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Heapsort

 Worst-case runtime: O(nlgn)

 Sorts in-place

 Uses a special data structure (heap) to manage 

information during execution of the algorithm

Another design paradigm
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Heap Data Structure

Complete binary tree
 Completely filled on all levels except possibly the lowest level

 The lowest level is filled from left to right

h h-1
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Heap Data Structures
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Height of node i: Length of the longest 

simple downward path from i to a leaf

Height of the tree: 

height of the root

h = 2 h = 1

h = 1 h = 0

h = 3

h = 0
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Heap Data Structures
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Depth of node i: Length of the simple 

downward path from the root to node i

d = 1 d = 1

d = 2 d = 2

d = 0

d = 3
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Heap Property: Min-Heap

1

2 4

3

10

7

14 16

9 8

Min heap: For every node i other than root, A[parent(i)] ≤ A[i]

 Parent node is always smaller than the child nodes

The smallest element

in any subtree is the root

element in a min-heap
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Heap Property: Max-Heap
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Max heap: For every node i other than root, A[parent(i)] ≥ A[i]

 Parent node is always larger than the child nodes

The largest element

in any subtree is the root

element in a max-heap

We will focus on max-heaps
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Heap Property: Max-Heap

Max heap: For every node i other than root, A[parent(i)] ≥ A[i]

 Parent node is always larger than the child nodes

x
i

S
i

< x

The largest element

in any subtree is the root

element in a max-heap
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Heap Data Structure
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1 2 3 4 5 6 7 8 9 10

Storage

Heap can be stored in a linear array
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Heap Data Structure
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16 14 10 8 7 9 3 2 4 1A

1 2 3 4 5 6 7 8 9 10

The links in the heap are implicit:

left(i) = 2i

right(i) = 2i+1

parent(i) = i / 2êë úû
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Heap Data Structure
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16 14 10 8 7 9 3 2 4 1A

1 2 3 4 5 6 7 8 9 10

left(i) = 2i

e.g. Left child of node 4 has index 8

right(i) = 2i+1

e.g. Right child of node 2 has index 5

parent(i) = i / 2êë úû

e.g. Parent of node 7 has index 3
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Heap Data Structures

 Computing left child, right child, and parent indices very fast

 left(i) = 2i  binary left shift

 right(i) = 2i+1  binary left shift, then set the lowest bit to 1

 parent(i) = floor(i/2)  right shift in binary

 A[1] is always the root element

 Array A has two attributes:

 length(A): The number of elements in A

 n = heap-size(A): The number elements in heap

n ≤ length(A)
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Heap Operations: Extract-Max

EXTRACT-MAX(A, n)

max A[1]

A[1] A[n]

n  n  1

HEAPIFY(A, 1, n)

return max

Return the max element, 

and reorganize the heap

to maintain heap property
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max=
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Heap Operations: HEAPIFY
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Heap property satisfied

for left and right subtrees

Heap property violated at the root
Maintaining heap property:

Subtrees rooted at left[i] and 

right[i] are already heaps.

But, A[i] may violate the heap 

property (i.e.,  may be smaller 

than its children)

Idea: Float down the value at 

A[i] in the heap so that subtree

rooted at i becomes a heap.
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Heap Operations: HEAPIFY

HEAPIFY(A, i, n)

largest  i

if 2i  n and A[2i] A[i]

then largest  2i

if 2i 1  n and A[2i1] A[largest]
then largest  2i 1

if largest  i then

exchange A[i] A[largest]

HEAPIFY(A, largest, n)

check the left 

child of node i

check the right 

child of node i

initialize largest

to be the node i

exchange the largest

of the 3 with node i

compute the 

largest of:

1) node i

2) left child

of node i

3) right child

of node i

recursive call on the subtree
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Heap Operations: HEAPIFY

HEAPIFY(A, i, n)

largest  i

if 2i  n and A[2i] A[i]

then largest  2i

if 2i 1  n and A[2i1] A[largest]
then largest  2i 1

if largest  i then

exchange A[i] A[largest]

HEAPIFY(A, largest, n)
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HEAPIFY(A, 1, 9)

1

recursive call
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Heap Operations: HEAPIFY

HEAPIFY(A, i, n)

largest  i

if 2i  n and A[2i] A[i]

then largest  2i

if 2i 1  n and A[2i1] A[largest]
then largest  2i 1

if largest  i then

exchange A[i] A[largest]

HEAPIFY(A, largest, n)
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HEAPIFY(A, 2, 9)

14

recursive call:

1

recursive call
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Heap Operations: HEAPIFY

HEAPIFY(A, i, n)

largest  i

if 2i  n and A[2i] A[i]

then largest  2i

if 2i 1  n and A[2i1] A[largest]
then largest  2i 1

if largest  i then

exchange A[i] A[largest]

HEAPIFY(A, largest, n)
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HEAPIFY(A, 4, 9)

14

recursive call:

8

1

recursive call

(base case)
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HEAPIFY: Summary (Floating Down the Value)

HEAPIFY(A, i, n)

largest  i

if 2i  n and A[2i] A[i]

then largest  2i

if 2i 1  n and A[2i1] A[largest]
then largest  2i 1

if largest  i then

exchange A[i] A[largest]

HEAPIFY(A, largest, n)
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HEAPIFY(A, 1, 9)

1
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Heap Operations: HEAPIFY

HEAPIFY(A, i, n)

largest  i

if 2i  n and A[2i] A[i]

then largest  2i

if 2i 1  n and A[2i1] A[largest]
then largest  2i 1

if largest  i then

exchange A[i] A[largest]

HEAPIFY(A, largest, n)
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14

after HEAPIFY:

8

4
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Intuitive Analysis of HEAPIFY

• Consider HEAPIFY(A, i, n)

– let h(i) be the height of node i

– at most h(i) recursion levels

• Constant work at each level: (1) 

– Therefore T(i)  O(h(i))

• Heap is almost-complete binary tree

 h(n)  O(lgn)

• Thus T(n)  O(lgn)
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Formal Analysis of HEAPIFY

 What is the recurrence?

Depends on the size of the subtree on which recursive call

is made

 In the next couple of slides, we try to compute an upper 

bound for this subtree.



23CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal 

Computer Engineering Department, Bilkent University

Reminder: Binary trees

For a full binary tree:

# of nodes at depth d:  2d

# of nodes with depths less than d:  2d-1

Example:

d = 2

# of nodes at depth d=2: 4

# of nodes with depths d<2: 3
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Formal Analysis of HEAPIFY

• Worst case occurs when last row of the subtree Si rooted at 

node i is half full

• T(n)  T(| SL(i)|) + (1)

• SL(i) and SR(i) are complete

binary trees of heights 

h(i) 1 and h(i) 2, 

respectively

h(i)-2h(i)-1

i

L(i) R(i)

S
L(i)

S
R(i)

m leaf nodes
m / 2 leaf

nodes
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• Let m be the number of leaf nodes in SL(i)

• | SL(i) | = m +  (m – 1) = 2m – 1 ; 

• | SR(i) | = m/2 + (m/2 – 1) = m – 1 

• | SL(i) |     +    | SR(i) | +1= n

(2m – 1) +  (m – 1) +1= n  m = (n+1)/3

| SL(i) | = 2m – 1=2(n+1)/3 – 1=(2n/3+2/3) –1=2n/3 –1/3  2n/3

• T(n)  T(2n/3) + (1)  T(n)  O(lgn)

Formal Analysis of HEAPIFY

ext int

By case 2 of 

Master Thm

i

L(i) R(i)

S
L(i)

S
R(i)

m leaf nodes
m / 2 leaf

nodes
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HEAPIFY: Efficiency Issues

 Recursion vs iteration:

 In the absence of tail recursion, iterative version is in 

general more efficient

 because of the pop/push operations to/from stack at 

each level of recursion.
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Heap Operations: HEAPIFY

HEAPIFY(A, i, n)

largest  i

if 2i  n and A[2i] A[i]

then largest  2i

if 2i 1  n and A[2i1] A[largest]
then largest  2i 1

if largest  i then

exchange A[i]A[largest]

HEAPIFY(A, largest, n)

Recursive:

HEAPIFY(A, i, n)

j  i

while (true) do

largest  j

if 2j  n and A[2j] A[j]

then largest  2j

if 2j 1  n and A[2j1] A[largest]
then largest  2j 1

if largest  j then

exchange A[j]A[largest]

j  largest

else return

Iterative:
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Heap Operations: Building Heap

 Given an arbitrary array, how to 

build a heap from scratch?

 Basic idea: Call HEAPIFY on each 

node bottom up

 Start from the leaves (which trivially 

satisfy the heap property)

 Process nodes in bottom up order.

 When HEAPIFY is called on node i, the 

subtrees connected to the left and right 

subtrees already satisfy the heap 

property. 

node i

child subtrees already 

satisfy heap property



29CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal 

Computer Engineering Department, Bilkent University

Where are the leaves stored?
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16 14 10 8 7 9 3 2 4 1A

1 2 3 4 5 6 7 8 9 10

Storage

Lemma: The last n/2 nodes of 

a heap are all leaves 
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Proof of Lemma

Lemma: last n/2 nodes of a heap are all leaves

Proof:

nodesf/2

f/2

dd-1

f leaf nodes

m -

leaf nodes

m = 2d – 1: # nodes at level d – 1

f : # nodes at level d (last level)

# of nodes with depth d-1: m

# of nodes with depth < d-1: m-1

# of nodes with depth d: f

Total # of nodes: n = f + 2m-1 
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Proof of Lemma (cont’d)

f = n – 2m + 1

# of leaves: f + m - f/2

= m + f/2

= m + (n-2m+1)/2

= (n+1)/2

= n/2

Proof complete

nodesf/2

f/2

dd-1

f leaf nodes

m -

leaf nodes
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Heap Operations: Building Heap

BUILD-HEAP (A, n)

for i = n/2 downto 1 do

HEAPIFY(A, i, n)
.

Reminder: The last n/2 nodes of a heap are all leaves, 

which trivially satisfy the heap property
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Build-Heap: Example
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4 1 3 2 9 10 14 8A

1 2 3 4 5 6 7 8 9 10

HEAPIFY(A, 5, 10)

i=5

7

7 16
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Build-Heap: Example

4
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4 1 3 9 10 14 8A

1 2 3 4 5 6 7 8 9 10

HEAPIFY(A, 4, 10)

i=4

16

16 7

2

2
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Build-Heap: Example
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4 1 9 8A

1 2 3 4 5 6 7 8 9 10

HEAPIFY(A, 3, 10)

i=3

16

16 7

14

14

3

10

3 210
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Build-Heap: Example
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4 9 8A

1 2 3 4 5 6 7 8 9 10

HEAPIFY(A, 2, 10)

i=2

7

14

14

10

3

10 23

1

16

1 16
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Build-Heap: Example
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4 16 9 8A

1 2 3 4 5 6 7 8 9 10

HEAPIFY(A, 2, 10)

i=2 (cont’d)
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3
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Build-Heap: Example
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HEAPIFY(A, 1, 10)

i=1
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Build-Heap: Example
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HEAPIFY(A, 1, 10)

i=1 (cont’d)
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Build-Heap: Example

2 8 1
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9A

1 2 3 4 5 6 7 8 9 10

HEAPIFY(A, 1, 10)

i=1 (cont’d)
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Build-Heap: Example
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1 2 3 4 5 6 7 8 9 10

After Build-Heap
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8
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Build-Heap: Runtime Analysis

 Simple analysis:

 O(n) calls to HEAPIFY, each of which takes O(lgn) time

O(nlgn)  loose bound

 In general, a good approach:

 Start by proving an easy bound

 Then, try to tighten it

 Is there a tighter bound?
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d

 =1, d – 2  h1  d –1

 = 0, h0= d

, d –  – 1  h  d – 

= d – 1, 0  hd–1  1

= d, hd= 0

Build-Heap: tighter running time analysis

If the heap is full binary tree then h = d – 

Otherwise, nodes at a given level do not all have the same height

But we have d –  – 1  h   d – 
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T(n)= O( 2 (d – ))
Let h = d –   = d – h (change of variables)

T(n)= O( h 2d-h)= O( h 2d/2h)= O(2d h (1/2)h)

but 2d=(n)  T(n)= O(n h (1/2)h)

Assume that all nodes at level = d – 1 are processed 

T(n)= nO(h)= O(n h)

Build-Heap: tighter running time analysis

=0

d-1

h=1

d

h=1

d

h=1

d

h=1

d

=0

d-1

=0

d-1 n = 2 = # of nodes at level 

h = height of nodes at level 



CS473 – Lecture 8 Cevdet Aykanat - Bilkent University 

Computer Engineering Department

45

recall infinite decreasing geometric series

differentiate both sides
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Build-Heap: tighter running time analysis
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then, multiply both sides by x

in our case: x  1/2 and k  h

2

0 )1( x

x
kx

k

k


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Build-Heap: tighter running time analysis
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The HEAPSORT algorithm

(1) Build a heap on array A[1…n] by calling BUILD-HEAP(A, n)

(2) The largest element is stored at the root A[1]

Put it into its correct final position A[n] by A[1] A[n] 

(3) Discard node n from the heap

(4) Subtrees (S2 & S3) rooted at children of root remain as heaps

but the new root element may violate the heap property

Make A[1…n  1] a heap by calling HEAPIFY(A, 1, n  1)

(5) n  n  1

(6) Repeat steps 24 until n  2

Heapsort Algorithm
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Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

2 4 1

9

1

2 3

5 6

8 9

74

10

8

10

3

14

7

16

9A

1 2 3 4 5 6 7 8 9 10

1810 23716 14 4



49CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal 

Computer Engineering Department, Bilkent University

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

2 4 16

9

1

2 3
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Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

2 1 16
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Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

2 14 16
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Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

2 14 16
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Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16
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Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16
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Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16
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Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16
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Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16
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Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16
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Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16
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Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16
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Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)
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Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)
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Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

10 14 16

8

1

2 3

5 6

8 9

74

10

4

3

9

2

7

1

8A

1 2 3 4 5 6 7 8 9 10

1643 10971 2 14



64CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal 

Computer Engineering Department, Bilkent University

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)
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Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)
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8

1

2 3

5 6

8 9

74

10

4

3

9

2

7

1

8A

1 2 3 4 5 6 7 8 9 10

1643 10971 2 14



66CS 473 – Lecture 8 Cevdet Aykanat and Mustafa Ozdal 

Computer Engineering Department, Bilkent University

Heapsort Algorithm

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)
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Heapsort Algorithm: Runtime Analysis

HEAPSORT(A, n)

BUILD-HEAP(A, n)

for i  n downto 2 do

exchange A[1] A[i]

HEAPIFY(A, 1, i 1)

Θ(n)

Θ(1)

O(lg(i-1))

T (n) = Q(n)+ O(lgi)

i=2

n

å = Q(n)+O O(lgn)

i=2

n

å
æ

è

ç
ç

ö

ø

÷
÷
=O(n lgn)
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Heapsort - Notes

 Heapsort is a very good algorithm but, a good 

implementation of quicksort always beats heapsort in 

practice

 However, heap data structure has many popular 

applications, and it can be efficiently used for 

implementing priority queues
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Data structures for Dynamic Sets

• Consider sets of records having key and 

satellite data

key

satellite datax

record
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Operations on Dynamic Sets
• Queries: Simply return info; Modifying operations: Change the set

– INSERT(S, x): (Modifying) S S {x}

– DELETE(S, x): (Modifying) S  S  {x}

– MAX(S) / MIN(S): (Query) return xS with the largest/smallest key

– EXTRACT-MAX(S) / EXTRACT-MIN(S) : (Modifying) return and 
delete xS with the largest/smallest key

– SEARCH(S, k): (Query) return xS with key[x]= k

– SUCCESSOR(S, x) / PREDECESSOR(S, x) : (Query) return yS which 
is the next larger/smaller element after x

• Different data structures support/optimize different operations
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Priority Queues (PQ)

• Supports 
– INSERT 

– MAX / MIN 

– EXTRACT-MAX / EXTRACT-MIN

• One application: Schedule jobs on a shared resource

– PQ keeps track of jobs and their relative priorities

– When a job is finished or interrupted, highest priority job is 

selected from those pending using EXTRACT-MAX 

– A new job can be added at any time using INSERT
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Priority Queues

• Another application: Event-driven simulation

– Events to be simulated are the items in the PQ

– Each event is associated with a time of occurrence which serves 

as a key

– Simulation of an event can cause other events to be simulated in 

the future

– Use EXTRACT-MIN at each step to choose the next event to 

simulate

– As new events are produced insert them into the PQ using 
INSERT
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Implementation of Priority Queue

• Sorted linked list: Simplest implementation

– INSERT

– O(n) time

– Scan the list to find place and splice in the new item

– EXTRACT-MAX 

– O(1) time

– Take the first element

 Fast extraction but slow insertion.
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Implementation of Priority Queue
• Unsorted linked list: Simplest implementation

– INSERT

– O(1) time

– Put the new item at front

– EXTRACT-MAX 

– O(n) time

– Scan the whole list

 Fast insertion but slow extraction

Sorted linked list is better on the average

– Sorted list: on the average, scans n/2 elem. per insertion

– Unsorted list: always scans n elem. at each extraction
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Heap Implementation of PQ
• INSERT and EXTRACT-MAX are both O(lg n)

– good compromise between fast insertion but slow extraction and vice versa

• EXTRACT-MAX: already discussed HEAP-EXTRACT-MAX

INSERT: Insertion is like that of Insertion-Sort.

HEAP-INSERT(A, key, n)

n  n 1
i  n
A[i]  key 

while i 1 and A[i/2] < key do

A[i] A[i/2]

i  i/2

Traverses O(lg n) nodes, as 

HEAPIFY does but makes 

fewer comparisons and 

assignments

–HEAPIFY: compares parent 
with both children

–HEAP-INSERT: with only one
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Example: HEAP-INSERT(A, 15)

HEAP-INSERT(A, key, n)

n  n 1
i  n 

A[i]  key

while i 1 and A[i/2] < key do

exchange A[i] ↔ A[i/2]

i  i/2 2 4 1

9

1

2 3

5 6

9
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16

11

key = 15
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Example: HEAP-INSERT(A, 15)

HEAP-INSERT(A, key, n)

n  n 1
i  n 

A[i]  key

while i 1 and A[i/2] < key do

exchange A[i] ↔ A[i/2]

i  i/2 2 4 1
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Example: HEAP-INSERT(A, 15)

HEAP-INSERT(A, key, n)

n  n 1
i  n 

A[i]  key

while i 1 and A[i/2] < key do

exchange A[i] ↔ A[i/2]

i  i/2 2 4 1
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Example: HEAP-INSERT(A, 15)

HEAP-INSERT(A, key, n)

n  n 1
i  n 

A[i]  key

while i 1 and A[i/2] < key do

exchange A[i] ↔ A[i/2]

i  i/2 2 4 1
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Heap Increase Key

• Key value of i-th element of heap is

increased from A[i] to key

HEAP-INCREASE-KEY(A, i, key)

if key < A[i] then

return error

while i 1 and A[i/2] < key do

A[i] A[i/2]

i  i/2

A[i]  key
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Example: HEAP-INCREASE-KEY(A, 9, 15)

HEAP-INCREASE-KEY(A, i, key)

if key < A[i] then

return error

A[i]  key

while i 1 and A[i/2] < key do

exchange A[i] ↔ A[i/2]

i  i/2 2 1
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Example: HEAP-INCREASE-KEY(A, 9, 15)

HEAP-INCREASE-KEY(A, i, key)

if key < A[i] then

return error

A[i]  key

while i 1 and A[i/2] < key do

exchange A[i] ↔ A[i/2]

i  i/2 2 1
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Example: HEAP-INCREASE-KEY(A, 9, 15)

HEAP-INCREASE-KEY(A, i, key)

if key < A[i] then

return error

A[i]  key

while i 1 and A[i/2] < key do

exchange A[i] ↔ A[i/2]

i  i/2 2 1
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Example: HEAP-INCREASE-KEY(A, 9, 15)

HEAP-INCREASE-KEY(A, i, key)

if key < A[i] then

return error

A[i]  key

while i 1 and A[i/2] < key do

exchange A[i] ↔ A[i/2]

i  i/2 2 1
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Example: HEAP-INCREASE-KEY(A, 9, 15)

HEAP-INCREASE-KEY(A, i, key)

if key < A[i] then

return error

A[i]  key

while i 1 and A[i/2] < key do

exchange A[i] ↔ A[i/2]

i  i/2 2 1
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Heap Implementation of PQ

Storage in Application
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Summary: Max Heap

Heapify(A, i)

Works when both child subtrees of node i are heaps

“Floats down” node i to satisfy the heap property

Runtime: O(lgn)

Max (A, n)

Returns the max element of the heap (no modification)

Runtime: O(1)

Extract-Max (A, n)

Returns and removes the max element of the heap

Fills the gap in A[1] with A[n], then calls Heapify(A,1)

Runtime: O(lgn)
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Summary: Max Heap

Build-Heap(A, n)

Given an arbitrary array, builds a heap from scratch

Runtime: O(n)

Min(A, n)

How to return the min element in a max-heap?

Worst case runtime: O(n)

because ~half of the heap elements are leaf nodes

Instead, use a min-heap for efficient min operations

Search(A, x)

For an arbitrary x value, the worst-case runtime: O(n)

Use a sorted array instead for efficient search operations
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Summary: Max Heap

Increase-Key(A, i, x)

Increase the key of node i (from A[i] to x)

“Float up” x until heap property is satisfied

Runtime: O(lgn) 

Decrease-Key(A, i, x)

Decrease the key of node i (from A[i] to x)

Call Heapify(A, i)

Runtime: O(lgn)
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Example Problem: Phone Operator

A phone operator answering n phones

Each phone i has xi people waiting in 
line for their calls to be answered.

Phone operator needs to answer the 
phone with the largest number of 
people waiting in line.

New calls come continuously, and

some people hang up after waiting.
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Solution

Step 1: Define the following array:

A

1

n

key id
A[i]: the ith element in heap

A[i].id: the index of the  

corresponding phone

A[i].key: # of people waiting in line 

for phone with index A[i].id
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Solution

Step 2: Build-Max-Heap (A, n)

Execution:

When the operator wants to answer a phone:

id = A[1].id

Decrease-Key(A, 1, A[1].key-1)

answer phone with index id

When a new call comes in to phone i:

Increase-Key(A, i, A[i].key+1)

When a call drops from phone i:

Decrease-Key(A, i, A[i].key-1) 


