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CS473-Algorithms I 

Lecture 3 

 

Solving Recurrences 
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Solving Recurrences 

• The analysis of merge sort Lecture 1 required us 

to solve a recurrence. 

• Recurrences are like solving integrals, differential 

equations, etc. 

        Learn a few tricks. 

• Lecture 4 : Applications of recurrences. 
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Recurrences 

• Function expressed recursively 

 

 

 

 

 

• Solve for n = 2k 
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Recurrences 
• Claimed answer: T(n) = lgn+1 =  (lgn) 

 Substitute claimed answer for T in the recurrence 

 Note: resulting equations are true when n = 2k 

 

   i.e.   

 

Tedious technicality: haven’t shown T(n) =  (lgn) 

– But, since T(n) is monotonically non-decreasing function 
of n 

 

 

 

– Thus, ceiling didn’t matter much 
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• Technically, should be careful about floors and 

ceilings (as in the book) 

     

• But, usually it is okay  

 To ignore floor/ceiling 

 Just solve for exact powers of 2 ( or b) 

 

Recurrences 
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Boundary Conditions 

• Usually assume T(n)= Θ(1) for small n 

           – Does not usually affect soln. (if polynomially bounded) 

•  Example: Initial condition affects soln. 

           – Exponential  T(n)=(T(n / 2))2 

                If T(1)= c for a constant c > 0, then 

                    T(2) = (T(1))2=c2, T(4)= (T(2))2=c4, 

                    T(n) = Θ(cn) 

 E.g.,    

 
 
 

Difference in soln. is more dramatic with 

 

 

)3(2
)3()(3)1(

)2()(2)1(
nn

n

n

However
nTT

nTT













)1()1()(1)1( 
n

nTT



CS473 – Lecture 3 Cevdet Aykanat - Bilkent University 

Computer Engineering Department 

7 

Substitution Method 

• The most general method: 

1. Guess the form of the solution. 

2. Verify by induction. 

3. Solve for constants. 

• Example: T(n) = 4T(n/2) + n 

–  [Assume that T(1) = Θ(1).] 

–  Guess O(n3) . (Prove O and Ω separately.) 

–  Assume that T(k) ≤ ck3 for k < n . 

–  Prove T(n) ≤ cn3 by induction. 
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Example of Substitution 

 T(n) = 4T(n/2) + n 

          4c (n/2)3 + n 

         = (c/2) n3 + n 

         = cn3 –n ((c/2) n3 -  n)   desired –residual 

          cn3  

    whenever (c/2) n3 – n  0, for example, 

     if c  2 and n  1         residual         
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Example (Continued) 

• We must also handle the initial conditions, that is, 

ground the induction with base cases. 

• Base: T(n) = Θ(1) for all n < n0, where n0 is a suitable 

constant. 

• For 1 ≤ n < n0, we have “Θ(1)” ≤ cn3, if we pick c big 

enough. 

 
                

                   This bound is not tight! 
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A Tighter Upper Bound? 

We shall prove that  T(n) = O(n2) 

Assume that T(k)   ck2 for k < n: 

 
           T(n) = 4T(n/2) + n 
                     cn2 + n 

                   = O(n2)   Wrong ! We must prove the I.H. 

                   = cn2 - (-n)  

                    cn2  

    for no choice  of c > 0. Lose! 
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A Tighter Upper Bound! 

• IDEA: Strengthen the inductive hypothesis. 

• Subtract a low-order term. 

 Inductive hypothesis: T(k)   c1k
2 – c2k

 for k < n 

           T(n) = 4T(n/2) + n 

                    4 (c1 (n/2)2- c2 (n/2)) + n 

                   = c1 n
2- 2 c2 n + n 

    = c1 n
2- c2 n –(c2 n - n) 

                    c1 n
2- c2 n  if c2 > 1 

 Pick c1 big enough to handle the initial conditions 
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Recursion-Tree Method 

• A recursion tree models the costs (time) of a recursive 

execution of an algorithm. 

• The recursion tree method is good for generating 

guesses for the substitution method. 

• The recursion-tree method can be unreliable. 

• The recursion-tree method promotes intuition, 

however. 
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Example of Recursion Tree 

Solve T(n) = T(n/4) + T(n/2) + n2: 
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Solve T(n) = T(n/4) + T(n/2) + n2: 

                            T(n) 

Example of Recursion Tree 



CS473 – Lecture 3 Cevdet Aykanat - Bilkent University 

Computer Engineering Department 

15 

Solve T(n) = T(n/4) + T(n/2) + n2: 

                             n2 

T(n/4) T(n/2) 

Example of Recursion Tree 
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Solve T(n) = T(n/4) + T(n/2) + n2: 

                               n2 

 

(n/4)2 (n/2)2 

T(n/16) T(n/8) T(n/8) T(n/4) 

Example of Recursion Tree 
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Solve T(n) = T(n/4) + T(n/2) + n2: 

                             n2 

 

(n/4)2 (n/2)2 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

(1) 

Example of Recursion Tree 
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Solve T(n) = T(n/4) + T(n/2) + n2: 

                             n2 

 

(n/4)2 (n/2)2 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

(1) 

n2 

Example of Recursion Tree 
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Solve T(n) = T(n/4) + T(n/2) + n2: 

                             n2 

 

(n/4)2 (n/2)2 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

(1) 

n2 

5/16 n2 

Example of Recursion Tree 
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Solve T(n) = T(n/4) + T(n/2) + n2: 

                             n2 

 

(n/4)2 (n/2)2 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

(1) 

n2 

5/16 n2 

25/256 n2 

Example of Recursion Tree 
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Solve T(n) = T(n/4) + T(n/2) + n2: 

                             n2 

 

(n/4)2 (n/2)2 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

(1) 

n2 

5/16 n2 

25/256 n2 

Total = n2 (1 + 5/16 + (5/16)2 + (5/16)2 + ...) 

         = (n2)     geometric series 

Example of Recursion Tree 
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The Master Method 

• The master method applies to recurrences of the form 

                T(n) = aT(n/b) + f (n) , 

    where a ≥ 1, b > 1, and f is asymptotically 

    positive. 
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Three Common Cases 

• Compare f (n) with              : 

1.  f (n) = O(               ) for some constant ε > 0. 

•   f (n) grows polynomialy slower than  

                  (by an nε factor). 

   Solution: T(n) = Θ(                ) . 

2.  f (n) = Θ(             lgkn) for some constant k ≥ 0. 

         •    f (n) and              grow at similar rates. 

  Solution: T(n) = Θ(             lgk+1n) . 
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log
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log
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• Compare f (n) with                    : 

3.  f (n) =  (                   ) for some constant ε > 0. 

•  f (n) grows polynomially faster than  

                  (by an nε factor). 

          and  f (n) satisfies the regularity condition that  

           a f (n/b)  c f (n) for some constant  c < 1 

  

  Solution: T(n) = Θ( f (n) ) . 

 

abn
log

abn
log

abn
log

Three Common Cases 
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Examples 

abn
log

• Ex: T(n) = 4T(n/2) + n  

           a=4, b=2               = n2 ; f (n) = n  

          CASE 1: f (n) =O (n2- ε) for ε=1 

                T(n) = Θ (n2) 

• Ex: T(n) = 4T(n/2) + n2   

           a=4, b=2                = n2 ; f (n) = n2   

         CASE 2: f (n) = Θ (n2 lg0n), that is, k=0 

                 T(n) = Θ (n2 lgn) 

abn
log
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Examples 

abn
log

• Ex: T(n) = 4T(n/2) + n3  

           a=4, b=2                = n2 ; f (n) = n3.  

          CASE 3: f (n) =  (n2+ ε) for ε=1 

          and 4 c (n/2)3   cn3 (reg. cond.) for c=1/2. 

                T(n) = Θ (n3) 

• Ex: T(n) = 4T(n/2) + n2 / lgn  

           a=4, b=2                = n2 ; f (n) = n2 / lgn   

   Master method does not apply. In particular, for every  

constant ε > 0, we have nε =  (lgn) 

abn
log
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General Method (Akra-Bazzi) 

Let p be the unique solution to 

 

 

 

Then, the answers are the same as for the 

master method, but with np instead of  

(Akra and Bazzi also prove an even more general result.) 
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Idea of Master Theorem 

Recursion tree: 

)1(
log

Tn
ab

T(1) 

 f (n/b) 

 f (n)  f (n) 

 f (n/b)  f (n/b) 

a 

a f (n/b) 

 f (n/b2)  f (n/b2)  f (n/b2) 

a h= logbn 

a2 f (n/b2) 
 

#leaves = a h 

             =  

             =  

 

nba
log

abn
log
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Recursion tree: 

)1(
log

Tn
ab

T(1) 

 f (n/b) 

 f (n)  f (n) 

 f (n/b)  f (n/b) 

a 

a f (n/b) 

 f (n/b2)  f (n/b2)  f (n/b2) 

a h= logbn 

a2 f (n/b2) 

CASE 1 : The weight increases 

geometrically from the root to the 

leaves. The leaves hold a constant 

fraction of the total weight. Θ (               ) 
abn

log

Idea of Master Theorem 
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Recursion tree: 

)1(
log

Tn
ab

T(1) 

 f (n/b) 

 f (n)  f (n) 

 f (n/b)  f (n/b) 

a 

a f (n/b) 

 f (n/b2)  f (n/b2)  f (n/b2) 

a h= logbn 

a2 f (n/b2) 

CASE 2 : (k = 0) The weight 

is approximately the same on 

each of the logbn levels. 
Θ (             lgn) 

abn
log

Idea of Master Theorem 
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Recursion tree: 

)1(
log

Tn
ab

T(1) 

 f (n/b) 

 f (n)  f (n) 

 f (n/b)  f (n/b) 

a 

a f (n/b) 

 f (n/b2)  f (n/b2)  f (n/b2) 

a h= logbn 

a2 f (n/b2) 

CASE 3 : The weight decreases 

geometrically from the root to the 

leaves. The root holds a constant 

fraction of the total weight.     Θ (  f (n) ) 

Idea of Master Theorem 
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Proof of Master Theorem: 

Case 1 and Case 2 

• Recall from the recursion tree (note h = lgbn=tree 

height) 
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    Leaf cost     Non-leaf cost = g(n) 
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Proof of Case 1 

                                       for some  > 0 
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 = An increasing geometric series since b > 1 
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Case 1 (cont’) 
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 Q.E.D. 
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Proof of Case 2 (limited to k=0) 
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Conclusion 

• Next time: applying the master method. 

 


