CS473 - Algorithms I

Other Dynamic Programming Problems

View in slide-show mode

CS 473 – DP Examples

Cevdet Aykanat and Mustafa Ozdal Computer Engineering Department, Bilkent University 1

CS473 - Algorithms I

Problem 1 Subset Sum

CS 473 – DP Examples

Subset-Sum Problem

Given:

- > a set of integers $X = \{x_1, x_2, ..., x_n\}$, and
- ▷ an integer B

Find:

- > a subset of X that has **maximum sum not exceeding B**.
- Notation: S_{n,B} = {x₁, x₂, ..., x_n: B} is the subset-sum problem *The integers to choose from: x₁, x₂, ..., x_n Desired sum: B*

Subset-Sum Problem

Example:

An optimal solution:

$$N_{opt} = \{20, 14, 40, 25\}$$

with sum 20 + 14 + 40 + 25 = 99

CS 473 – DP Examples

Optimal Substructure Property

Consider the solution as a sequence of n decisions: $i^{th} decision: \text{ whether we pick number } x_i \text{ or not}$

Let N_{opt} be an optimal solution for $S_{n,B}$ Let x_k be the highest-indexed number in N_{opt}

CS 473 – DP Examples

Optimal Substructure Property

<u>Lemma</u>: $N'_{opt} = N_{opt} - \{x_k\}$ is an optimal solution for the subproblem $S_{k-1,B-xk} = \{x_1, x_2, ..., x_{k-1}: B-x_k\}$ and

 $c(N_{opt}) = x_k + c(N'_{opt})$

where c(N) is the sum of all numbers in subset N

CS 473 – DP Examples

Optimal Substructure Property - Proof

<u>*Proof*</u>: By contradiction, assume that there exists another solution A' for $S_{k-1, B-xk}$ for which:

 $c(A') > c(N'_{opt})$ and $c(A') \le B - x_k$

i.e. A' is a better solution than N'_{opt} for $S_{k-1, B-xk}$

Then, we can construct $A = A' \cup \{x_k\}$ as a solution to $S_{k, B}$. We have:

 $c(A) = c(A') + x_k$ > $c(N'_{opt}) + x_k = c(N_{opt})$ Contradiction! N_{opt} was assumed to be optimal for S_{k,B}. Proof complete.

CS 473 – DP Examples

Optimal Substructure Property - Example

Example:

 $N_{opt} = \{20, 14, 40, 25\}$ is optimal for $S_{12, 99}$

$N'_{opt} = N_{opt} - \{x_8\} = \{20, 14, 40\} \text{ is optimal for}$ $x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7$ the subproblem $S_{7,74} = \{20, 30, 14, 70, 40, 50, 15: 74\}$ and

$$c(N_{opt}) = 25 + c(N'_{opt}) = 25 + 74 = 99$$

CS 473 – DP Examples

Recursive Definition an Optimal Solution

c[i, b]: the value of an optimal solution for $S_{i,b} = \{x_1, ..., x_i: b\}$

$$c[i,b] = \begin{cases} i \\ j \\ i \\ j \\ i \end{cases} \begin{pmatrix} 0 & if i = 0 \text{ or } b = 0 \\ if x_i > b \\ if x_i > b \\ if i > 0 \text{ and } b^3 x_i \\ if i > 0 \text{ and } b^3 x_i \end{cases}$$

According to this recurrence, an optimal solution $N_{i,b}$ for $S_{i,b}$:

- $\Rightarrow \text{ <u>either contains</u> } x_i \qquad \Rightarrow c(N_{i,b}) = x_i + c(N_{i-1, b-xi})$
- > <u>or does not contain</u> x_i ⇒ $c(N_{i,b}) = c(N_{i-1,b})$

$$c[i,b] = \begin{cases} i \\ j \\ i \\ j \\ i \end{cases} \begin{pmatrix} 0 & if i = 0 \text{ or } b = 0 \\ if x_i > b \\ if x_i > b \\ if i > 0 \text{ and } b^3 x_i \end{cases}$$

CS 473 – DP Examples

Computing the Optimal Subset-Sum Value

<u>SUBSET-SUM (x, n, B)</u>

```
for b \leftarrow 0 to B do
   c[0, b] \leftarrow 0
for i \leftarrow 1 to n do
   c[i, 0] \leftarrow 0
for i \leftarrow 1 to n do
   for b \leftarrow 1 to B do
        if x_i \leq b then
            c[i, b] \leftarrow Max\{x_i + c[i-1, b-x_i], c[i-1, b]\}
       else
            c[i, b] \leftarrow c[i-1, b]
 return c[n, B]
```

Finding an Optimal Subset

SOLUTION-SUBSET-SUM (x, b, B, c) i ← n $b \leftarrow B$ $N \leftarrow \emptyset$ while i > 0 do **if** c[i, b] = c[i-1, b] **then** $i \leftarrow i - 1$ else $N \leftarrow N \cup \{x_i\}$ $i \leftarrow i-1$ $b \leftarrow b - x_i$ return N

CS 473 – DP Examples

CS473 - Algorithms I

Problem 2 Optimal Binary Search Tree

Reminder: Binary Search Tree (BST)

Binary Search Tree Example

Example: English-to-French translation

Organize (English, French) word pairs in a BST

- > Keyword: English word
- Satellite data: French word

Binary Search Tree Example

Suppose we know the frequency of each keyword in texts:

Cost of a Binary Search Tree

CS 473 – DP Examples

Cevdet Aykanat and Mustafa Ozdal Computer Engineering Department, Bilkent University

Example: If we search for keyword "while", we need to access 3 nodes. So, 23% of the queries will have cost of 3.

Cost of a Binary Search Tree

A different binary search tree (BST) leads to a different total cost:

Total cost = 1x0.4 + 2x0.05 + 2x0.23 + 3x0.1 + 4x0.08 + 4x0.1 + 5x0.04= 2.18

This is in fact an optimal BST.

Optimal Binary Search Tree Problem

Given:

A collection of n keys $K_1 < K_2 < ... K_n$ to be stored in a BST. The corresponding p_i values for $1 \le i \le n$ p_i : probability of searching for key K_i

Find:

An optimal BST with minimum total cost:

Total cost =
$$\overset{\circ}{a}(depth(i)+1) \times freq(i)$$

i

<u>Note</u>: The BST will be static. Only search operations will be performed. No insert, no delete, etc.

CS 473 – DP Examples	Cevdet Aykanat and Mustafa Ozdal
	Computer Engineering Department, Bilkent University

Cost of a Binary Search Tree

<u>Lemma 1</u>: Let T_{ij} be a BST containing keys $K_i < K_{i+1} < ... < K_j$.

Let T_L and T_R be the left and right subtrees of T. Then we have:

$$\cot(T_{ij}) = \cot(T_L) + \cot(T_R) + \mathop{\text{a}}_{h=i}^{j} p_h$$

<u>Intuition</u>: When we add the root node, the depth of each node in T_L and T_R increases by 1. So, the cost of node h increases by p_h . In addition, the cost of root node r is p_r . That's why, we have the last term at the end of the formula above.

Optimal Substructure Property

Lemma 2: Optimal substructure property

Consider an optimal BST T_{ij} for keys $K_i < K_{i+1} < ... < K_j$ Let K_m be the key at the root of T_{ij} Then:

 $T_{i,m-1}$ is an optimal BST for subproblem containing keys: $K_i < ... < K_{m-1}$

 $T_{m+1,j}$ is an optimal BST for subproblem containing keys: $K_{m+1} < ... < K_j$

$$\operatorname{cost}(T_{ij}) = \operatorname{cost}(T_{i,m-1}) + \operatorname{cost}(T_{m+1,j}) + \mathop{\text{a}}_{h=i}^{J} p_h$$

CS 473 – DP Examples

Recursive Formulation

<u>Note</u>: We don't know which root vertex leads to the minimum total cost. So, we need to try each vertex m, and choose the one with minimum total cost.

c[i, j]: cost of an optimal BST T_{ij} for the subproblem $K_i < ... < K_j$

$$c[i,j] = \begin{cases} 1 & 0 & \text{if } i > j \\ \min_{i \in r \in j} \left\{ c[i,r-1] + c[r+1,j] + P_{ij} \right\} & \text{otherwise} \end{cases}$$

where $P_{ij} = \mathop{\text{a}}\limits_{h=i}^{j} p_{h}$

CS 473 – DP Examples

Bottom-up computation

$$c[i,j] = \begin{cases} 1 & 0 & \text{if } i > j \\ 1 & \min_{i \in r \in j} \left\{ c[i,r-1] + c[r+1,j] + P_{ij} \right\} & \text{otherwise} \end{cases}$$

How to choose the order in which we process c[i, j] values?

Before computing c[i, j], we have to make sure that the values for c[i, r-1] and c[r+1, j] have been computed for all r.

$$c[i,j] = \begin{cases} 1 & 0 & \text{if } i > j \\ 1 & \min_{\substack{i \in r \in j}} \left\{ c[i,r-1] + c[r+1,j] + P_{ij} \right\} & \text{otherwise} \end{cases}$$

c[i,j] must be processed
after c[i,r-1] and c[r+1,j]

CS 473 – DP Examples

$$c[i,j] = \begin{cases} \frac{1}{i} & 0 & \text{if } i > j \\ \frac{1}{i} & \min_{i \in r \in j} \left\{ c[i,r-1] + c[r+1,j] + P_{ij} \right\} & \text{otherwise} \end{cases}$$

If the entries c[i,j] are computed in the shown order, then c[i,r-1] and c[r+1,j] values are guaranteed to be computed before c[i,j].

Computing the Optimal BST Cost

```
<u>COMPUTE-OPTIMAL-BST-COST (p, n)</u>
for i \leftarrow 1 to n+1 do
```

```
c[i, i-1] \leftarrow 0
```

```
\begin{array}{l} \operatorname{PS}[1] \leftarrow p[1] \quad //\operatorname{PS}[i]: \operatorname{prefix\_sum}(i): \operatorname{Sum of all } p[j] \ values \ for \ j \leq i \\ \text{for } i \leftarrow 2 \ \text{to } n \ \text{do} \\ \operatorname{PS}[i] \leftarrow p[i] + \operatorname{PS}[i-1] \quad // \ compute \ the \ prefix \ sum \\ \text{for } d \leftarrow 0 \ \text{to } n-1 \ \text{do} \\ \text{for } i \leftarrow 1 \ \text{to } n-d \ \text{do} \\ j \leftarrow i+d \\ c[i,j] \leftarrow \infty \\ \text{for } r \leftarrow i \ \text{to } j \ \text{do} \\ c[i,j] \leftarrow \min\{c[i,j], c[i,r-1] + c[r+1,j] + \operatorname{PS}[j] - \operatorname{PS}[i-1]\} \\ \text{return } c[1,n] \end{array}
```

CS 473 – DP Examples

Note on Prefix Sum

□ We need P_{ij} values for each i, j ($1 \le i \le n$ and $1 \le j \le n$),

where:
$$P_{ij} = \mathop{\text{a}}\limits^{j} p_h$$

 $h=i$

- □ If we compute the summation directly for every (i, j) pair, the total runtime would be $\Theta(n^3)$.
- Instead, we spend O(n) time in preprocessing to compute the prefix sum array PS. Then we can compute each P_{ij} in O(1) time using PS.

Note on Prefix Sum

In preprocessing, compute for each i:

PS[i]: the sum of p[j] values for $1 \le j \le i$ Then, we can compute P_{ij} in O(1) time as follows: P_{ij} = PS[i] - PS[j-1]

Example:

CS 473 – DP Examples