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Activity Selection Problem 

• Input: a set S {1, 2, , n} of n activities 

– si=Start time of activity i,  

– fi=  Finish time of activity i 

Activity i takes place in [si, fi ) 

• Aim: Find max-size subset A of mutually 
compatible activities 

– Max number of activities, not max time spent in 
activities 

– Activities i and j are compatible if intervals [si, fi ) 
and [sj, fj ) do not overlap, i.e., either si  fj or sj  fi  
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Activity Selection Problem:  

An Example 

S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )} 

1 9 1817161514131211108765432

1
2

3

4

5

6
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Optimal Substructure 

Theorem: Let k be the activity with the earliest finish 
time in an optimal soln A  S then  

   A{k} is an optimal solution to subproblem 

   Sk´ {iS: si  fk } 

Proof (by contradiction): 

 Let B´ be an optimal solution to Sk´ and  

 |B´|  | A{k}|  | A |  1 

 Then, B  B´  {k} is compatible and 

 |B|  |B´|1  | A |  

Contradiction to the optimality of A                  Q.E.D. 
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Repeated Subproblems 

• Consider recursive algorithm that tries all 

possible compatible subsets 

• Notice repeated subproblems (e.g., S2´)  

 (let f1 … fn) 

 

 

 

 

 

 

S2́ S1́ S2́ S-{1,2}

2 A?
YES NO

2 A?

Y
E
S NO

1 A?
YES    NO

-{2}

S1́

S-{1}
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Greedy Choice Property  

• Repeated subproblems and optimal substructure 

properties hold in activity selection problem 

• Dynamic programming?  

  Memoize?  

 Yes, but… 

• Greed choice property: a sequence of locally optimal 

(greedy) choices  an optimal solution 
 

• Assume (without loss of generality) f1  f2  …  fn 

– If not sort activities according to their finish times in non-

decreasing order 
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Greedy Choice Property in Activity Selection 

Theorem: There exists an optimal solution 

          A  S such that 1 A (Remember f1  f2  … fn)  

Proof: Let A {k, , m, } be an optimal solution such 
that fk  f  fm  …  

 If k  1 then schedule A begins with the greedy choice 

 If k  1 then show that  another optimal soln that begins 
with the greedy choice 1  

 Let B  A{k}  {1}, since f1  fk activity 1 is 
compatible with A{k}; B is compatible 

 |B|  | A|  11  | A |  

 Hence B is optimal    Q.E.D. 
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Activity Selection Problem 

GAS(s, f , n) 

 A  {1} 

 j   1  

 for i 2 to n do 

  if si  fj then  

    A   A  {i}  
    j   i  

 return A  

j: specifies the index of most recent 

activity added to A 

fj  Max{fk : k  A}, max finish 

time of any activity in A; because 

activities are processed in non-

decreasing order of finish times 

Thus, “si  fj ”checks the 

compatibility of i to current A 

Running time: (n) assuming that 

the activities were already sorted 
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Activity Selection Problem:  

An Example 
S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )} 

1 9 1817161514131211108765432

1

fj=0 
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Activity Selection Problem:  

An Example 
S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )} 

1 9 1817161514131211108765432

1
2

fj=4 
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Activity Selection Problem:  

An Example 
S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )} 

1 9 1817161514131211108765432

1

2

3

fj=7 
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Activity Selection Problem:  

An Example 
S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )} 

1 9 1817161514131211108765432

1

2

4

fj=7 



CS473 – Lecture 11 Cevdet Aykanat - Bilkent University 

Computer Engineering Department 

13 

Activity Selection Problem:  

An Example 
S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )} 

1 9 1817161514131211108765432

1 2

5

fj=7 



CS473 – Lecture 11 Cevdet Aykanat - Bilkent University 

Computer Engineering Department 

14 

Activity Selection Problem:  

An Example 
S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )} 

1 9 1817161514131211108765432

1 2 5

6

fj=15 
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Activity Selection Problem:  

An Example 
S={[1, 4 ), [5, 7 ), [2, 8 ), [3, 11 ), [8, 15 ), [13, 18 )} 

1 9 1817161514131211108765432

1 2 5

A={1, 2, 5} 
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Greedy vs Dynamic Programming 

• Optimal substructure property exploited by both Greedy and 

DP strategies 

• Greedy Choice Property: A sequence of locally optimal 

choices  an optimal solution 

– We make the choice that seems best at the moment 

– Then solve the subproblem arising after the choice is made 

• DP: We also make a choice/decision at each step, but the 

choice may depend on the optimal solutions to subproblems 

• Greedy: The choice may depend on the choices made so far, 

but it cannot depend on any future choices or on the solutions 

to subproblems 
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Greedy vs Dynamic Programming 

 

• DP is a bottom-up strategy 

• Greedy is a top-down strategy 

– each greedy choice in the sequence iteratively 

reduces each problem to a similar but smaller 

problem 
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Proof of Correctness of Greedy 

Algorithms 
• Examine a globally optimal solution 

• Show that this soln can be modified so that  

1) A greedy choice is made as the first step 

2) This choice reduces the problem to a similar but smaller 
problem 

• Apply induction to show that a greedy choice can 
be used at every step 

• Showing (2) reduces the proof of correctness to 
proving that the problem exhibits optimal 
substructure property 
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Elements of Greedy Strategy 

• How can you judge whether 

• A greedy algorithm will solve a particular 

optimization problem? 

 

 Two key ingredients 

– Greedy choice property 

– Optimal substructure property  
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Key Ingredients of Greedy Strategy 

• Greedy Choice Property: A globally optimal solution can be 
arrived at by making locally optimal (greedy) choices 

• In DP,we make a choice at each step but the choice may 
depend on the solutions to subproblems 

• In Greedy Algorithms, we make the choice that seems best at 
that moment then solve the subproblems arising after the 
choice is made 

– The choice may depend on choices so far, but it cannot depend on any 
future choice or on the solutions to subproblems 

• DP solves the problem bottom-up 

• Greedy usually progresses in a top-down fashion by making 
one greedy choice after another reducing each given problem 
instance to a smaller one  
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Key Ingredients: Greedy Choice Property 

• We must prove that a greedy choice at each step 
yields a globally optimal solution 

• The proof examines a globally optimal solution 

• Shows that the soln can be modified so that a greedy 
choice made as the first step reduces the problem to a 
similar but smaller subproblem 

• Then induction is applied to show that a greedy 
choice can be used at each step 

• Hence, this induction proof reduces the proof of 
correctness to demonstrating that an optimal solution 
must exhibit optimal substructure property 
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Key Ingredients: Optimal Substructure 

• A problem exhibits optimal substructure if an 

optimal solution to the problem contains within it 

optimal solutions to subproblems 

Example: Activity selection problem S 

 If an optimal solution A to S begins with activity 1 

then the set of activities  

A´  A{1}  

 is an optimal solution to the activity selection 

problem  

S´  {iS: si  f1 } 
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Key Ingredients: Optimal Substructure 

 

• Optimal substructure property is exploited by both 

Greedy and dynamic programming strategies 

• Hence one may 

– Try to generate a dynamic programming soln to a 

problem when a greedy strategy suffices 

– Or, may mistakenly think that a greedy soln works 

when in fact a DP soln is required 

Example:Knapsack Problems(S, w) 
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Knapsack Problems 

• The 0-1Knapsack Problem(S, W) 

– A thief robbing a store finds n items S {I1, I2, …, In}, 
the ith item is worth vi dollars and weighs wi pounds, 
where vi and wi are integers 

– He wants to take as valuable a load as possible, but he 
can carry at most W pounds in his knapsack, where W  
is an integer 

– The thief cannot take a fractional amount of an item 

• The Fractional Knapsack Problem (S, W) 

– The scenario is the same 

– But, the thief can take fractions of items rather than 
having to make binary (0-1) choice for each item 
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0-1 and Fractional Knapsack Problems 

• Both knapsack problems exhibit the optimal substructure property 

The 0-1Knapsack Problem(S, W) 

– Consider a most valuable load L where WLW 

– If we remove item j from this optimal load L 

 The remaining load  

Lj´  L {Ij}  

 must be a most valuable load weighing at most  

Wj´  W  wj  

 pounds that the thief can take from  

Sj´  S {Ij} 

– That is, Lj´ should be an optimal soln to the  

0-1 Knapsack Problem(Sj´, Wj´) 
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0-1 and Fractional Knapsack Problems 

The Fractional Knapsack Problem(S, W) 

– Consider a most valuable load L where WL  W 

– If we remove a weight 0 w  wj of item j from optimal load L 

 The remaining load  

Lj´  L {w pounds of Ij}  

 must be a most valuable load weighing at most  

Wj´  W  w 

 pounds that the thief can take from  

Sj´  S {Ij}{wj  w pounds of Ij}  

– That is, Lj´ should be an optimal soln to the  

Fractional Knapsack Problem(Sj´, Wj´) 
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Knapsack Problems 

 

Although the problems are similar  

 

• the Fractional Knapsack Problem is solvable 

by Greedy strategy  

• whereas, the 0-1 Knapsack Problem is not 
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Greedy Solution to Fractional Knapsack  

1) Compute the value per pound vi wi for each item 

2) The thief begins by taking, as much as possible, of 

the item with the greatest value per pound 

3) If the supply of that item is exhausted before filling 

the knapsack he takes, as much as possible, of the 

item with the next greatest value per pound 

4) Repeat (2-3) until his knapsack becomes full 

 

• Thus, by sorting the items by value per pound the 

greedy algorithm runs in O(nlg n) time 



CS473 – Lecture 11 Cevdet Aykanat - Bilkent University 

Computer Engineering Department 

29 

0-1 Knapsack Problem 

• Greedy strategy does not work 

w1  10 

 

w2  20 

 

 

w3  30 

W  50 
Item 1 

Item 2 

Item 3 

Knapsack 

v1  $60 v2  $100 v3  $120 

v1 w1  6 v2 w2  5 v3 w3  4 
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w2  20 

 

 

w3  30 

0-1 Knapsack Problem 

• Taking item 1 leaves empty space; lowers 
the effective value of the load 

Item 3 

Item 2 

Knapsack 

$220(optimal) 

v2  $100 

v3  $120 

 

w2  20 

 

 

w3  30 

Item 3 

Item 2 

Knapsack 

$160 

v2  $100 v3  $120 

w1  10 w1  10 

Knapsack 

$180 

 

w2  20 

w1  10 

(out of 30) 

w3  20 

Fractional is 
optimally solved 
with $240 

$80 

$100 

$60 $60 
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0-1 Knapsack Problem 

• When we consider an item Ij for inclusion we 
must compare the solutions to two 
subproblems  

– Subproblems in which Ij is included and excluded 

• The problem formulated in this way gives rise 
to many  

overlapping subproblems (a key ingredient of DP) 

 In fact, dynamic programming can be used to 
solve the 0-1 Knapsack problem 
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0-1 Knapsack Problem 
• A thief robbing a store containing n articles  

 {a1, a2, …, an} 

– The value of ith article is vi dollars (vi is integer) 

– The weight of ith article is wi kg (wi is integer) 

• Thief can carry at most W kg in his knapsack 

• Which articles should he take to maximize the value of 

his load? 

• Let Kn,W {a1, a2, …,an:W} denote 0-1 knapsack problem 

• Consider the solution as a sequence of n decisions 

– i.e., ith decision: whether thief should pick ai for optimal load 
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0-1 Knapsack Problem 

Optimal substructure property: 

• Let a subset S of articles be optimal for Kn,W 

• Let ai be the highest numbered article in S 

Then  
S´  S {ai}  

is an optimal solution for subproblem  

Ki1,Wwi 
{a1, a2, …, ai1: Wwi}       with 

c(S)  vi + c(S´)  

where c(·) is the value of an optimal load „·‟ 
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0-1 Knapsack Problem 

Recursive definition for value of optimal soln: 

• Define c[i,w] as the value of an optimal 

solution for Ki,w 
{a1, a2, …, ai:w} 

c[i,w]  

0, 

c[i 1,w], 

max{vi  c[i 1,w  wi] , c[i 1,w]} o.w 

if i  0 or w  0 
if wi  w 
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0-1 Knapsack Problem 
Recursive definition for value of optimal soln: 

This recurrence says that an optimal solution Si,w for Ki,w 
 

– either contains ai  c(Si,w)  vi  c(Si1,wwi 
) 

– or does not contain ai  c(Si,w)  c(Si1,w) 

• If thief decides to pick ai 

– He takes vi value and he can choose from {a1, a2, …,ai1} 

up to the weight limit w  wi to get c[i 1,w  wi]  

• If he decides not to pick ai  

– He can choose from {a1, a2, …,ai1} up to the weight limit 
w to get c[i 1,w] 

• The better of these two choices should be made 
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DP Solution to 0-1 Knapsack 
KNAP0-1(v, w, n,W) 

 for   0 to W do 
  c[0, ]  0 

 for i 1 to n do 
  c[i, 0]  0 

 for i1 to n do  

   for  1 to W do  

       if wi   then 
            c[i, ]  max{vi  c[i 1,   wi] , c[i 1, ]} 

      else 
                     c[i, ]  c[i 1, ] 

 return c[n, W]  

c is an (n1)(W1) 

array; c[0.. n : 0..W] 

Note: table is computed 

in row-major order 

Run time: T(n)  (nW) 
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Finding the Set S of Articles in an 

Optimal Load 
SOLKNAP0-1(a, v, w, n,W,c) 
  i  n ;   W   
 S   

    while i  0 do 
     if c[i, ]  c[i 1, ] then 

            i  i 1 
     else 
                 S  S {ai} 
             wi     
                 i   i 1 

    return  S  
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Huffman Codes 
 
• Widely used and very effective technique for compressing data  

• Savings of 20% to 90% are typical 

• Depending on the characteristics of the file being compressed 
Huffman‟s greedy algorithm 
 uses a table of the frequencies of occurrence of each character  

 to build up an optimal way of representing each character as a 
binary string 

 
Example: A 100,000-character data file that is to be compressed     
                only 6 characters {a, b, c, d, e, f} appear 
 
                                                a            b            c            d            e            f 

frequency (in thousands)       45K      13K       12K       16K       9K         5K 

fixed-length codeword            000       001        010        011        100       101 

variable-length codeword       0            101       100        111        1101     1100 

variable-length codeword       0            10         110        1110      11110   11111     
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Huffman Codes 
 
 

Binary character code: 
• each character is represented by a unique binary string 

Fixed-length code: 

• needs 3 bits to represent 6 characters 
• requires 100.0003300,000 bits to code the entire file 

Variable-length code: 

• can do better by giving frequent characters short 
codewords & infrequent words long codewords 

• requires 4511331231639454 

                 224,000 bits 
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Prefix Codes 
 
 

Prefix codes: No codeword is also a prefix of some other  
                      codeword 

It can be shown that: 

 optimal data compression achievable by a character code 
can always be achieved with a prefix code 

 
Prefix codes simplify encoding (compression) and decoding 
 
Encoding: Concatenate the codewords representing each          
                  character of the file 

e.g. 3 char file  “abc”               0.101.100  0101100 encoded 
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Prefix Codes 
 
 

Decoding: is quite simple with a prefix code 

the codeword that begins an encoded file is unambigious 
since no codeword is a prefix of any other 

• identify the initial codeword 

• translate it back to the original character 

• remove it from the encoded file 

• repeat the decoding process on the remainder of the 
encoded file 

e.g. string 001011101 parses uniquely as  

                 0.0.101.1101                aabe decoded 
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Prefix Codes 
 
 
 
Convenient representation for the prefix code: 

 a binary tree whose leaves are the given characters 

 

Binary codeword for a character is the path from the 

root to that character in the binary tree 

 

“0” means “go to the left child” 

“1” means “go to the right child” 
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Binary Tree Representation of Prefix Codes 
 
 

 
 

100 

86 14 

58 28 14 

c: 12 b: 13 a: 45 d: 16 e: 9 f: 5 

0 

0 1 0 1 0 1 

0 

1 0 

1 

The binary tree corresponding to the fixed-length code 
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Binary Tree Representation of Prefix Codes 
 

  
100 

55 

30 25 

14 b: 13 c: 12 

a: 45 

d: 16 

e: 9 f: 5 

0 

0 

1 

0 

1 

0 1 

1 0 

1 

The binary tree corresponding 

to the optimal variable-length 

code 

An optimal code for a file is always represented by a full binary tree 
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Full Binary Tree Representation of Prefix Codes 
 
 
 

Consider an FBT corresponding to an optimal prefix code 

 

It has |C| leaves (external nodes) 

 

One for each letter of the alphabet where C is the alphabet 
from which the characters are drawn 

 

Lemma: An FBT with |C| external nodes has exactly 

              |C|1 internal nodes 
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Full Binary Tree Representation of Prefix Codes 
 
 
Consider an FBT T corresponding to a prefix code 

How to compute, B(T), the number of bits required to 
encode a file 

f(c): frequency of character c in the file 

dT(c): depth of c‟s leaf in the FBT T 

note that dT(c) also denotes length of the codeword for c 

 

 

which we define as the cost of the tree T 





Cc

T cdcfTB )( )()(
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Prefix Codes 
 
 
Lemma: Let each internal node i is labeled with  
the sum of the weight w(i) of the leaves in its subtree 
 
Then                                                 where 
 
IT denotes the set of internal nodes in T 
 

Proof: Consider a leaf node c with f (c) & dT(c) 

Then, f (c) appears in the weights of dT(c) internal node 

along the path from c to the root 

Hence, f (c) appears dT(c) times in the above summation 





TIiCc

T iwcdcfTB )()( )()(
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Constructing a Huffman Code 
 
 

Huffman invented a greedy algorithm that constructs 
an optimal prefix code called a Huffman code 

 

The greedy algorithm 

• builds the FBT corresponding to the optimal code 
in a bottom-up manner 

• begins with a set of |C| leaves 

• performs a sequence of |C|1 “merges” to create 
the final tree 
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Constructing a Huffman Code 
 
 

 

A priority queue Q, keyed on f, is used  

 to identify the two least-frequent objects to merge 

 

The result of the merger of two objects is a new object 

• inserted into the priority queue according to its 
frequency 

• which is the sum of the frequencies of the two 
objects merged 
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Constructing a Huffman Code 
 
HUFFMAN(C) 

n  |C| 
Q  C 
for i  1 to n 1 do 

z  ALLOCATE-NODE() 
x  left[z]  EXTRACT-MIN(Q) 

y  right[z]  EXTRACT-MIN(Q) 
f [z]  f [x]  f [y] 

INSERT(Q, z) 
return EXTRACT-MIN(Q)     only one object left in Q 

Priority queue is implemented as a binary heap 

Initiation of Q (BUILD-HEAP): O(n) time 

EXTRACT-MIN & INSERT take O(lgn) time on Q with n objects 

 )lg())!(lg(lg)(
1

nnOnOinT
n

i



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Constructing a Huffman Code 
 

 

c: 12 e: 9 f: 5 b: 13 d: 16 a: 45 (a) 

 

f: 5 

b: 13 c: 12 

e: 9 

d: 16 a: 45 (b) 14 

0 1 
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Constructing a Huffman Code 
 

 

b: 13 c: 12 

d: 16 a: 45 (c) 

f: 5 e: 9 

14 

0 1 

25 

0 1 

 

d: 16 

e: 9 f: 5 

a: 45 (d) 

c: 12 b: 13 

25 

0 1 

30 

0 1 

0 

14 

1 
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Constructing a Huffman Code 
 

 

a: 45 (e) 

c: 12 b: 13 

25 

0 1 

d: 16 

e: 9 f: 5 

30 

0 1 

0 

14 

1 

55 

0 1 
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Constructing a Huffman Code 
 

 

a: 45 

(f) 

c: 12 b: 13 

25 

0 1 

d: 16 

e: 9 f: 5 

30 

0 1 

0 

14 

1 

55 

0 1 

100 

0 1 
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Correctness of Huffman‟s Algorithm 
 
 
 
We must show that the problem of determining an 

optimal prefix code  
• exhibits the greedy choice property 
• exhibits the optimal substructure property 

 

Lemma 1: Let x & y be two characters in C having the 
lowest frequencies 

Then,  an optimal prefix code for C in which the 
codewords for x & y have the same length and differ 
only in the last bit 
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Correctness of Huffman‟s Algorithm 
 
 
 

Proof: Take tree T representing an arbitrary optimal code 

Modify T to make a tree representing another optimal code 
such that characters x & y appear as sibling leaves of 
max-depth in the new tree 

Assume that f [b]  f [c] & f [x]  f [y] 
 

Since f [x] & f [y] are two lowest leaf frequencies, in order, 

and f [b] & f [c] are two arbitrary leaf frequencies, in order,  

f [x]  f [b] & f [y]  f [c] 
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Correctness of Huffman‟s Algorithm 
 
 
 
 
 
 
 

 T 

x 

y 

b c 

b 

y 

x c 

b 

c 

x y 

T T 

T   T : exchange the positions of  the leaves b & x 

T  T: exchange the positions of the leaves c & y 
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Greedy-Choice Property of Determining an Optimal Code 
 
   
Proof of Lemma 1 (continued): 

The difference in cost between T and T is 
 
 
 
 
 
 
 
 
 

0))()(])([][(

))()(]([))()(]([

)(][)()()(][)(][

)(][)(][)(][)(][

)()()()()'()(

''

'









 


xdbdxfbf

xdbdxfxdbdbf

xdbfbdxfbdbfxdxf

bdbfxdxfbdbfxdxf

cdcfcdcfTBTB

TT

TTTT

TTTT

TTTT

Cc

T

Cc

T
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Greedy-Choice Property of Determining an Optimal Code 
 
   
Proof of Lemma 1 (continued): 
 

Since f [b]f [x]  0 and dT(b)  dT(x) 

 therefore B(T)  B(T) 

 

We can similary show that  

 B(T)B(T)  0  B(T)  B(T) 

 which implies B(T)  B(T) 

 

Since T is optimal  B(T)  B(T)  T is also optimal 
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Greedy-Choice Property of Determining an Optimal Code 
 
   
Lemma 1 implies that 
 process of building an optimal tree by mergers 
 can begin with the greedy choice of merging 
 those two characters with the lowest frequency 
 
We have already proved that                    , that is, 

 the total cost of the tree constructed  
 is the sum of the costs of its mergers (internal nodes)  
 of all possible mergers  
 
At each step Huffman chooses the merger that incurs the 
 least cost 





TIi

iwTB )()(



CS473 – Lecture 11 Cevdet Aykanat - Bilkent University 

Computer Engineering Department 

61 

Greedy-Choice Property of Determining an Optimal Code 
 
   
 

Lemma 2: Consider any two characters x & y that appear  

 as sibling leaves in optimal T and let z be their parent 

 

Then, considering z as  a character with frequency 

 f [z]  f [x]  f [y] 

 

The tree T  T  {x, y} represents an optimal prefix code 

 for the alphabet C  C  {x, y}  {z} 
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Greedy-Choice Property of Determining an Optimal Code 
 
   
Proof: Try to express cost of T in terms of cost of T 

For each c  C  C  {x, y} we have 

dT(c)  dT(c)  f (c)dT(c)  f (c)dT(c) 

 
 

f [z] f [x] f [y] f [y] f [x] 

T 

x

y 
y 

T 

z 

z 

][][)'(][)'(

)(][)1)(]([)'(

)(][)1)(]([)1)(]([)'()(

yfxfTBzfTB

zdzfzdzfTB

zdzfzdyfzdxfTBTB

TT

TTT






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Greedy-Choice Property of Determining an Optimal Code 
 
   
Proof (continued): If T represents a nonoptimal prefix  
 code for the alphabet C 

Then,  a tree T whose leaves are characters in C 

 such that B(T) < B(T) 
 

Since z is a character in C, it appears as a leaf in T  

If we add x & y as children of z in T  

 then we obtain a prefix code for x with cost 

 B(T)  f [x] + f [y] < B(T) + f [x] + f [y]  B(T) 

 contradicting the optimality of T 

 


