
1

CS473 - Algorithms I

CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Lecture 12-b
Dynamic Tables

View in slide-show mode

2 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Why Dynamic Tables?

 Assume we need a data structure that needs to reside
in contiguous memory (e.g. linear array, etc.).

 But, we don’t know how many objects will be stored
in the table ahead of time.

 We may allocate space for a table, but later find out
that it is not enough.
 Then, the table must be reallocated with a larger size.
 All the objects stored in the original table must be copied

over into the new table.

3 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Why Dynamic Tables?

 Similarly, if many objects are deleted from the table:
 It may be worthwhile to reallocate the table with a smaller

size.

 This problem is called:
 dynamically expanding and contracting a table

CS 473 Lecture X 4

Why Dynamic Tables?

Using amortized analysis we will show that,
 The amortized cost of insertion and deletion is

O(1).
 Even though the actual cost of an operation is

large when it triggers an expansion or a
contraction.

We will also show how to guarantee that
 The unused space in a dynamic table never

exceeds a constant fraction of the total space.

CS 473 Lecture X 5

Operations

TABLE-INSERT:
 Inserts into the table an item that

occupies a single slot.
TABLE-DELETE:
 Removes an item from the table &

frees its slot.

CS 473 Lecture X 6

Load Factor

Load Factor of a Dynamic Table T

For an empty table

by definition

 table theof)(
 tablein the stored items ofNumber)(

slotsofnumbersize
T =α

1
0
0)(==Tα

CS 473 Lecture X 7

Insertion-Only Dynamic Tables

Table-Expansion:
• Assumption:

– Table is allocated as an array of slots
• A table fills up when

– all slots have been used
– equivalently, when its load factor becomes 1

• Table-Expansion occurs when
– An item is to be inserted into a full table

CS 473 Lecture X 8

Insertion-Only Dynamic Tables

• A Common Heuristic

– Allocate a new table that has twice as many

slots as the old one.

• Hence, we have:

1 / 2 ≤ α(T) ≤ 1

CS 473 Lecture X 9

Table Insert
TABLE-INSERT (T, x)
 if size[T] = 0 then
 allocate table[T] with 1 slot
 size[T] ← 1
 if num[T] = size[T] then
 allocate new-table with 2.size[T] slots
 copy all items in table[T] into new-table
 free table[T]
 table[T] ← new-table[T]
 size[T] ← 2.size[T]
 insert x into table[T]
 num[T] ← num[T] + 1
end

table[T] : pointer to
block of table storage
num[T] : number of
items in the table
size[T] : total number of
slots in the table
Initially, table is empty, so
num[T] = size[T] = 0

10 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example: Dynamic Table Insertion

INSERT(d1) d1

T

INSERT(d2)

11 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example: Dynamic Table Insertion

INSERT(d1) d1

T

INSERT(d2) d2
INSERT(d3)

12 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example: Dynamic Table Insertion

INSERT(d1)
T

INSERT(d2) d2
INSERT(d3)

d1

d3

13 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example: Dynamic Table Insertion

INSERT(d1)
T

INSERT(d2) d2
INSERT(d3)

d1

d3
INSERT(d4) d4
INSERT(d5)

14 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example: Dynamic Table Insertion

INSERT(d1)
T

INSERT(d2) d2
INSERT(d3)

d1

d3
INSERT(d4) d4
INSERT(d5) d5

15 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Example: Dynamic Table Insertion

INSERT(d1)
T

INSERT(d2) d2
INSERT(d3)

d1

d3
INSERT(d4) d4
INSERT(d5) d5
INSERT(d6) d6
INSERT(d7) d7

16 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Table Expansion: Runtime Analysis

 The actual running time of TABLE-INSERT is linear
in the time to insert individual items.

 Assume that allocating and freeing storage is
dominated by the cost of transferring items.

 Assign a cost of 1 to each elementary insertion.

 Analyze a sequence of n TABLE-INSERT operations
on an initially empty table.

17 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Cost of Table Expansion

 What is the cost ci of the ith operation if there is room
in the current table?

 ci = 1 (only one elementary insert operation)

 What is the cost ci of the ith operation if the current
table is full?

 ci = i
 i-1 for the items that must be copied from the old
 table to the new table.
 1 for the elementary insertion of the new item

18 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Cost of Table Expansion

 What is the worst-case runtime of n INSERT operations?
 The worst case cost of 1 INSERT operation is O(n)
 Therefore, the total running time is O(n2)

 This bound is not tight!

Expansion does not occur so often in the course of n INSERT
operations

19 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Amortized Analysis of INSERT: Aggregate Method

 Table is initially empty.
 Compute the total cost of n INSERT operations.

 When does the ith operation require an expansion?
 only when i-1 is a power of 2

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...

ci 1 2 3 1 5 1 1 1 9 1 1 1 1 1 1 1 17 1 1 1 ...

elem. ins 1 ...

Expansion
cost

1 2 4 8 16

20 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Therefore the total cost of n TABLE-INSERT operations is:

Amortized Analysis of INSERT: Aggregate Method

Reminder: ci is the actual cost of the ith INSERT operation

The amortized cost of a single operation is 3n/n = 3 = O(1)

CS 473 Lecture X 21

The Accounting Method

Assign the following amortized costs
– Table-Expansion : $0
– Insertion of a new item : $3

Insertion of a new item:
 $1 (as an actual cost) for inserting itself into the table
+ $1 (as a credit) for moving itself in the next expansion
+ $1 (as a credit) for moving another item (in the next
expansion) that has already moved in the last expansion

22 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Accounting Method Example

d1

T

INSERT(d2) d2
$3

Note: Amortized cost of INSERT(d2): $3
 $1 spent for the actual cost of inserting d2
 $1 credit for moving d2 in the next expansion
 $1 credit for moving d1 in the next expansion

$1

$1

23 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Accounting Method Example

T

d2
INSERT(d3)

d1
INSERT(d2) $3

$1

$1

Note: When expansion is needed for the next INSERT operation,
we have $1 stored credit for each item to move it to the new
memory location.

24 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Accounting Method Example

T

d2
INSERT(d3)

d1
INSERT(d2) $3

$1

$1 $3 d3

Note: Amortized cost of INSERT(d3): $3
 $1 spent for the actual cost of inserting d3
 $1 credit for moving d3 in the next expansion
 $1 credit for moving d1 in the next expansion

25 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Accounting Method Example

T

d2
INSERT(d3)

d1
INSERT(d2) $3

$1

$1 $3 d3

Note: Amortized cost of INSERT(d4): $3
 $1 spent for the actual cost of inserting d4
 $1 credit for moving d4 in the next expansion
 $1 credit for moving d2 in the next expansion

INSERT(d4) $3 d4 $1

$1

26 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Accounting Method Example

T

d2

d1

d3

d4

INSERT(d3)
INSERT(d2) $3

$3

INSERT(d4) $3

Note: When expansion is needed
for the next INSERT operation,
we have $1 stored credit for each
item to move it.

INSERT(d5)

$1

$1

$1

$1

27 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Accounting Method Example

T

d2

d1

d3

d4

INSERT(d3)
INSERT(d2) $3

$3

INSERT(d4) $3

INSERT(d5) $1

$1

$3

Amortized cost of INSERT(d5): $3
 $1 spent for the actual cost of inserting d5
 $1 credit for moving d5 later
 $1 credit for moving d1 later

d5

28 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Accounting Method Example

T

d2

d1

d3

d4

INSERT(d3)
INSERT(d2) $3

$3

INSERT(d4) $3

INSERT(d5) $1

$1

$3

Amortized cost of INSERT(d6): $3
 $1 spent for the actual cost of inserting d6
 $1 credit for moving d6 later
 $1 credit for moving d2 later

d5
INSERT(d6) $3

$1

$1 d6

CS 473 Lecture X 29

Accounting Method Example

Size of the table: M
 Immediately after an expansion (just before the insertion)

num[T] = M/2 and size[T] = M where M is a power
of 2.

Table contains no credits

.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
X X X X X X X X

CS 473 Lecture X 30

Accounting Method Example

1st insertion

2nd insertion

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
X X X X X X X X Z
$1 $1

(a) $1 for
insertion (b)

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
X X X X X X X X Z Z
$1 $1 $1 $1

CS 473 Lecture X 31

Accounting Method Example

M/2th Insertion

Thus, by the time the table contains M items
and is full
– each item in the table has $1 of credit to pay for

its move during the next expansion

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
X X X X X X X X Z Z Z Z Z Z Z Z
$1 $1 $1 $1 $1 $1 $1 $1 $1 $1 $1 $1 $1 $1 $1 $1

32 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Amortized Analysis of INSERT: Potential Method

Practical guideline reminder:
 Choose a potential function that increases a little after every
cheap operation, and decreases a lot after an expensive operation.

 Define a potential function Φ

 that is 0 immediately after an expansion, and
 that builds to the table size by the time table becomes full.

 This way the next expansion can be paid for by the

potential.

33 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Definition of Potential

 One possible potential function Φ can be defined as:
 Φ(T) = 2*num[T] – size[T]
 where:
 num[T]: the # of entries stored in table T
 size[T]: the size allocated for table T
 What is the potential value immediately after an expansion?
 Φ(T) = 0 because size[T] = 2*num[T]

 What is the potential value immediately before an expansion?
 Φ(T) = num[T] because size[T] = num[T]

 The initial value of the potential is 0.

34 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Definition of Potential

Potential function: Φ(T) = 2*num[T] – size[T]

 Can the potential be ever negative?
 No, because the table is always at least half full.
 i.e. num[T] ≥ size[T] / 2

 Since Φ(T) is always nonnegative:
 The sum of the amortized costs of n INSERT operations
is an upper bound on the sum of the actual costs.

CS 473 Lecture X 35

Analysis of i-th Table Insert

ni : num[T] after the i-th operation

si : size[T] after the i-th operation

Φi : Potential after the i-th operation

Initially we have ni = si = Φi = 0

 Note that, ni = ni-1 +1 always holds.

36 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Amortized Cost of TABLE-INSERT

Potential function: Φ(T) = 2*num[T] – size[T]

If the ith TABLE-INSERT does not trigger an expansion:

Intuitively:

size[T] remains the same
num[T] increases by 1
⟹ potential change = 2
amortized cost = real cost + potential change
 = 1 + 2 = 3

37 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Amortized Cost of TABLE-INSERT

Potential function: Φ(T) = 2*num[T] – size[T]

If the ith TABLE-INSERT does not trigger an expansion:

Formally:
 si = si-1 and ci = 1

38 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Amortized Cost of TABLE-INSERT

Potential function: Φ(T) = 2*num[T] – size[T]

If the ith TABLE-INSERT triggers an expansion:
Intuitively:
 size[T] is doubled, i.e. increases by ni-1

 num[T] increases by 1
 ⟹ potential change = 2 – ni-1

 real cost: ni-1 + 1 (copy ni-1 entries to new memory
 + insert the new element)
 amortized cost = real cost + potential change
 = ni−1 + 1 + 2 – ni−1 = 3

39 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Amortized Cost of TABLE-INSERT

Potential function: Φ(T) = 2*num[T] – size[T]

If the ith TABLE-INSERT triggers an expansion:
Formally:

322221
)2()2)1(2()1(

)2()2(ˆ
1;2;

11111

11111

111

1111

=+−−+++=
−−++++=
−−−+=−+=
+====

−−−−−

−−−−−

−−−

−−−−

iiiii

iiiii

iiiiiiiii

iiiiiii

nnnnn
snsnn

snsnncc
nncsssn

φφ

40 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

A Sequence of TABLE-INSERT Operations

Size of the table is doubled
when i-1 is a power of 2.

The potential function
increases gradually after
every INSERT that doesn’t
require table expansion.

The potential function drops
to 2 after every INSERT
that requires table expansion.

41 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Supporting Insertions and Deletions

 So far, we have assumed that we only INSERT elements into the
table. Now, we want to support DELETE operations as well.

 TABLE-DELETE: Remove the specified item from the table.
Contract the table if needed.

 In table contraction, we want to preserve two properties:
 The load factor of the table is bounded below by a constant.
 Amortized cost of an operation is bounded above by a constant.

 As before, we assume that the cost can be measured in terms of
elementary insertions and deletions.

42 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Expansion and Contraction

 An intuitive strategy for expansion and contraction:
 Double the table size when an item is to be inserted into a full table.
 Halve the size when a deletion would cause α(T) < ½

 What is the problem with this strategy?

 Good: It guarantees ½ ≤ α(T) ≤ 1.0
 Bad: Amortized cost of an operation can be quite large.

 table theof)(
 tablein the stored items ofNumber)(

slotsofnumbersize
T =αLoad factor reminder:

43 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Worst-Case Behavior for α(T) ≥ ½

T

num[T] = 8
size[T] = 8

INSERT

num[T] = 9
size[T] = 16

DELETE

num[T] = 8
size[T] = 16

DELETE

num[T] = 7
size[T] = 8

INSERT

num[T] = 8
size[T] = 8

INSERT

num[T] = 9
size[T] = 16

CS 473 Lecture X 44

Worst-Case for α(T) ≥ ½

Consider the following worst case scenario
– We perform n operations on an empty table

where n is a power of 2
– First n/2 operations are all insertions , cost a

total of Θ(n)
at the end: we have num[T] = size[T] = n/2

– Second n/2 operations repeat the sequence
I D D I
that is I D D I I D D I I D D I ...

CS 473 Lecture X 45

Worst-Case for α(T) ≥ ½

In the second n/2 operations
– The first INSERT cause an expansion
– Two further DELETEs cause contraction
– Two further INSERTs cause expansion ... and so on

Hence there are n/8 expansions and n/8 contractions
 The cost of each expansion and contraction is ≈ n/2

i: 1 2 ... 7 8 9 10 11 12 13 14 15 16

oper: I I ... I I I D D I I D D I

ni 1 2 ... 7 8 9 8 7 8 9 8 7 8

si 1 2 ... 8 8 16 16 8 8 16 16 8 8

E C E C

Example: n=16

CS 473 Lecture X 46

Worst-Case for α(T) ≥ ½

Thus the total cost of n operations is Θ(n2) since
– First n/2 operations : 3n/2
– Second n/2 operations : (n/4)*(n/2)=n2/8

The amortized cost of an operation is Θ(n)
The problem with this strategy is

– After an expansion, we do not perform enough
deletions to pay for a contraction

– After a contraction, we do not perform enough
insertions to pay for an expansion

47 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Improving Amortized Time of Expansion and Contraction

 We saw that if we enforce ½ ≤ α(T) ≤ 1, the amortized time
becomes O(n) in the worst case.

 To improve the amortized cost:

 Allow α(T) to drop below ½.

 Basic idea:

 Expansion: Double the table size when an item is inserted
into a full table (same as before).

 Contraction: Halve the table size when a deletion causes:
 α(T) < ¼

48 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Improving Amortized Time of Expansion and Contraction

 In other words, we enforce: ¼ ≤ α(T) ≤ 1

 Intuition:

 Immediately after an expansion, we have α(T) = ½
 ⟹ At least half of the items in the table must be deleted
 before a contraction can occur (i.e. when α(T) < ¼)

 Immediately after a contraction, we have α(T) = ½
 ⟹ The number of items in the table must be doubled
 before an expansion can occur (i.e. when α(T)=1).

49 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Potential Method for INSERT & DELETE

 We want to define the potential function Φ(T) as follows:

 Immediately after an expansion or contraction:
 Φ(T) = 0

 Immediately before an expansion or contraction:
 Φ(T) = num[T]
 because we need to copy over num[T] elements, and
 the cost of expansion or contraction should be paid by the
 decrease in potential.

50 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Potential Method for INSERT & DELETE

 Reminder: Immediately after an expansion or contraction,
 α(T) = ½

 So, we want to define a potential function Φ(T) such that:
 Φ(T) starts at 0 when α(T) = ½
 Φ(T) gradually increases to num[T],
 when α(T) increases to 1, or
 when α(T) decreases to ¼

 This way, the next expansion or contraction can be paid by the

decrease in potential.

CS 473 Lecture X 51

Φ(α) w.r.t. α(T)
M=num[T] when an expansion or contraction occurs

CS 473 Lecture X 52

Definition of New Φ

One such Φ is









<−

≥−
=Φ

2
1(T) if][

2
size[T]

2
1(T) if][][2

)(
α

α

Tnum

TsizeTnum
T

or









<−

≥−
=Φ

2
1(T) if)12/1]([
2
1(T) if)/12]([

)(
αα

αα

Tnum

Tnum
T

53 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Description of New Φ

 Φ = 0 when α = ½
 Φ = num[T] when α = ¼
 Φ = num[T] when α = 1
 Φ = 0 when the table is empty
 (num[T] = size[T] = 0, α(T) = 0)

 Φ is always nonnegative









<−

≥−
=Φ

2
1(T) if][

2
size[T]

2
1(T) if][][2

)(
α

α

Tnum

TsizeTnum
T

54 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Amortized Analysis

We need to analyze the operations:
 TABLE-INSERT and TABLE-DELETE
Notations:
 ci: Actual cost of the ith operation
 ĉi: Amortized cost of the ith operation
 Φi: Potential Φ(T) after the ith operation
 ni: Number of elements num[T] after the ith operation
 si: Table size size[T] after the ith operation
 αi: Load factor α(T) after the ith operation

55 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Amortized Analysis: Table Insert – Case 1

 There is no possibility of contraction in any case.
 In all cases: ni = ni-1 + 1

Case 1: αi-1 ≥ ½
 Analysis is identical to the one we did before for only
 TABLE-INSERT operation.
 ⟹ Amortized cost ĉi = 3 whether the table expands or
not.

56 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Amortized Analysis: Table Insert – Case 2

Case 2: αi-1 < ½ and αi < ½
 There is no possibility of expansion.
 Intuitively:
 Potential change: -1
 Real cost: 1
 Amortized cost = 1 – 1 = 0









<−

≥−
=Φ

2
1(T) if][

2
size[T]

2
1(T) if][][2

)(
α

α

Tnum

TsizeTnum
T

57 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Amortized Analysis: Table Insert – Case 2

Case 2: αi-1 < ½ and αi < ½
 There is no possibility of expansion.
 Formally: ci = 1; si = si-1; ni = ni-1 + 1









<−

≥−
=Φ

2
1(T) if][

2
size[T]

2
1(T) if][][2

)(
α

α

Tnum

TsizeTnum
T

58 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Amortized Analysis: Table Insert – Case 3

Case 3: αi-1 < ½ and αi ≥ ½ (which means αi = ½ because size[T] is even)
 There is no possibility of expansion.
 Intuitively: ni = si/2; ni-1 = si/2 - 1
 Old potential: 1
 New potential: 0
 Real cost: 1
 Amortized cost = 1 – 1 = 0









<−

≥−
=Φ

2
1(T) if][

2
size[T]

2
1(T) if][][2

)(
α

α

Tnum

TsizeTnum
T

59 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Amortized Analysis: Table Insert – Case 3

Case 3: αi-1 < ½ and αi ≥ ½ (which means αi = ½ because size[T] is even)

 There is no possibility of expansion.
 Formally: ci = 1; ni = si/2; ni-1 = si/2 – 1; si = si-1









<−

≥−
=Φ

2
1(T) if][

2
size[T]

2
1(T) if][][2

)(
α

α

Tnum

TsizeTnum
T

60 CS 473 – Lecture 12-b Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University

Amortized Analysis: Table Insert - Summary

Case 1: αi-1 ≥ ½
 Amortized cost of TABLE-INSERT = 3

Case 2: αi-1 < ½ and αi < ½
 Amortized cost of TABLE-INSERT = 0

Case 3: αi-1 < ½ and αi ≥ ½
 Amortized cost of TABLE-INSERT = 0

So, the amortized cost of TABLE-INSERT is at most 3

CS 473 Lecture X 61

Table Delete

ni=ni-1 - 1 ⇒ ni-1 = ni + 1
Table expansion cannot occur.

• αi-1 ≤ ½ and ¼ ≤ αi < ½ (It does not trigger a
contraction)

si = si-1 and ci = 1 and αi < ½

2)1(2/2/1
)2/()2/(1ˆ 111

=++−−+=
−−−+=Φ−Φ+= −−−

iiii

iiiiiiii

nsns
nsnscc

CS 473 Lecture X 62

Table Delete

• αi-1 = ¼ (It does trigger a contraction)
 si = si-1/2 ; ni = si-1/2; and ci = ni +1

• αi-1 > ½ (αi ≥ ½)
 Contraction cannot occur (ci=1 ; si = si-1)

12/2/1
)2/()2/()1(ˆ 111

=+−−++=
−−−++=Φ−Φ+= −−−

iiiii

iiiiiiiii

ssnsn
nsnsncc

1)1(221
)2()2(1ˆ 111

−=++−−+=
−−−+=Φ−Φ+= −−−

iiii

iiiiiiii

snsn
snsncc

CS 473 Lecture X 63

Table Delete

• αi-1 = ½ (αi < ½)
 Contraction cannot occur

 ci = 1 ; si = si-1 ; ni = si-1/2; and Φi-1=0)

2)1(1
2/but 2/1

0)2/(1ˆ

1

1

=−++=
=−+=

−−+=Φ−Φ+=

+

−

ii

iiii

iiiiii

nn
snns

nscc

CS 473 Lecture X 64

Table Delete

Thus, the amortized cost of a TABLE-DELETE
operation is at most 2

Since the amortized cost of each operation is
bounded above by a constant

The actual time for any sequence of n
operations on a Dynamic Table is O(n)

	Slide Number 1
	Why Dynamic Tables?
	Why Dynamic Tables?
	Why Dynamic Tables?
	Operations
	Load Factor
	Insertion-Only Dynamic Tables
	Insertion-Only Dynamic Tables
	Table Insert
	Example: Dynamic Table Insertion
	Example: Dynamic Table Insertion
	Example: Dynamic Table Insertion
	Example: Dynamic Table Insertion
	Example: Dynamic Table Insertion
	Example: Dynamic Table Insertion
	Table Expansion: Runtime Analysis
	Cost of Table Expansion
	Cost of Table Expansion
	Amortized Analysis of INSERT: Aggregate Method
	Amortized Analysis of INSERT: Aggregate Method
	The Accounting Method
	Accounting Method Example
	Accounting Method Example
	Accounting Method Example
	Accounting Method Example
	Accounting Method Example
	Accounting Method Example
	Accounting Method Example
	Accounting Method Example
	Accounting Method Example
	Accounting Method Example
	Amortized Analysis of INSERT: Potential Method
	Definition of Potential
	Definition of Potential
	Analysis of i-th Table Insert
	Amortized Cost of TABLE-INSERT
	Amortized Cost of TABLE-INSERT
	Amortized Cost of TABLE-INSERT
	Amortized Cost of TABLE-INSERT
	A Sequence of TABLE-INSERT Operations
	Supporting Insertions and Deletions
	Expansion and Contraction
	Worst-Case Behavior for α(T) ≥ ½
	Worst-Case for α(T) ≥ ½
	Worst-Case for α(T) ≥ ½
	Worst-Case for α(T) ≥ ½
	Improving Amortized Time of Expansion and Contraction
	Improving Amortized Time of Expansion and Contraction
	Potential Method for INSERT & DELETE
	Potential Method for INSERT & DELETE
	Φ(α) w.r.t. α(T)
	Definition of New Φ
	Description of New Φ
	Amortized Analysis
	Amortized Analysis: Table Insert – Case 1
	Amortized Analysis: Table Insert – Case 2
	Amortized Analysis: Table Insert – Case 2
	Amortized Analysis: Table Insert – Case 3
	Amortized Analysis: Table Insert – Case 3
	Amortized Analysis: Table Insert - Summary
	Table Delete
	Table Delete
	Table Delete
	Table Delete

