nodes of a heap are all leaves

Proof:

nodesf/2

f/2

dd-1

f leaf nodes

m -

leaf nodes

m = 2d – 1: # nodes at level d – 1

f : # nodes at level d (last level)

of nodes with depth d-1: m

of nodes with depth < d-1: m-1

of nodes with depth d: f

Total # of nodes: n = f + 2m-1

31CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Proof of Lemma (cont’d)

f = n – 2m + 1

of leaves: f + m - f/2

= m + f/2

= m + (n-2m+1)/2

= (n+1)/2

= n/2

Proof complete

nodesf/2

f/2

dd-1

f leaf nodes

m -

leaf nodes

32CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heap Operations: Building Heap

BUILD-HEAP (A, n)

for i = n/2 downto 1 do

HEAPIFY(A, i, n)
.

Reminder: The last n/2 nodes of a heap are all leaves,

which trivially satisfy the heap property

33CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Build-Heap: Example

4

1 3

2

14 8 16

9 10

1

2 3

5 6

8 9

74

10

4 1 3 2 9 10 14 8A

1 2 3 4 5 6 7 8 9 10

HEAPIFY(A, 5, 10)

i=5

7

7 16

34CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Build-Heap: Example

4

1 3

14 8 7

9 10

1

2 3

5 6

8 9

74

10

4 1 3 9 10 14 8A

1 2 3 4 5 6 7 8 9 10

HEAPIFY(A, 4, 10)

i=4

16

16 7

2

2

35CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Build-Heap: Example

4

1

2 8 7

9

1

2 3

5 6

8 9

74

10

4 1 9 8A

1 2 3 4 5 6 7 8 9 10

HEAPIFY(A, 3, 10)

i=3

16

16 7

14

14

3

10

3 210

36CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Build-Heap: Example

4

2 8 7

9

1

2 3

5 6

8 9

74

10

4 9 8A

1 2 3 4 5 6 7 8 9 10

HEAPIFY(A, 2, 10)

i=2

7

14

14

10

3

10 23

1

16

1 16

37CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Build-Heap: Example

4

2 8 7

9

1

2 3

5 6

8 9

74

10

4 16 9 8A

1 2 3 4 5 6 7 8 9 10

HEAPIFY(A, 2, 10)

i=2 (cont’d)

7

14

14

10

3

10 23

16

1

1

38CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Build-Heap: Example

2 8 1

9

1

2 3

5 6

8 9

74

10

9 8A

1 2 3 4 5 6 7 8 9 10

HEAPIFY(A, 1, 10)

i=1

1

14

14

10

3

10 23

16

7

7

4

4 16

39CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Build-Heap: Example

2 8 1

9

1

2 3

5 6

8 9

74

10

9 8A

1 2 3 4 5 6 7 8 9 10

HEAPIFY(A, 1, 10)

i=1 (cont’d)

1

14

14

10

3

10 23

4

7

7

16

16 4

40CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Build-Heap: Example

2 8 1

9

1

2 3

5 6

8 9

74

10

9A

1 2 3 4 5 6 7 8 9 10

HEAPIFY(A, 1, 10)

i=1 (cont’d)

1

4

4

10

3

10 23

14

7

7

16

16 14 8

41CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Build-Heap: Example

2 4 1

9

1

2 3

5 6

8 9

74

10

9A

1 2 3 4 5 6 7 8 9 10

After Build-Heap

1

8

8

10

3

10 23

14

7

7

16

16 14 4

42CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Build-Heap: Runtime Analysis

 Simple analysis:

 O(n) calls to HEAPIFY, each of which takes O(lgn) time

O(nlgn)  loose bound

 In general, a good approach:

 Start by proving an easy bound

 Then, try to tighten it

 Is there a tighter bound?

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

43

d

 =1, d – 2  h1  d –1

 = 0, h0= d

, d –  – 1  h  d – 

= d – 1, 0  hd–1  1

= d, hd= 0

Build-Heap: tighter running time analysis

If the heap is full binary tree then h = d – 

Otherwise, nodes at a given level do not all have the same height

But we have d –  – 1  h   d – 

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

44

T(n)= O( 2 (d – ))
Let h = d –   = d – h (change of variables)

T(n)= O( h 2d-h)= O( h 2d/2h)= O(2d h (1/2)h)

but 2d=(n)  T(n)= O(n h (1/2)h)

Assume that all nodes at level = d – 1 are processed

T(n)= nO(h)= O(n h)

Build-Heap: tighter running time analysis

=0

d-1

h=1

d

h=1

d

h=1

d

h=1

d

=0

d-1

=0

d-1 n = 2 = # of nodes at level 

h = height of nodes at level 

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

45

recall infinite decreasing geometric series

differentiate both sides








001

)2/1()2/1()2/1(

h

h

d

h

h

d

h

h
hhh

1 where
1

1

0









x
x

x

k

k

2

0

1

)1(

1

x
kx

k

k










Build-Heap: tighter running time analysis

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

46

then, multiply both sides by x

in our case: x  1/2 and k  h

2

0)1(x

x
kx

k

k

























d

h

h

h

h

nhnnT

h

1

2

0

)())2/1(()(

)1(2
)2/11(

2/1
)2/1(

2

0

1

)1(

1

x
kx

k

k










Build-Heap: tighter running time analysis

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

47

The HEAPSORT algorithm

(1) Build a heap on array A[1…n] by calling BUILD-HEAP(A, n)

(2) The largest element is stored at the root A[1]

Put it into its correct final position A[n] by A[1] A[n]

(3) Discard node n from the heap

(4) Subtrees (S2 & S3) rooted at children of root remain as heaps

but the new root element may violate the heap property

Make A[1…n  1] a heap by calling HEAPIFY(A, 1, n  1)

(5) n  n  1

(6) Repeat steps 24 until n  2

Heapsort Algorithm

48CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

2 4 1

9

1

2 3

5 6

8 9

74

10

8

10

3

14

7

16

9A

1 2 3 4 5 6 7 8 9 10

1810 23716 14 4

49CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

2 4 16

9

1

2 3

5 6

8 9

74

10

8

10

3

14

7

1

9A

1 2 3 4 5 6 7 8 9 10

16810 2371 14 4

50CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

2 1 16

9

1

2 3

5 6

8 9

74

10

4

10

3

8

7

14

9A

1 2 3 4 5 6 7 8 9 10

16410 23714 8 1

51CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

2 14 16

9

1

2 3

5 6

8 9

74

10

4

10

3

8

7

1

9A

1 2 3 4 5 6 7 8 9 10

16410 2371 8 14

52CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

2 14 16

1

1

2 3

5 6

8 9

74

10

4

9

3

8

7

10

1A

1 2 3 4 5 6 7 8 9 10

1649 23710 8 14

53CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16

1

1

2 3

5 6

8 9

74

10

4

9

3

8

7

2

1A

1 2 3 4 5 6 7 8 9 10

1649 10372 8 14

54CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16

1

1

2 3

5 6

8 9

74

10

4

3

2

8

7

9

1A

1 2 3 4 5 6 7 8 9 10

1643 10279 8 14

55CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16

1

1

2 3

5 6

8 9

74

10

4

3

9

8

7

2

1A

1 2 3 4 5 6 7 8 9 10

1643 10972 8 14

56CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16

1

1

2 3

5 6

8 9

74

10

4

3

9

7

2

8

1A

1 2 3 4 5 6 7 8 9 10

1643 10928 7 14

57CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16

8

1

2 3

5 6

8 9

74

10

4

3

9

7

2

1

8A

1 2 3 4 5 6 7 8 9 10

1643 10921 7 14

58CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16

8

1

2 3

5 6

8 9

74

10

1

3

9

4

2

7

8A

1 2 3 4 5 6 7 8 9 10

1613 10927 4 14

59CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16

8

1

2 3

5 6

8 9

74

10

1

3

9

4

7

2

8A

1 2 3 4 5 6 7 8 9 10

1613 10972 4 14

60CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16

8

1

2 3

5 6

8 9

74

10

1

3

9

2

7

4

8A

1 2 3 4 5 6 7 8 9 10

1613 10974 2 14

61CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16

8

1

2 3

5 6

8 9

74

10

4

3

9

2

7

1

8A

1 2 3 4 5 6 7 8 9 10

1643 10971 2 14

62CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16

8

1

2 3

5 6

8 9

74

10

4

1

9

2

7

3

8A

1 2 3 4 5 6 7 8 9 10

1641 10973 2 14

63CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16

8

1

2 3

5 6

8 9

74

10

4

3

9

2

7

1

8A

1 2 3 4 5 6 7 8 9 10

1643 10971 2 14

64CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16

8

1

2 3

5 6

8 9

74

10

4

3

9

1

7

2

8A

1 2 3 4 5 6 7 8 9 10

1643 10972 1 14

65CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16

8

1

2 3

5 6

8 9

74

10

4

3

9

2

7

1

8A

1 2 3 4 5 6 7 8 9 10

1643 10971 2 14

66CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16

8

1

2 3

5 6

8 9

74

10

4

3

9

2

7

1

8A

1 2 3 4 5 6 7 8 9 10

1643 10971 2 14

67CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heapsort Algorithm: Runtime Analysis

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

Θ(n)

Θ(1)

O(lg(i-1))

T (n) = Q(n)+ O(lgi)

i=2

n

å = Q(n)+O O(lgn)

i=2

n

å
æ

è

ç
ç

ö

ø

÷
÷
=O(n lgn)

68CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heapsort - Notes

 Heapsort is a very good algorithm but, a good

implementation of quicksort always beats heapsort in

practice

 However, heap data structure has many popular

applications, and it can be efficiently used for

implementing priority queues

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

69

Data structures for Dynamic Sets

• Consider sets of records having key and

satellite data

key

satellite datax

record

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

70

Operations on Dynamic Sets
• Queries: Simply return info; Modifying operations: Change the set

– INSERT(S, x): (Modifying) S S {x}

– DELETE(S, x): (Modifying) S  S  {x}

– MAX(S) / MIN(S): (Query) return xS with the largest/smallest key

– EXTRACT-MAX(S) / EXTRACT-MIN(S) : (Modifying) return and
delete xS with the largest/smallest key

– SEARCH(S, k): (Query) return xS with key[x]= k

– SUCCESSOR(S, x) / PREDECESSOR(S, x) : (Query) return yS which
is the next larger/smaller element after x

• Different data structures support/optimize different operations

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

71

Priority Queues (PQ)

• Supports
– INSERT

– MAX / MIN

– EXTRACT-MAX / EXTRACT-MIN

• One application: Schedule jobs on a shared resource

– PQ keeps track of jobs and their relative priorities

– When a job is finished or interrupted, highest priority job is

selected from those pending using EXTRACT-MAX

– A new job can be added at any time using INSERT

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

72

Priority Queues

• Another application: Event-driven simulation

– Events to be simulated are the items in the PQ

– Each event is associated with a time of occurrence which serves

as a key

– Simulation of an event can cause other events to be simulated in

the future

– Use EXTRACT-MIN at each step to choose the next event to

simulate

– As new events are produced insert them into the PQ using
INSERT

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

73

Implementation of Priority Queue

• Sorted linked list: Simplest implementation

– INSERT

– O(n) time

– Scan the list to find place and splice in the new item

– EXTRACT-MAX

– O(1) time

– Take the first element

 Fast extraction but slow insertion.

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

74

Implementation of Priority Queue
• Unsorted linked list: Simplest implementation

– INSERT

– O(1) time

– Put the new item at front

– EXTRACT-MAX

– O(n) time

– Scan the whole list

 Fast insertion but slow extraction

Sorted linked list is better on the average

– Sorted list: on the average, scans n/2 elem. per insertion

– Unsorted list: always scans n elem. at each extraction

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

75

Heap Implementation of PQ
• INSERT and EXTRACT-MAX are both O(lg n)

– good compromise between fast insertion but slow extraction and vice versa

• EXTRACT-MAX: already discussed HEAP-EXTRACT-MAX

INSERT: Insertion is like that of Insertion-Sort.

HEAP-INSERT(A, key, n)

n  n 1
i  n
A[i]  key

while i 1 and A[i/2] < key do

A[i] A[i/2]

i  i/2

Traverses O(lg n) nodes, as

HEAPIFY does but makes

fewer comparisons and

assignments

–HEAPIFY: compares parent
with both children

–HEAP-INSERT: with only one

76CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: HEAP-INSERT(A, 15)

HEAP-INSERT(A, key, n)

n  n 1
i  n

A[i]  key

while i 1 and A[i/2] < key do

exchange A[i] ↔ A[i/2]

i  i/2 2 4 1

9

1

2 3

5 6

9

74

10

8

10

3

14

7

16

11

key = 15

15

77CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: HEAP-INSERT(A, 15)

HEAP-INSERT(A, key, n)

n  n 1
i  n

A[i]  key

while i 1 and A[i/2] < key do

exchange A[i] ↔ A[i/2]

i  i/2 2 4 1

9

1

2 3

5 6

9

74

10

8

10

3

14

16

11

key = 15

15

7

78CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: HEAP-INSERT(A, 15)

HEAP-INSERT(A, key, n)

n  n 1
i  n

A[i]  key

while i 1 and A[i/2] < key do

exchange A[i] ↔ A[i/2]

i  i/2 2 4 1

9

1

2 3

5 6

9

74

10

8

10

3

16

11

key = 15

15

7

14

79CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: HEAP-INSERT(A, 15)

HEAP-INSERT(A, key, n)

n  n 1
i  n

A[i]  key

while i 1 and A[i/2] < key do

exchange A[i] ↔ A[i/2]

i  i/2 2 4 1

9

1

2 3

5 6

9

74

10

8

10

3

16

11

key = 15

14

7

15

CS473 – Lecture 8 Cevdet Aykanat - Bilkent University

Computer Engineering Department

80

Heap Increase Key

• Key value of i-th element of heap is

increased from A[i] to key

HEAP-INCREASE-KEY(A, i, key)

if key < A[i] then

return error

while i 1 and A[i/2] < key do

A[i] A[i/2]

i  i/2

A[i]  key

81CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: HEAP-INCREASE-KEY(A, 9, 15)

HEAP-INCREASE-KEY(A, i, key)

if key < A[i] then

return error

A[i]  key

while i 1 and A[i/2] < key do

exchange A[i] ↔ A[i/2]

i  i/2 2 1

9

1

2 3

5 6

9

74

10

8

10

3

14

7

16

4

82CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: HEAP-INCREASE-KEY(A, 9, 15)

HEAP-INCREASE-KEY(A, i, key)

if key < A[i] then

return error

A[i]  key

while i 1 and A[i/2] < key do

exchange A[i] ↔ A[i/2]

i  i/2 2 1

9

1

2 3

5 6

9

74

10

8

10

3

14

7

16

15

83CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: HEAP-INCREASE-KEY(A, 9, 15)

HEAP-INCREASE-KEY(A, i, key)

if key < A[i] then

return error

A[i]  key

while i 1 and A[i/2] < key do

exchange A[i] ↔ A[i/2]

i  i/2 2 1

9

1

2 3

5 6

9

74

10

10

3

14

7

16

15

8

84CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: HEAP-INCREASE-KEY(A, 9, 15)

HEAP-INCREASE-KEY(A, i, key)

if key < A[i] then

return error

A[i]  key

while i 1 and A[i/2] < key do

exchange A[i] ↔ A[i/2]

i  i/2 2 1

9

1

2 3

5 6

9

74

10

10

37

16

8

15

14

85CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example: HEAP-INCREASE-KEY(A, 9, 15)

HEAP-INCREASE-KEY(A, i, key)

if key < A[i] then

return error

A[i]  key

while i 1 and A[i/2] < key do

exchange A[i] ↔ A[i/2]

i  i/2 2 1

9

1

2 3

5 6

9

74

10

10

37

16

8

14

15

86CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Heap Implementation of PQ

Storage in Application

14

3

7

10

2

4

8

9

16

*

*

key data

2

7

5

3

8

9

4

6

1

--

--

H-index

a
b
c

d
e
f

g

h
i
j

k

handle

j

a

d

g

i

b

f

c

k

1
2
3

4
5
6

7

8
9

Heap Storage

2 4

9

1

2 3

5 6

9

74

8

10

3

14

7

16

Abstract Heap Representation

87CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Summary: Max Heap

Heapify(A, i)

Works when both child subtrees of node i are heaps

“Floats down” node i to satisfy the heap property

Runtime: O(lgn)

Max (A, n)

Returns the max element of the heap (no modification)

Runtime: O(1)

Extract-Max (A, n)

Returns and removes the max element of the heap

Fills the gap in A[1] with A[n], then calls Heapify(A,1)

Runtime: O(lgn)

88CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Summary: Max Heap

Build-Heap(A, n)

Given an arbitrary array, builds a heap from scratch

Runtime: O(n)

Min(A, n)

How to return the min element in a max-heap?

Worst case runtime: O(n)

because ~half of the heap elements are leaf nodes

Instead, use a min-heap for efficient min operations

Search(A, x)

For an arbitrary x value, the worst-case runtime: O(n)

Use a sorted array instead for efficient search operations

89CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Summary: Max Heap

Increase-Key(A, i, x)

Increase the key of node i (from A[i] to x)

“Float up” x until heap property is satisfied

Runtime: O(lgn)

Decrease-Key(A, i, x)

Decrease the key of node i (from A[i] to x)

Call Heapify(A, i)

Runtime: O(lgn)

90CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Example Problem: Phone Operator

A phone operator answering n phones

Each phone i has xi people waiting in
line for their calls to be answered.

Phone operator needs to answer the
phone with the largest number of
people waiting in line.

New calls come continuously, and

some people hang up after waiting.

91CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Solution

Step 1: Define the following array:

A

1

n

key id
A[i]: the ith element in heap

A[i].id: the index of the

corresponding phone

A[i].key: # of people waiting in line

for phone with index A[i].id

92CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Solution

Step 2: Build-Max-Heap (A, n)

Execution:

When the operator wants to answer a phone:

id = A[1].id

Decrease-Key(A, 1, A[1].key-1)

answer phone with index id

When a new call comes in to phone i:

Increase-Key(A, i, A[i].key+1)

When a call drops from phone i:

Decrease-Key(A, i, A[i].key-1)

