CS473 - Algorithms I

Lecture 9 Sorting in Linear Time

View in slide-show mode

How Fast Can We Sort?

\square The algorithms we have seen so far:
> Based on comparison of elements
$>$ We only care about the relative ordering between the elements (not the actual values)
$>$ The smallest worst-case runtime we have seen so far: O (nlgn)
$>$ Is $\mathrm{O}(\mathrm{nlgn})$ the best we can do?

- Comparison sorts: Only use comparisons to determine the relative order of elements.

Decision Trees for Comparison Sorts

\square Represent a sorting algorithm abstractly in terms of a decision tree

- A binary tree that represents the comparisons between elements in the sorting algorithm
- Control, data movement, and other aspects are ignored
\square One decision tree corresponds to one sorting algorithm and one value of n (input size)

Reminder: Insertion Sort (from Lecture 1)

Insertion-Sort (A)

1. for $\mathrm{j} \leftarrow 2$ to n do
2. $\mathrm{key} \leftarrow \mathrm{A}[\mathrm{j}]$;
3. $\mathrm{i} \leftarrow \mathrm{j}-1$;
4. while $\mathrm{i}>0$ and $\mathrm{A}[\mathrm{i}]>$ key
do
5. $\mathrm{A}[\mathrm{i}+1] \leftarrow \mathrm{A}[\mathrm{i}]$;
6. $\quad \mathrm{i} \leftarrow \mathrm{i}-1$;
endwhile
7. $\mathrm{A}[\mathrm{i}+1] \leftarrow$ key;
endfor
\int Iterate over array elts j
Loop invariant:
The subarray A[1..j-1]
is always sorted

Reminder: Insertion Sort (from Lecture 1)

Insertion-Sort (A)

1. for $\mathrm{j} \leftarrow 2$ to n do
2. $\mathrm{key} \leftarrow \mathrm{A}[\mathrm{j}]$;
3. $\mathrm{i} \leftarrow \mathrm{j}-1$;
4. while i > 0 and $\mathrm{A}[\mathrm{i}]>$ key do
5. $\mathrm{A}[\mathrm{i}+1] \leftarrow \mathrm{A}[\mathrm{i}]$;
6. $\quad i \leftarrow i-1$;
endwhile
7. $\mathrm{A}[i+1] \leftarrow$ key;

endfor

Reminder: Insertion Sort (from Lecture 1)

Insertion-Sort (A)

1. for $\mathrm{j} \leftarrow 2$ to n do
2. $\mathrm{key} \leftarrow \mathrm{A}[\mathrm{j}]$;
3. $\mathrm{i} \leftarrow \mathrm{j}-1$;
4. while i > 0 and $\mathrm{A}[\mathrm{i}]>$ key
do
5. $\mathrm{A}[\mathrm{i}+1] \leftarrow \mathrm{A}[\mathrm{i}]$;
6. $\quad i \leftarrow i-1$;
endwhile
7. $\mathrm{A}[\mathrm{i}+1] \leftarrow \mathrm{key}$; endfor

7 Insert key to the correct location
End of iter j: A[1..j] is sorted

Different Outcomes for Insertion Sort and $\mathrm{n}=3$ Input: $\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right\rangle$

Decision Tree for Insertion Sort and $\mathrm{n}=3$

Decision Tree Model for Comparison Sorts

- Leaf node: An output of the sorting algorithm
\square Path from root to a leaf: The execution of the sorting algorithm for a given input
\square All possible executions are captured by the decision tree
\square All possible outcomes (permutations) are in the leaf nodes

Decision Tree for Insertion Sort and n=3
 Input: <9, 4, 6>

Decision Tree Model

\square A decision tree can model the execution of any comparison sort:

- One tree for each input size n
- View the algorithm as splitting whenever it compares two elements
- The tree contains the comparisons along all possible instruction traces

The running time of the algorithm $=$ the length of the path taken
Worst case running time $=$ height of the tree

Lower Bound for Comparison Sorts

\square Let n be the number of elements in the input array.
\square What is the min number of leaves in the decision tree?
n ! (because there are n ! permutations of the input array, and all possible outputs must be captured in the leaves)
\square What is the max number of leaves in a binary tree of height h ?
$2^{\text {h }}$
\square So, we must have:

$$
2^{\mathrm{h}} \geq \mathrm{n}!
$$

Lower Bound for Decision Tree Sorting

Theorem: Any comparison sort algorithm requires

 Ω (nlgn) comparisons in the worst case.Proof: We'll prove that any decision tree corresponding to a comparison sort algorithm must have height Ω (nlgn)

$$
\begin{aligned}
2^{\mathrm{h}} & \geq \mathrm{n}!\quad(\text { from previous slide }) \\
\mathrm{h} & \geq \lg (\mathrm{n}!) \\
& \geq \lg \left((\mathrm{n} / \mathrm{e})^{\mathrm{n}}\right) \quad(\text { Stirling's approximation }) \\
& =\mathrm{nlgn}-\mathrm{n} \text { lge } \\
& =\Omega(\mathrm{nlgn})
\end{aligned}
$$

Lower Bound for Decision Tree Sorting

Corollary: Heapsort and merge sort are asymptotically optimal comparison sorts.

Proof: The $\mathrm{O}(\mathrm{nlgn})$ upper bounds on the runtimes for heapsort and merge sort match the Ω (nlgn) worst-case lower bound from the previous theorem.

Sorting in Linear Time

Counting sort: No comparisons between elements

Input: $\mathrm{A}[1 . . \mathrm{n}]$, where $\mathrm{A}[\mathrm{j}] \in\{1,2, \ldots, \mathrm{k}\}$
Output: $\mathrm{B}[1$.. n$]$, sorted
Auxiliary storage: $\mathrm{C}[1 \mathrm{I} \mathrm{k}]$

Counting Sort

for $\mathrm{i} \leftarrow 1$ to k do
$\mathrm{C}[\mathrm{i}] \leftarrow 0$
for $\mathrm{j} \leftarrow 1$ to n do
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]+1$
$/ / \mathrm{C}[\mathrm{i}]=\mid\{$ key $=\mathrm{i}\} \mid$

A: | 4 | 1 | 3 | 4 | 3 |
| :--- | :--- | :--- | :--- | :--- |

for $\mathrm{i} \leftarrow 2$ to k do $\mathrm{C}[\mathrm{i}] \leftarrow \mathrm{C}[\mathrm{i}]+\mathrm{C}[\mathrm{i}-1]$ $/ / \mathrm{C}[\mathrm{i}]=\mid\{$ key $\leq \mathrm{i}\} \mid$

for $\mathrm{j} \leftarrow \mathrm{n}$ downto 1 do $\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{j}]]] \leftarrow \mathrm{A}[\mathrm{j}]$ $\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]-1$

Counting Sort

$$
\begin{aligned}
& \text { for } \mathrm{i} \leftarrow 1 \text { to } \mathrm{k} \text { do } \\
& \quad \mathrm{C}[\mathrm{i}] \leftarrow 0 \\
& \text { for } \mathrm{j} \leftarrow 1 \text { to } \mathrm{n} \text { do } \\
& \mathrm{C}[\mathrm{~A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{~A}[\mathrm{j}]]+1 \\
& / / \mathrm{C}[\mathrm{i}]=\mid\{\text { key }=\mathrm{i}\} \mid
\end{aligned}
$$

Step 1: Initialize all counts to 0

A: | 4 | 1 | 3 | 4 | 3 |
| :--- | :--- | :--- | :--- | :--- |

for $\mathrm{i} \leftarrow 2$ to k do $\mathrm{C}[\mathrm{i}] \leftarrow \mathrm{C}[\mathrm{i}]+\mathrm{C}[\mathrm{i}-1]$
$/ / C[i]=\mid\{$ key $\leq \mathrm{i}\} \mid$

for $\mathrm{j} \leftarrow \mathrm{n}$ downto 1 do $\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{j}]]] \leftarrow \mathrm{A}[\mathrm{j}]$
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]-1$

Counting Sort

$$
\begin{aligned}
& \text { for } \mathrm{i} \leftarrow 1 \text { to } \mathrm{k} \text { do } \\
& \quad \mathrm{C}[\mathrm{i}] \leftarrow 0 \\
& \text { for } \mathrm{j} \leftarrow 1 \text { to } \mathrm{n} \text { do } \\
& \mathrm{C}[\mathrm{~A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{~A}[\mathrm{j}]]+1 \\
& / / \mathrm{C}[\mathrm{i}]=\mid\{\text { key }=\mathrm{i}\} \mid
\end{aligned}
$$

Step 2: Count the number of occurrences of each value in the input array

for $\mathrm{i} \leftarrow 2$ to k do $\mathrm{C}[\mathrm{i}] \leftarrow \mathrm{C}[\mathrm{i}]+\mathrm{C}[\mathrm{i}-1]$
$/ / \mathrm{C}[\mathrm{i}]=\mid\{$ key $\leq \mathrm{i}\} \mid$
for $\mathrm{j} \leftarrow \mathrm{n}$ downto 1 do
$\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{j}]]] \leftarrow \mathrm{A}[\mathrm{j}]$
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]-1$
B:

Counting Sort

$$
\begin{aligned}
& \text { for } \mathrm{i} \leftarrow 1 \text { to } \mathrm{k} \text { do } \\
& \quad \mathrm{C}[\mathrm{i}] \leftarrow 0 \\
& \text { for } \mathrm{j} \leftarrow 1 \text { to } \mathrm{n} \text { do } \\
& \mathrm{C}[\mathrm{~A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{~A}[\mathrm{j}]]+1 \\
& / / \mathrm{C}[\mathrm{i}]=\mid\{\text { key }=\mathrm{i}\} \mid
\end{aligned}
$$

Step 3: Compute the number of elements less than or equal to each value

$$
\mathrm{A}: \begin{array}{|l|l|l|l|l|}
\hline 4 & 1 & 3 & 4 & 3 \\
\hline
\end{array}
$$

for $\mathrm{i} \leftarrow 2$ to k do
$\mathrm{C}[\mathrm{i}] \leftarrow \mathrm{C}[\mathrm{i}]+\mathrm{C}[\mathrm{i}-1]$
$/ / C[i]=\mid\{$ key $\leq \mathrm{i}\} \mid$
for $\mathrm{j} \leftarrow \mathrm{n}$ downto 1 do
$\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{j}]]] \leftarrow \mathrm{A}[\mathrm{j}]$
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]-1$
B:

i
$\left.\mathrm{C}: \begin{array}{|c|c|c|c|} & \mathbf{1} & \mathbf{2} & \mathbf{3} \\ \mathbf{1} & \mathbf{4} \\ \hline & 1 & 1 & 3\end{array}\right)$

Counting Sort

for $\mathrm{i} \leftarrow 1$ to k do
$\mathrm{C}[\mathrm{i}] \leftarrow 0$
for $\mathrm{j} \leftarrow 1$ to n do
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]+1$
$/ / \mathrm{C}[\mathrm{i}]=\mid\{$ key $=\mathrm{i}\} \mid$
for $\mathrm{i} \leftarrow 2$ to k do
$\mathrm{C}[\mathrm{i}] \leftarrow \mathrm{C}[\mathrm{i}]+\mathrm{C}[\mathrm{i}-1]$
$/ / C[i]=\mid\{$ key $\leq \mathrm{i}\} \mid$
for $\mathrm{j} \leftarrow \mathrm{n}$ downto 1 do
$\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{j}]]] \leftarrow \mathrm{A}[\mathrm{j}]$
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]-1$

Step 4: Populate the output array

There are $C[3]=3$ elts that are ≤ 3

Counting Sort

for $\mathrm{i} \leftarrow 1$ to k do
$\mathrm{C}[\mathrm{i}] \leftarrow 0$
for $\mathrm{j} \leftarrow 1$ to n do
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]+1$
$/ / \mathrm{C}[\mathrm{i}]=\mid\{$ key $=\mathrm{i}\} \mid$
for $\mathrm{i} \leftarrow 2$ to k do
$\mathrm{C}[\mathrm{i}] \leftarrow \mathrm{C}[\mathrm{i}]+\mathrm{C}[\mathrm{i}-1]$
$/ / C[i]=\mid\{$ key $\leq \mathrm{i}\} \mid$
for $\mathrm{j} \leftarrow \mathrm{n}$ downto 1 do
$\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{j}]]] \leftarrow \mathrm{A}[\mathrm{j}]$
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]-1$

Step 4: Populate the output array

There are $C[4]=5$ elts that are ≤ 4

Counting Sort

for $\mathrm{i} \leftarrow 1$ to k do
$\mathrm{C}[\mathrm{i}] \leftarrow 0$
for $\mathrm{j} \leftarrow 1$ to n do
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]+1$
$/ / \mathrm{C}[\mathrm{i}]=\mid\{$ key $=\mathrm{i}\} \mid$
for $\mathrm{i} \leftarrow 2$ to k do
$\mathrm{C}[\mathrm{i}] \leftarrow \mathrm{C}[\mathrm{i}]+\mathrm{C}[\mathrm{i}-1]$
$/ / C[i]=\mid\{$ key $\leq \mathrm{i}\} \mid$
for $\mathrm{j} \leftarrow \mathrm{n}$ downto 1 do
$\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{j}]]] \leftarrow \mathrm{A}[\mathrm{j}]$
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]-1$

Step 4: Populate the output array

There are C[3] $=2$ elts that are ≤ 3

Counting Sort

for $\mathrm{i} \leftarrow 1$ to k do
$\mathrm{C}[\mathrm{i}] \leftarrow 0$
for $\mathrm{j} \leftarrow 1$ to n do
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]+1$
$/ / \mathrm{C}[\mathrm{i}]=\mid\{$ key $=\mathrm{i}\} \mid$
for $\mathrm{i} \leftarrow 2$ to k do
$\mathrm{C}[\mathrm{i}] \leftarrow \mathrm{C}[\mathrm{i}]+\mathrm{C}[\mathrm{i}-1]$
$/ / C[i]=\mid\{$ key $\leq \mathrm{i}\} \mid$
for $\mathrm{j} \leftarrow \mathrm{n}$ downto 1 do
$\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{j}]]] \leftarrow \mathrm{A}[\mathrm{j}]$
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]-1$

Step 4: Populate the output array

There are $C[1]=1$ elts that are ≤ 1

Counting Sort

for $\mathrm{i} \leftarrow 1$ to k do
$\mathrm{C}[\mathrm{i}] \leftarrow 0$
for $\mathrm{j} \leftarrow 1$ to n do
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]+1$
$/ / \mathrm{C}[\mathrm{i}]=\mid\{$ key $=\mathrm{i}\} \mid$
for $\mathrm{i} \leftarrow 2$ to k do
$\mathrm{C}[\mathrm{i}] \leftarrow \mathrm{C}[\mathrm{i}]+\mathrm{C}[\mathrm{i}-1]$
$/ / C[i]=\mid\{$ key $\leq \mathrm{i}\} \mid$
for $\mathrm{j} \leftarrow \mathrm{n}$ downto 1 do
$\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{j}]]] \leftarrow \mathrm{A}[\mathrm{j}]$
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]-1$

Step 4: Populate the output array

There are $C[4]=4$ elts that are ≤ 4

Counting Sort

for $\mathrm{i} \leftarrow 1$ to k do
$\mathrm{C}[\mathrm{i}] \leftarrow 0$

After Count Sort:

for $\mathrm{j} \leftarrow 1$ to n do
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]+1$
$/ / \mathrm{C}[\mathrm{i}]=\mid\{$ key $=\mathrm{i}\} \mid$

A: | 4 | 1 | 3 | 4 | 3 |
| :--- | :--- | :--- | :--- | :--- |

for $\mathrm{i} \leftarrow 2$ to k do $\mathrm{C}[\mathrm{i}] \leftarrow \mathrm{C}[\mathrm{i}]+\mathrm{C}[\mathrm{i}-1]$
$/ / C[i]=\mid\{$ key $\leq \mathrm{i}\} \mid$

B: \begin{tabular}{|l|l|l|l|l|}
\& \multicolumn{1}{l}{} \& $\mathbf{2}$ \& $\mathbf{3}$ \& $\mathbf{4}$

\hline

\hline
\end{tabular}

for $\mathrm{j} \leftarrow \mathrm{n}$ downto 1 do
$\mathrm{B}[\mathrm{C}[\mathrm{A}[\mathrm{j}]]] \leftarrow \mathrm{A}[\mathrm{j}]$
$\mathrm{C}[\mathrm{A}[\mathrm{j}]] \leftarrow \mathrm{C}[\mathrm{A}[\mathrm{j}]]-1$

Counting Sort: Runtime Analysis

Counting Sort: Runtime

\square Runtime is $\Theta(\mathrm{n}+\mathrm{k})$
\square If $k=O(n)$, then counting sort takes $\Theta(n)$
\square Question: We proved a lower bound of $\Theta(\mathrm{nlgn})$ before! Where is the fallacy?
\square Answer:
$\square \Theta(\mathrm{nlgn})$ lower bound is for comparison-based sorting
\square Counting sort is not a comparison sort
\square In fact, not a single comparison between elements occurs!

Stable Sorting

\square Counting sort is a stable sort: It preserves the input order among equal elements.

- i.e. The numbers with the same value appear in the output array in the same order as they do in the input array.

Exercise: Which other sorting algorithms have this property?

Radix Sort

\square Origin: Herman Hollerith's card-sorting machine for the 1890 US Census.
\square Basic idea: Digit-by-digit sorting
\square Two variations:

- Sort from MSD to LSD (bad idea)
- Sort from LSD to MSD (good idea)
- LSD/MSD: Least/most significant digit

Herman Hollerith (1860-1929)

\square The 1880 U.S. Census took almost 10 years to process.
\square While a lecturer at MIT, Hollerith prototyped punched-card technology.
\square His machines, including a "card sorter," allowed the 1890 census total to be reported in 6 weeks.

\square He founded the Tabulating Machine Company in 1911, which merged with other companies in 1924 to form International Business Machines (IBM).

Hollerith Punched Card

>12 rows and 24 columns $>$ coded for age, state of residency, gender, etc.

Punched card: A piece of stiff paper that contains digital information represented by the presence or absence of holes.

"Modern" IBM card

\square One character per column

```
0123456789月BCDEFGHI JKLMNOPQRSTUUHXYZ INTRODUCTON TO ALGORITHNS 09/24/2001
```


So, that's why text windows have 80 columns!

Hollerith Tabulating Machine and Sorter

> Mechanically sorts the cards based on the hole locations.
> Sorting performed for one column at a time
> Human operator needed to load/retrieve/move cards at each stage

Hollerith's MSD-First Radix Sort

\square Sort starting from the most significant digit (MSD)
\square Then, sort each of the resulting bins recursively
\square At the end, combine the decks in order

Hollerith's MSD-First Radix Sort

\square To sort a subset of cards recursively:

- All the other cards need to be removed from the machine, because the machine can handle only one sorting problem at a time.
- The human operator needs to keep track of the intermediate card piles

Hollerith's MSD-First Radix Sort

\square MSD-first sorting may require:
-- very large number of sorting passes
-- very large number of intermediate card piles to maintain
\square S(d): \# of passes needed to sort d-digit numbers (worst-case)
\square Recurrence:

$$
S(d)=10 S(d-1)+1 \quad \text { with } S(1)=1
$$

Reminder: Recursive call made to each subset with the same most significant digit (MSD)

Hollerith's MSD-First Radix Sort Recurrence: $S(d)=10 S(d-1)+1$

$$
\begin{aligned}
\mathrm{S}(\mathrm{~d}) & =10 \mathrm{~S}(\mathrm{~d}-1)+1 \\
& =10(10 \mathrm{~S}(\mathrm{~d}-2)+1)+1 \\
& =10(10(10 \mathrm{~S}(\mathrm{~d}-3)+1)+1)+1 \\
& =10^{\mathrm{i}} \mathrm{~S}(\mathrm{~d}-\mathrm{i})+10^{\mathrm{i}-1}+10^{\mathrm{i}-2}+\ldots+10^{1}+10^{0}
\end{aligned}
$$

Iteration terminates when $\mathrm{i}=\mathrm{d}-1$ with $\mathrm{S}(\mathrm{d}-(\mathrm{d}-1))=\mathrm{S}(1)=1$

$$
S(d)={ }_{i=0}^{d 1} 10^{i}=\frac{10^{d} \quad 1}{10} 1 \quad 1 \quad \frac{1}{9}\left(\begin{array}{ll}
10^{d} & 1
\end{array}\right) \square S(d)=\frac{1}{9}\left(\begin{array}{ll}
10^{d} & 1
\end{array}\right)
$$

Hollerith's MSD-First Radix Sort

$\mathrm{P}(\mathrm{d})$: \# of intermediate card piles maintained (worst-case)
Reminder: Each routing pass generates 9 intermediate piles except the sorting passes on least significant digits (LSDs)

There are $10^{\mathrm{d}-1}$ sorting calls to LSDs

$$
\begin{aligned}
\mathrm{P}(\mathrm{~d}) & =9\left(\mathrm{~S}(\mathrm{~d})-10^{\mathrm{d}-1}\right)=9\left(\left(10^{\mathrm{d}}-1\right) / 9-10^{\mathrm{d}-1}\right) \\
& =\left(10^{\mathrm{d}}-1-9 \cdot 10^{\mathrm{d}-1}\right)=10^{\mathrm{d}-1}-1 \\
\mathrm{P}(\mathrm{~d}) & =10^{\mathrm{d}-1}-1
\end{aligned}
$$

Alternative solution: Solve the recurrence:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~d})=10 \mathrm{P}(\mathrm{~d}-1)+9 \\
& \mathrm{P}(1)=0
\end{aligned}
$$

Hollerith's MSD-First Radix Sort

\square Example: To sort 3 digit numbers, in the worst case:
$S(d)=(1 / 9)\left(10^{3}-1\right)=111$ sorting passes needed
$\mathrm{P}(\mathrm{d})=10^{\mathrm{d}-1}-1=99$ intermediate card piles generated
\square MSD-first approach has more recursive calls and intermediate storage requirement

- Expensive for a "tabulating machine" to sort punched cards
- Overhead of recursive calls in a modern computer

LSD-First Radix Sort

\square Least significant digit (LSD)-first radix sort seems to be a folk invention originated by machine operators.
\square It is the counter-intuitive, but the better algorithm.
\square Basic algorithm:
Sort numbers on their LSD first
Stable sorting needed!!!
Combine the cards into a single deck in order
Continue this sorting process for the other digits from the LSD to MSD
> Requires only d sorting passes
$>$ No intermediate card pile generated

LSD-first Radix Sort: Example

Step 1: Sort $1^{\text {st }}$ digit

	2	9				
4	5	7				
6	5	7				
8	3	9				
4	3	6				
7	2	0				
3	5	5	\quad	7	2	0
:---	:---	:---				
3	5	5				
4	3	6				
4	5	7				
6	5	7				
3	2	9				
8	3	9				

Step 2: Sort $2^{\text {nd }}$ digit

7	2	0				
3	5	5				
4	3	6				
4	5	7				
6	5	7				
3	2	9				
8	3	9	\quad	7	2	0
:---	:---	:---				
3	2	9				
4	3	6				
8	3	9				
3	5	5				
4	5	7				
6	5	7				

Step 3: Sort $3^{\text {rd }}$ digit
\(\left.\begin{array}{|lll}\hline 7 \& 2 \& 0

3 \& 2 \& 9

4 \& 3 \& 6

8 \& 3 \& 9

3 \& 5 \& 5

4 \& 5 \& 7

6 \& 5 \& 7\end{array}\right] \quad\)| | 2 | 9 |
| :--- | :--- | :--- |
| 3 | 5 | 5 |
| 4 | 3 | 6 |
| 4 | 5 | 7 |
| 6 | 5 | 7 |
| 7 | 2 | 0 |
| 8 | 3 | 9 |

$\begin{array}{lll}3 & 2 & 9 \\ 3 & 5 & 5 \\ 4 & 3 & 6 \\ 4 & 5 & 7 \\ 6 & 5 & 7 \\ 7 & 2 & 0 \\ 8 & 3 & 9\end{array}$

Correctness of Radix Sort (LSD-first)

Proof by induction:

Base case: $\mathrm{d}=1$ is correct (trivial) Inductive hyp: Assume the first d-1 digits are sorted correctly Prove that all d digits are sorted correctly after sorting digit d

720		329	Two numbers that differ
329	sort based on digit d	355	in digit d are correctly
436		436	sorted (e.g. 355 and 657)
839		457	
355		657	
457		720	
657	last 2 digits sorted	839	$\xrightarrow{\rightarrow}$ correct order

Radix Sort: Runtime

\square Use counting-sort to sort each digit

Reminder: Counting sort complexity: $\Theta(\mathrm{n}+\mathrm{k})$
n : size of input array
k : the range of the values

\square Radix sort runtime: $\Theta(\mathrm{d}(\mathrm{n}+\mathrm{k}))$
d: \# of digits
\square How to choose the d and k ?

Radix Sort: Runtime - Example 1

\square We have flexibility in choosing d and k
\square Assume we are trying to sort 32-bit words

- We can define each digit to be 4 bits
- Then, the range for each digit $\mathrm{k}=2^{4}=16$

So, counting sort will take $\Theta(n+16)$

- The number of digits $d=32 / 4=8$
- Radix sort runtime: $\Theta(8(n+16))=\Theta(n)$

Radix Sort: Runtime - Example 2

\square We have flexibility in choosing d and k
\square Assume we are trying to sort 32-bit words

- Or, we can define each digit to be 8 bits
\square Then, the range for each digit $\mathrm{k}=2^{8}=256$
So, counting sort will take $\Theta(\mathrm{n}+256)$
- The number of digits $\mathrm{d}=32 / 8=4$
- Radix sort runtime: $\Theta(4(n+256))=\Theta(n)$

Radix Sort: Runtime

\square Assume we are trying to sort b-bit words

- Define each digit to be r bits
\square Then, the range for each digit $\mathrm{k}=2^{\mathrm{r}}$
So, counting sort will take $\Theta\left(n+2^{r}\right)$
- The number of digits $d=b / r$

Radix sort runtime:

Radix Sort: Runtime Analysis

$$
T(n, b)=\frac{b}{r}\left(n+2^{r}\right) \div
$$

Minimize $\mathrm{T}(\mathrm{n}, \mathrm{b})$ by differentiating and setting to 0
Or, intuitively:
We want to balance the terms (b/r) and ($\mathrm{n}+2^{\mathrm{r}}$)
Choose $\mathrm{r} \approx$ lgn
If we choose $r \ll \operatorname{lgn} \rightarrow\left(n+2^{r}\right)$ term doesn't improve If we choose $r \gg \operatorname{lgn} \rightarrow\left(n+2^{r}\right)$ increases exponentially

Radix Sort: Runtime Analysis

$$
T(n, b)=\frac{b}{r}\left(n+2^{r}\right) \div
$$

Choose $\mathrm{r}=\lg \mathrm{n}$

$$
\mathrm{T}(\mathrm{n}, \mathrm{~b})=\Theta(\mathrm{bn} / \mathrm{lgn})
$$

For numbers in the range from 0 to $\mathrm{n}^{\mathrm{d}}-1$, we have:
The number of bits $b=\lg \left(\mathrm{n}^{\mathrm{d}}\right)=\mathrm{d} \operatorname{lgn}$
\rightarrow Radix sort runs in $\Theta(\mathrm{dn})$

Radix Sort: Conclusions

Choose $\mathrm{r}=\lg \mathrm{n}$
 $$
\mathrm{T}(\mathrm{n}, \mathrm{~b})=\Theta(\mathrm{bn} / \lg n)
$$

\square Example: Compare radix sort with merge sort/heapsort
1 million (2^{20}) 32-bit numbers ($\mathrm{n}=2^{20}, \mathrm{~b}=32$)
Radix sort: $\lceil 32 / 20\rceil=2$ passes
Merge sort/heap sort: $\operatorname{lgn}=20$ passes
\square Downsides:
Radix sort has little locality of reference (more cache misses)
The version that uses counting sort is not in-place
\square On modern processors, a well-tuned quicksort implementation typically runs faster.

