
CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

1

CS473-Algorithms I

Lecture 11

Greedy Algorithms

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

2

Activity Selection Problem

• Input: a set S {1, 2, , n} of n activities

– si=Start time of activity i,

– fi= Finish time of activity i

Activity i takes place in [si, fi)

• Aim: Find max-size subset A of mutually
compatible activities

– Max number of activities, not max time spent in
activities

– Activities i and j are compatible if intervals [si, fi)
and [sj, fj) do not overlap, i.e., either si  fj or sj  fi

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

3

Activity Selection Problem:

An Example

S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1
2

3

4

5

6

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

4

Optimal Substructure

Theorem: Let k be the activity with the earliest finish
time in an optimal soln A  S then

 A{k} is an optimal solution to subproblem

 Sk´ {iS: si  fk }

Proof (by contradiction):

 Let B´ be an optimal solution to Sk´ and

 |B´|  | A{k}|  | A |  1

 Then, B  B´  {k} is compatible and

 |B|  |B´|1  | A |

Contradiction to the optimality of A Q.E.D.

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

5

Repeated Subproblems

• Consider recursive algorithm that tries all

possible compatible subsets

• Notice repeated subproblems (e.g., S2´)

 (let f1 … fn)

S2́ S1́ S2́ S-{1,2}

2 A?
YES NO

2 A?

Y
E
S NO

1 A?
YES NO

-{2}

S1́

S-{1}

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

6

Greedy Choice Property

• Repeated subproblems and optimal substructure

properties hold in activity selection problem

• Dynamic programming?

 Memoize?

 Yes, but…

• Greed choice property: a sequence of locally optimal

(greedy) choices  an optimal solution

• Assume (without loss of generality) f1  f2  …  fn

– If not sort activities according to their finish times in non-

decreasing order

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

7

Greedy Choice Property in Activity Selection

Theorem: There exists an optimal solution

 A  S such that 1 A (Remember f1  f2  … fn)

Proof: Let A {k, , m, } be an optimal solution such
that fk  f  fm  …

 If k  1 then schedule A begins with the greedy choice

 If k  1 then show that  another optimal soln that begins
with the greedy choice 1

 Let B  A{k}  {1}, since f1  fk activity 1 is
compatible with A{k}; B is compatible

 |B|  | A|  11  | A |

 Hence B is optimal Q.E.D.

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

8

Activity Selection Problem

GAS(s, f , n)

 A  {1}

 j  1

 for i 2 to n do

 if si  fj then

 A  A  {i}
 j  i

 return A

j: specifies the index of most recent

activity added to A

fj  Max{fk : k  A}, max finish

time of any activity in A; because

activities are processed in non-

decreasing order of finish times

Thus, “si  fj ”checks the

compatibility of i to current A

Running time: (n) assuming that

the activities were already sorted

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

9

Activity Selection Problem:

An Example
S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1

fj=0

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

10

Activity Selection Problem:

An Example
S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1
2

fj=4

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

11

Activity Selection Problem:

An Example
S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1

2

3

fj=7

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

12

Activity Selection Problem:

An Example
S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1

2

4

fj=7

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

13

Activity Selection Problem:

An Example
S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1 2

5

fj=7

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

14

Activity Selection Problem:

An Example
S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1 2 5

6

fj=15

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

15

Activity Selection Problem:

An Example
S={[1, 4), [5, 7), [2, 8), [3, 11), [8, 15), [13, 18)}

1 9 1817161514131211108765432

1 2 5

A={1, 2, 5}

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

16

Greedy vs Dynamic Programming

• Optimal substructure property exploited by both Greedy and

DP strategies

• Greedy Choice Property: A sequence of locally optimal

choices  an optimal solution

– We make the choice that seems best at the moment

– Then solve the subproblem arising after the choice is made

• DP: We also make a choice/decision at each step, but the

choice may depend on the optimal solutions to subproblems

• Greedy: The choice may depend on the choices made so far,

but it cannot depend on any future choices or on the solutions

to subproblems

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

17

Greedy vs Dynamic Programming

• DP is a bottom-up strategy

• Greedy is a top-down strategy

– each greedy choice in the sequence iteratively

reduces each problem to a similar but smaller

problem

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

18

Proof of Correctness of Greedy

Algorithms
• Examine a globally optimal solution

• Show that this soln can be modified so that

1) A greedy choice is made as the first step

2) This choice reduces the problem to a similar but smaller
problem

• Apply induction to show that a greedy choice can
be used at every step

• Showing (2) reduces the proof of correctness to
proving that the problem exhibits optimal
substructure property

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

19

Elements of Greedy Strategy

• How can you judge whether

• A greedy algorithm will solve a particular

optimization problem?

 Two key ingredients

– Greedy choice property

– Optimal substructure property

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

20

Key Ingredients of Greedy Strategy

• Greedy Choice Property: A globally optimal solution can be
arrived at by making locally optimal (greedy) choices

• In DP,we make a choice at each step but the choice may
depend on the solutions to subproblems

• In Greedy Algorithms, we make the choice that seems best at
that moment then solve the subproblems arising after the
choice is made

– The choice may depend on choices so far, but it cannot depend on any
future choice or on the solutions to subproblems

• DP solves the problem bottom-up

• Greedy usually progresses in a top-down fashion by making
one greedy choice after another reducing each given problem
instance to a smaller one

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

21

Key Ingredients: Greedy Choice Property

• We must prove that a greedy choice at each step
yields a globally optimal solution

• The proof examines a globally optimal solution

• Shows that the soln can be modified so that a greedy
choice made as the first step reduces the problem to a
similar but smaller subproblem

• Then induction is applied to show that a greedy
choice can be used at each step

• Hence, this induction proof reduces the proof of
correctness to demonstrating that an optimal solution
must exhibit optimal substructure property

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

22

Key Ingredients: Optimal Substructure

• A problem exhibits optimal substructure if an

optimal solution to the problem contains within it

optimal solutions to subproblems

Example: Activity selection problem S

 If an optimal solution A to S begins with activity 1

then the set of activities

A´  A{1}

 is an optimal solution to the activity selection

problem

S´  {iS: si  f1 }

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

23

Key Ingredients: Optimal Substructure

• Optimal substructure property is exploited by both

Greedy and dynamic programming strategies

• Hence one may

– Try to generate a dynamic programming soln to a

problem when a greedy strategy suffices

– Or, may mistakenly think that a greedy soln works

when in fact a DP soln is required

Example:Knapsack Problems(S, w)

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

24

Knapsack Problems

• The 0-1Knapsack Problem(S, W)

– A thief robbing a store finds n items S {I1, I2, …, In},
the ith item is worth vi dollars and weighs wi pounds,
where vi and wi are integers

– He wants to take as valuable a load as possible, but he
can carry at most W pounds in his knapsack, where W
is an integer

– The thief cannot take a fractional amount of an item

• The Fractional Knapsack Problem (S, W)

– The scenario is the same

– But, the thief can take fractions of items rather than
having to make binary (0-1) choice for each item

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

25

0-1 and Fractional Knapsack Problems

• Both knapsack problems exhibit the optimal substructure property

The 0-1Knapsack Problem(S, W)

– Consider a most valuable load L where WLW

– If we remove item j from this optimal load L

 The remaining load

Lj´  L {Ij}

 must be a most valuable load weighing at most

Wj´  W  wj

 pounds that the thief can take from

Sj´  S {Ij}

– That is, Lj´ should be an optimal soln to the

0-1 Knapsack Problem(Sj´, Wj´)

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

26

0-1 and Fractional Knapsack Problems

The Fractional Knapsack Problem(S, W)

– Consider a most valuable load L where WL  W

– If we remove a weight 0 w  wj of item j from optimal load L

 The remaining load

Lj´  L {w pounds of Ij}

 must be a most valuable load weighing at most

Wj´  W  w

 pounds that the thief can take from

Sj´  S {Ij}{wj  w pounds of Ij}

– That is, Lj´ should be an optimal soln to the

Fractional Knapsack Problem(Sj´, Wj´)

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

27

Knapsack Problems

Although the problems are similar

• the Fractional Knapsack Problem is solvable

by Greedy strategy

• whereas, the 0-1 Knapsack Problem is not

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

28

Greedy Solution to Fractional Knapsack

1) Compute the value per pound vi wi for each item

2) The thief begins by taking, as much as possible, of

the item with the greatest value per pound

3) If the supply of that item is exhausted before filling

the knapsack he takes, as much as possible, of the

item with the next greatest value per pound

4) Repeat (2-3) until his knapsack becomes full

• Thus, by sorting the items by value per pound the

greedy algorithm runs in O(nlg n) time

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

29

0-1 Knapsack Problem

• Greedy strategy does not work

w1  10

w2  20

w3  30

W  50
Item 1

Item 2

Item 3

Knapsack

v1  $60 v2  $100 v3  $120

v1 w1  6 v2 w2  5 v3 w3  4

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

30

w2  20

w3  30

0-1 Knapsack Problem

• Taking item 1 leaves empty space; lowers
the effective value of the load

Item 3

Item 2

Knapsack

$220(optimal)

v2  $100

v3  $120

w2  20

w3  30

Item 3

Item 2

Knapsack

$160

v2  $100 v3  $120

w1  10 w1  10

Knapsack

$180

w2  20

w1  10

(out of 30)

w3  20

Fractional is
optimally solved
with $240

$80

$100

$60 $60

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

31

0-1 Knapsack Problem

• When we consider an item Ij for inclusion we
must compare the solutions to two
subproblems

– Subproblems in which Ij is included and excluded

• The problem formulated in this way gives rise
to many

overlapping subproblems (a key ingredient of DP)

 In fact, dynamic programming can be used to
solve the 0-1 Knapsack problem

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

32

0-1 Knapsack Problem
• A thief robbing a store containing n articles

 {a1, a2, …, an}

– The value of ith article is vi dollars (vi is integer)

– The weight of ith article is wi kg (wi is integer)

• Thief can carry at most W kg in his knapsack

• Which articles should he take to maximize the value of

his load?

• Let Kn,W {a1, a2, …,an:W} denote 0-1 knapsack problem

• Consider the solution as a sequence of n decisions

– i.e., ith decision: whether thief should pick ai for optimal load

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

33

0-1 Knapsack Problem

Optimal substructure property:

• Let a subset S of articles be optimal for Kn,W

• Let ai be the highest numbered article in S

Then
S´  S {ai}

is an optimal solution for subproblem

Ki1,Wwi
{a1, a2, …, ai1: Wwi} with

c(S)  vi + c(S´)

where c(·) is the value of an optimal load „·‟

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

34

0-1 Knapsack Problem

Recursive definition for value of optimal soln:

• Define c[i,w] as the value of an optimal

solution for Ki,w
{a1, a2, …, ai:w}

c[i,w] 

0,

c[i 1,w],

max{vi  c[i 1,w  wi] , c[i 1,w]} o.w

if i  0 or w  0
if wi  w

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

35

0-1 Knapsack Problem
Recursive definition for value of optimal soln:

This recurrence says that an optimal solution Si,w for Ki,w

– either contains ai  c(Si,w)  vi  c(Si1,wwi
)

– or does not contain ai  c(Si,w)  c(Si1,w)

• If thief decides to pick ai

– He takes vi value and he can choose from {a1, a2, …,ai1}

up to the weight limit w  wi to get c[i 1,w  wi]

• If he decides not to pick ai

– He can choose from {a1, a2, …,ai1} up to the weight limit
w to get c[i 1,w]

• The better of these two choices should be made

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

36

DP Solution to 0-1 Knapsack
KNAP0-1(v, w, n,W)

 for   0 to W do
 c[0, ]  0

 for i 1 to n do
 c[i, 0]  0

 for i1 to n do

 for  1 to W do

 if wi   then
 c[i, ]  max{vi  c[i 1,   wi] , c[i 1, ]}

 else
 c[i, ]  c[i 1, ]

 return c[n, W]

c is an (n1)(W1)

array; c[0.. n : 0..W]

Note: table is computed

in row-major order

Run time: T(n)  (nW)

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

37

Finding the Set S of Articles in an

Optimal Load
SOLKNAP0-1(a, v, w, n,W,c)
 i  n ;   W
 S  

 while i  0 do
 if c[i, ]  c[i 1, ] then

 i  i 1
 else
 S  S {ai}
     wi
 i  i 1

 return S

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

38

Huffman Codes

• Widely used and very effective technique for compressing data

• Savings of 20% to 90% are typical

• Depending on the characteristics of the file being compressed
Huffman‟s greedy algorithm
 uses a table of the frequencies of occurrence of each character

 to build up an optimal way of representing each character as a
binary string

Example: A 100,000-character data file that is to be compressed
 only 6 characters {a, b, c, d, e, f} appear

 a b c d e f

frequency (in thousands) 45K 13K 12K 16K 9K 5K

fixed-length codeword 000 001 010 011 100 101

variable-length codeword 0 101 100 111 1101 1100

variable-length codeword 0 10 110 1110 11110 11111

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

39

Huffman Codes

Binary character code:
• each character is represented by a unique binary string

Fixed-length code:

• needs 3 bits to represent 6 characters
• requires 100.0003300,000 bits to code the entire file

Variable-length code:

• can do better by giving frequent characters short
codewords & infrequent words long codewords

• requires 4511331231639454

 224,000 bits

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

40

Prefix Codes

Prefix codes: No codeword is also a prefix of some other
 codeword

It can be shown that:

 optimal data compression achievable by a character code
can always be achieved with a prefix code

Prefix codes simplify encoding (compression) and decoding

Encoding: Concatenate the codewords representing each
 character of the file

e.g. 3 char file “abc” 0.101.100  0101100 encoded

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

41

Prefix Codes

Decoding: is quite simple with a prefix code

the codeword that begins an encoded file is unambigious
since no codeword is a prefix of any other

• identify the initial codeword

• translate it back to the original character

• remove it from the encoded file

• repeat the decoding process on the remainder of the
encoded file

e.g. string 001011101 parses uniquely as

 0.0.101.1101 aabe decoded

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

42

Prefix Codes

Convenient representation for the prefix code:

 a binary tree whose leaves are the given characters

Binary codeword for a character is the path from the

root to that character in the binary tree

“0” means “go to the left child”

“1” means “go to the right child”

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

43

Binary Tree Representation of Prefix Codes

100

86 14

58 28 14

c: 12 b: 13 a: 45 d: 16 e: 9 f: 5

0

0 1 0 1 0 1

0

1 0

1

The binary tree corresponding to the fixed-length code

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

44

Binary Tree Representation of Prefix Codes

100

55

30 25

14 b: 13 c: 12

a: 45

d: 16

e: 9 f: 5

0

0

1

0

1

0 1

1 0

1

The binary tree corresponding

to the optimal variable-length

code

An optimal code for a file is always represented by a full binary tree

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

45

Full Binary Tree Representation of Prefix Codes

Consider an FBT corresponding to an optimal prefix code

It has |C| leaves (external nodes)

One for each letter of the alphabet where C is the alphabet
from which the characters are drawn

Lemma: An FBT with |C| external nodes has exactly

 |C|1 internal nodes

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

46

Full Binary Tree Representation of Prefix Codes

Consider an FBT T corresponding to a prefix code

How to compute, B(T), the number of bits required to
encode a file

f(c): frequency of character c in the file

dT(c): depth of c‟s leaf in the FBT T

note that dT(c) also denotes length of the codeword for c

which we define as the cost of the tree T





Cc

T cdcfTB)()()(

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

47

Prefix Codes

Lemma: Let each internal node i is labeled with
the sum of the weight w(i) of the leaves in its subtree

Then where

IT denotes the set of internal nodes in T

Proof: Consider a leaf node c with f (c) & dT(c)

Then, f (c) appears in the weights of dT(c) internal node

along the path from c to the root

Hence, f (c) appears dT(c) times in the above summation





TIiCc

T iwcdcfTB)()()()(

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

48

Constructing a Huffman Code

Huffman invented a greedy algorithm that constructs
an optimal prefix code called a Huffman code

The greedy algorithm

• builds the FBT corresponding to the optimal code
in a bottom-up manner

• begins with a set of |C| leaves

• performs a sequence of |C|1 “merges” to create
the final tree

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

49

Constructing a Huffman Code

A priority queue Q, keyed on f, is used

 to identify the two least-frequent objects to merge

The result of the merger of two objects is a new object

• inserted into the priority queue according to its
frequency

• which is the sum of the frequencies of the two
objects merged

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

50

Constructing a Huffman Code

HUFFMAN(C)

n  |C|
Q  C
for i  1 to n 1 do

z  ALLOCATE-NODE()
x  left[z]  EXTRACT-MIN(Q)

y  right[z]  EXTRACT-MIN(Q)
f [z]  f [x]  f [y]

INSERT(Q, z)
return EXTRACT-MIN(Q)  only one object left in Q

Priority queue is implemented as a binary heap

Initiation of Q (BUILD-HEAP): O(n) time

EXTRACT-MIN & INSERT take O(lgn) time on Q with n objects

)lg())!(lg(lg)(
1

nnOnOinT
n

i




CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

51

Constructing a Huffman Code

c: 12 e: 9 f: 5 b: 13 d: 16 a: 45 (a)

f: 5

b: 13 c: 12

e: 9

d: 16 a: 45 (b) 14

0 1

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

52

Constructing a Huffman Code

b: 13 c: 12

d: 16 a: 45 (c)

f: 5 e: 9

14

0 1

25

0 1

d: 16

e: 9 f: 5

a: 45 (d)

c: 12 b: 13

25

0 1

30

0 1

0

14

1

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

53

Constructing a Huffman Code

a: 45 (e)

c: 12 b: 13

25

0 1

d: 16

e: 9 f: 5

30

0 1

0

14

1

55

0 1

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

54

Constructing a Huffman Code

a: 45

(f)

c: 12 b: 13

25

0 1

d: 16

e: 9 f: 5

30

0 1

0

14

1

55

0 1

100

0 1

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

55

Correctness of Huffman‟s Algorithm

We must show that the problem of determining an

optimal prefix code
• exhibits the greedy choice property
• exhibits the optimal substructure property

Lemma 1: Let x & y be two characters in C having the
lowest frequencies

Then,  an optimal prefix code for C in which the
codewords for x & y have the same length and differ
only in the last bit

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

56

Correctness of Huffman‟s Algorithm

Proof: Take tree T representing an arbitrary optimal code

Modify T to make a tree representing another optimal code
such that characters x & y appear as sibling leaves of
max-depth in the new tree

Assume that f [b]  f [c] & f [x]  f [y]

Since f [x] & f [y] are two lowest leaf frequencies, in order,

and f [b] & f [c] are two arbitrary leaf frequencies, in order,

f [x]  f [b] & f [y]  f [c]

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

57

Correctness of Huffman‟s Algorithm

 T

x

y

b c

b

y

x c

b

c

x y

T T

T  T : exchange the positions of the leaves b & x

T  T: exchange the positions of the leaves c & y

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

58

Greedy-Choice Property of Determining an Optimal Code

Proof of Lemma 1 (continued):

The difference in cost between T and T is

0))()(])([][(

))()(]([))()(]([

)(][)()()(][)(][

)(][)(][)(][)(][

)()()()()'()(

''

'









 


xdbdxfbf

xdbdxfxdbdbf

xdbfbdxfbdbfxdxf

bdbfxdxfbdbfxdxf

cdcfcdcfTBTB

TT

TTTT

TTTT

TTTT

Cc

T

Cc

T

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

59

Greedy-Choice Property of Determining an Optimal Code

Proof of Lemma 1 (continued):

Since f [b]f [x]  0 and dT(b)  dT(x)

 therefore B(T)  B(T)

We can similary show that

 B(T)B(T)  0  B(T)  B(T)

 which implies B(T)  B(T)

Since T is optimal  B(T)  B(T)  T is also optimal

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

60

Greedy-Choice Property of Determining an Optimal Code

Lemma 1 implies that
 process of building an optimal tree by mergers
 can begin with the greedy choice of merging
 those two characters with the lowest frequency

We have already proved that , that is,

 the total cost of the tree constructed
 is the sum of the costs of its mergers (internal nodes)
 of all possible mergers

At each step Huffman chooses the merger that incurs the
 least cost





TIi

iwTB)()(

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

61

Greedy-Choice Property of Determining an Optimal Code

Lemma 2: Consider any two characters x & y that appear

 as sibling leaves in optimal T and let z be their parent

Then, considering z as a character with frequency

 f [z]  f [x]  f [y]

The tree T  T  {x, y} represents an optimal prefix code

 for the alphabet C  C  {x, y}  {z}

CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

62

Greedy-Choice Property of Determining an Optimal Code

Proof: Try to express cost of T in terms of cost of T

For each c  C  C  {x, y} we have

dT(c)  dT(c)  f (c)dT(c)  f (c)dT(c)

f [z] f [x] f [y] f [y] f [x]

T

x

y
y

T

z

z

][][)'(][)'(

)(][)1)(]([)'(

)(][)1)(]([)1)(]([)'()(

yfxfTBzfTB

zdzfzdzfTB

zdzfzdyfzdxfTBTB

TT

TTT







CS473 – Lecture 11 Cevdet Aykanat - Bilkent University

Computer Engineering Department

63

Greedy-Choice Property of Determining an Optimal Code

Proof (continued): If T represents a nonoptimal prefix
 code for the alphabet C

Then,  a tree T whose leaves are characters in C

 such that B(T) < B(T)

Since z is a character in C, it appears as a leaf in T

If we add x & y as children of z in T

 then we obtain a prefix code for x with cost

 B(T)  f [x] + f [y] < B(T) + f [x] + f [y]  B(T)

 contradicting the optimality of T

