CS473-Algorithms I

Other Dynamic Programming Problems

View in slide-show mode

CS473-Algorithms I

Problem 1
 Subset Sum

Subset-Sum Problem

Given:

$>$ a set of integers $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, and
$>$ an integer B
Find:
> a subset of X that has maximum sum not exceeding B .

Notation: $S_{n, B}=\left\{x_{1}, x_{2}, \ldots, x_{n}: B\right\}$ is the subset-sum problem
$>$ The integers to choose from: $x_{1}, x_{2}, \ldots, x_{n}$
> Desired sum: B

Subset-Sum Problem

Example:

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}
x_{10}	x_{11}	x_{12}						
$S_{12,99}:$	$\{20,30,14,70,40,50,15,25,80,60$,	10,	$95: 99\}$					

Find a subset of X with maximum sum not exceeding 99 .

An optimal solution:

$$
\begin{aligned}
\mathrm{N}_{\mathrm{opt}}= & \left\{\begin{array}{ccc}
\mathrm{x}_{1} & x_{3} & x_{5} \\
\hline & \mathrm{x}_{8} \\
& \text { with sum } 20,14,40,25\}
\end{array}\right. \\
& \text { with } 14+40+25=99
\end{aligned}
$$

Optimal Substructure Property

\square Consider the solution as a sequence of n decisions: $i^{\text {th }}$ decision: whether we pick number x_{i} or not

Let $\mathrm{N}_{\mathrm{opt}}$ be an optimal solution for $\mathrm{S}_{\mathrm{n}, \mathrm{B}}$
Let x_{k} be the highest-indexed number in $\mathrm{N}_{\mathrm{opt}}$

Optimal Substructure Property

Lemma: $\mathrm{N}^{\prime}{ }_{\mathrm{opt}}=\mathrm{N}_{\mathrm{opt}}-\left\{\mathrm{x}_{\mathrm{k}}\right\}$ is an optimal solution for the subproblem $\mathrm{S}_{\mathrm{k}-1, \mathrm{~B}-\mathrm{xk}}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}-1}: B-\mathrm{x}_{\mathrm{k}}\right\}$ and

$$
\mathrm{c}\left(\mathrm{~N}_{\mathrm{opt}}\right)=\mathrm{x}_{\mathrm{k}}+\mathrm{c}\left(\mathrm{~N}_{\mathrm{opt}}^{\prime}\right)
$$

where $c(N)$ is the sum of all numbers in subset N

Optimal Substructure Property - Proof

Proof: By contradiction, assume that there exists another solution A^{\prime} for $\mathrm{S}_{\mathrm{k}-1, \mathrm{~B}-\mathrm{xk}}$ for which:

$$
\begin{aligned}
& \mathrm{c}\left(\mathrm{~A}^{\prime}\right)> \\
& \quad \mathrm{c}\left(\mathrm{~N}_{\mathrm{opt}}^{\prime}\right) \text { and } \mathrm{c}\left(\mathrm{~A}^{\prime}\right) \leq \mathrm{B}-\mathrm{x}_{\mathrm{k}} \\
& \quad \text { i.e. } A^{\prime} \text { is a better solution than } N_{\text {opt }}^{\prime} \text { for } S_{k-l, B-x k}
\end{aligned}
$$

Then, we can construct $A=A^{\prime} \cup\left\{x_{k}\right\}$ as a solution to $S_{k, B}$.
We have:

$$
\begin{aligned}
\mathrm{c}(\mathrm{~A}) & =\mathrm{c}\left(\mathrm{~A}^{\prime}\right)+\mathrm{x}_{\mathrm{k}} \\
& >\mathrm{c}\left(\mathrm{~N}_{\mathrm{opt}}^{\prime}\right)+\mathrm{x}_{\mathrm{k}}=\mathrm{c}\left(\mathrm{~N}_{\mathrm{opt}}\right)
\end{aligned}
$$

Contradiction! $\mathrm{N}_{\mathrm{opt}}$ was assumed to be optimal for $\mathrm{S}_{\mathrm{k}, \mathrm{B}}$.
Proof complete.

Optimal Substructure Property - Example

Example:

$N_{\text {opt }}=\left\{\begin{array}{cc}x_{1} & x_{3} \\ x_{5} & x_{8} \\ x_{8} & 14,40,25\end{array}\right\}$ is optimal for $S_{12,99}$
$\mathrm{N}_{\text {opt }}^{\prime}=\mathrm{N}_{\text {opt }}-\left\{\mathrm{x}_{8}\right\}=\{20,14,40\}$ is optimal for
$\begin{array}{lllllll}\mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \mathrm{x}_{4} & \mathrm{x}_{5} & \mathrm{x}_{6} & \mathrm{x}_{7}\end{array}$
the subproblem $\mathrm{S}_{7,74}=\{20,30,14,70,40,50,15: 74\}$
and

$$
\mathrm{c}\left(\mathrm{~N}_{\mathrm{opt}}\right)=25+\mathrm{c}\left(\mathrm{~N}_{\mathrm{opt}}^{\prime}\right)=25+74=99
$$

Recursive Definition an Optimal Solution

$c[i, b]$: the value of an optimal solution for $S_{i, b}=\left\{x_{1}, \ldots, x_{i}: b\right\}$

0
$c[i, b]=c\left[\begin{array}{ll}i & 1, b\end{array}\right]$
$\operatorname{Max}\left\{x_{i}+c\left[\begin{array}{lll}i & 1, b & x_{i}\end{array}\right], c\left[\begin{array}{ll}i & 1, b\end{array}\right]\right\} \quad$ if $\mathrm{i}>0$ and $\mathrm{b} \quad \mathrm{x}_{i}$

According to this recurrence, an optimal solution $N_{i, b}$ for $S_{i, b}$:
\Rightarrow either contains $\mathrm{x}_{\mathrm{i}} \quad \Longrightarrow \mathrm{c}\left(\mathrm{N}_{\mathrm{i}, \mathrm{b}}\right)=\mathrm{x}_{\mathrm{i}}+\mathrm{c}\left(\mathrm{N}_{\mathrm{i}-1, \mathrm{~b}-\mathrm{xi}}\right)$
\Rightarrow or does not contain $\mathrm{x}_{\mathrm{i}} \Longrightarrow \mathrm{c}\left(\mathrm{N}_{\mathrm{i}, \mathrm{b}}\right)=\mathrm{c}\left(\mathrm{N}_{\mathrm{i}-1, \mathrm{~b}}\right)$

$c[i, b]=$| 0 | if $\mathrm{i}=0$ or $\mathrm{b}=0$ | |
| :--- | :--- | :--- |
| $c\left[\begin{array}{lll}i & 1, b\end{array}\right]$ | if $\mathrm{x}_{i}>b$ | |
| | $\operatorname{Max}\left\{x_{i}+c\left[\begin{array}{lll}i & 1, b & x_{i}\end{array}\right], c\left[\begin{array}{ll}i & 1, b\end{array}\right]\right\}$ | if $\mathrm{i}>0$ and b |
| x_{i} | | |

Need to process:
$c[i, b]$
after computing: $\mathrm{c}[\mathrm{i}-1, \mathrm{~b}]$, $\mathrm{c}\left[\mathrm{i}-1, \mathrm{~b}-\mathrm{X}_{\mathrm{i}}\right]$

$$
c[i, b]=\begin{array}{lll}
0 & \text { if } \mathrm{i}=0 \text { or } \mathrm{b}=0 \\
& c\left[\begin{array}{lll}
i & 1, b
\end{array}\right] & \text { if } \mathrm{x}_{i}>b \\
& \operatorname{Max}\left\{x_{i}+c\left[\begin{array}{lll}
i & 1, b & x_{i}
\end{array}\right], c\left[\begin{array}{ll}
i, b
\end{array}\right]\right\} & \text { if } \mathrm{i}>0 \text { and } \mathrm{b} \quad \mathrm{x}_{i}
\end{array}
$$

for $\mathrm{i} \longleftarrow 1$ to m for $\mathrm{b} \longleftarrow 1$ to n

\ldots
$c[i, b]=$

Computing the Optimal Subset-Sum Value

SUBSET-SUM ($\mathbf{x}, \mathbf{n}, \mathbf{B}$)

for $\mathrm{b} \leftarrow 0$ to B do
$\mathrm{c}[0, \mathrm{~b}] \leftarrow 0$
for $\mathrm{i} \leftarrow 1$ to n do
$c[i, 0] \leftarrow 0$
for $\mathrm{i} \leftarrow 1$ to n do
for $\mathrm{b} \leftarrow 1$ to B do if $x_{i} \leq b$ then
$\mathrm{c}[\mathrm{i}, \mathrm{b}] \leftarrow \operatorname{Max}\left\{\mathrm{x}_{\mathrm{i}}+\mathrm{c}\left[\mathrm{i}-1, \mathrm{~b}-\mathrm{x}_{\mathrm{i}}\right], \mathrm{c}[\mathrm{i}-1, \mathrm{~b}]\right\}$
else

$$
\mathrm{c}[\mathrm{i}, \mathrm{~b}] \leftarrow \mathrm{c}[\mathrm{i}-1, \mathrm{~b}]
$$

return c[n, B]

Finding an Optimal Subset

SOLUTION-SUBSET-SUM (x, b, B, c)

$\mathrm{i} \leftarrow \mathrm{n}$
$\mathrm{b} \leftarrow \mathrm{B}$
$\mathrm{N} \leftarrow \emptyset$
while i > 0 do
if $c[i, b]=c[i-1, b]$ then
$\mathrm{i} \leftarrow \mathrm{i}-1$
else

$$
\begin{aligned}
& \mathrm{N} \leftarrow \mathrm{~N} \cup\left\{\mathrm{x}_{\mathrm{i}}\right\} \\
& \mathrm{i} \leftarrow \mathrm{i}-1 \\
& \mathrm{~b} \leftarrow \mathrm{~b}-\mathrm{x}_{\mathrm{i}}
\end{aligned}
$$

return N

CS473-Algorithms I

Problem 2 Optimal Binary Search Tree

Reminder: Binary Search Tree (BST)

All keys in the
left subtree less than 8

This property holds for all nodes.

All keys in the right subtree greater than 8

Image from Wikimedia

Binary Search Tree Example

Example: English-to-French translation

Organize (English, French) word pairs in a BST
> Keyword: English word
> Satellite data: French word

We can search for an
English word (node key) efficiently, and return the corresponding French word (satellite data).

Binary Search Tree Example

Suppose we know the frequency of each keyword in texts:

$$
\begin{array}{lllllll}
\frac{\text { begin }}{5 \%} & \frac{\text { do }}{40 \%} & \frac{\text { else }}{8 \%} & \frac{\text { end }}{4 \%} & \frac{\text { if }}{10 \%} & \begin{array}{l}
\text { then } \\
10 \%
\end{array} & \frac{\text { while }}{23 \%}
\end{array}
$$

Cost of a Binary Search Tree

Cost of a Binary Search Tree

A different binary search tree (BST) leads to a different total cost:

$$
\begin{aligned}
\text { Total cost }= & 1 \times 0.4+2 \times 0.05+2 \times 0.23+ \\
& 3 \times 0.1+4 \times 0.08+4 \times 0.1+ \\
& 5 \times 0.04 \\
= & 2.18
\end{aligned}
$$

This is in fact an optimal BST.

Optimal Binary Search Tree Problem

Given:

A collection of n keys $K_{1}<K_{2}<\ldots K_{n}$ to be stored in a BST.
The corresponding p_{i} values for $1 \leq \mathrm{i} \leq \mathrm{n}$
p_{i} : probability of searching for key K_{i}
Find:
An optimal BST with minimum total cost:

$$
\text { Total cost }={ }_{i}(\text { depth }(i)+1) \times \text { freq }(i)
$$

Note: The BST will be static. Only search operations will be performed. No insert, no delete, etc.

Cost of a Binary Search Tree

Lemma 1: Let T_{ij} be a BST containing keys $\mathrm{K}_{\mathrm{i}}<\mathrm{K}_{\mathrm{i}+1}<\ldots<\mathrm{K}_{\mathrm{j}}$. Let T_{L} and T_{R} be the left and right subtrees of T. Then we have:

$$
\operatorname{cost}\left(T_{i j}\right)=\operatorname{cost}\left(T_{L}\right)+\operatorname{cost}\left(T_{R}\right)+p_{h=i} p_{h}
$$

Intuition: When we add the root node, the depth of each node in T_{L} and T_{R} increases by 1 . So, the cost of node h increases by p_{h}. In addition, the cost of root node r is p_{r} That's why, we have the last term at the end of the formula above.

Optimal Substructure Property

Lemma 2: Optimal substructure property

Consider an optimal BST T_{ij} for keys $\mathrm{K}_{\mathrm{i}}<\mathrm{K}_{\mathrm{i}+1}<\ldots<\mathrm{K}_{\mathrm{j}}$
Let K_{m} be the key at the root of $T_{i j}$
Then:

$\mathrm{T}_{\mathrm{i}, \mathrm{m}-1}$ is an optimal BST for subproblem containing keys: $\mathrm{K}_{\mathrm{i}}<\ldots<\mathrm{K}_{\mathrm{m}-1}$
$\mathrm{T}_{\mathrm{m}+1, \mathrm{j}}$ is an optimal BST for subproblem containing keys: $\mathrm{K}_{\mathrm{m}+1}<\ldots<\mathrm{K}_{\mathrm{j}}$

$$
\operatorname{cost}\left(T_{i j}\right)=\operatorname{cost}\left(T_{i, m}\right)+\operatorname{cost}\left(T_{m+1, j}\right)+p_{h=i} p_{h}
$$

Recursive Formulation

Note: We don't know which root vertex leads to the minimum total cost. So, we need to try each vertex m, and choose the one with minimum total cost.
$c[i, j]$: cost of an optimal BST T_{ij} for the subproblem $\mathrm{K}_{\mathrm{i}}<\ldots<\mathrm{K}_{\mathrm{j}}$

$$
c[i, j]=\begin{array}{ll}
0 & \min _{i{ }_{j}} \begin{cases}{[i, r} & \left.1]+c[r+1, j]+P_{i j}\right\}\end{cases} \\
& \begin{array}{l}
\text { if } \mathrm{i}>\mathrm{j} \\
\text { otherwi }
\end{array} \\
& \text { where } \quad P_{i j}=p_{h=i}^{j} p_{h}
\end{array}
$$

Bottom-up computation

$$
c[i, j]=\begin{array}{ll}
0 & \text { if } \mathrm{i}>\mathrm{j} \\
\min _{i}{ }_{j}\left\{c\left[\begin{array}{ll}
i, r & 1]+c[r+1, j]+P_{i j}
\end{array}\right\}\right. & \text { otherwise }
\end{array}
$$

How to choose the order in which we process $c[i, j]$ values?
Before computing $c[i, j]$, we have to make sure that the values for $\mathrm{c}[\mathrm{i}, \mathrm{r}-1]$ and $\mathrm{c}[\mathrm{r}+1, \mathrm{j}]$ have been computed for all r .

$$
c[i, j]=\begin{array}{ll}
0 & \text { if } \mathrm{i}>\mathrm{j} \\
\min _{i}\left\{c \left[\begin{array}{ll}
i, r & \left.1]+c[r+1, j]+P_{i j}\right\}
\end{array}\right.\right. & \text { otherwise }
\end{array}
$$

$\mathrm{c}[\mathrm{i}, \mathrm{j}]$ must be processed

 after $c[i, r-1]$ and $c[r+1, j]$```
 O if i> j
```



```
 otherwise
```



If the entries $c[i, j]$ are computed in the shown order, then $\mathrm{c}[\mathrm{i}, \mathrm{r}-1]$ and $\mathrm{c}[\mathrm{r}+1, \mathrm{j}]$ values are guaranteed to be computed before c $[i, j]$.

## Computing the Optimal BST Cost

## COMPUTE-OPTIMAL-BST-COST ( $\mathrm{p}, \mathrm{n}$ )

for $\mathrm{i} \leftarrow 1$ to $\mathrm{n}+1$ do
$\mathrm{c}[\mathrm{i}, \mathrm{i}-1] \leftarrow 0$
$\operatorname{PS}[1] \leftarrow \mathrm{p}[1] \quad / / P S[i]:$ prefix_sum(i): Sum of all p[j] values for $j \leq i$
for $\mathrm{i} \leftarrow 2$ to n do
$\mathrm{PS}[\mathrm{i}] \leftarrow \mathrm{p}[\mathrm{i}]+\mathrm{PS}[\mathrm{i}-1] / /$ compute the prefix sum
for $\mathrm{d} \leftarrow 0$ to $\mathrm{n}-1$ do
for $\mathrm{i} \leftarrow 1$ to $\mathrm{n}-\mathrm{d}$ do
$\mathrm{j} \leftarrow \mathrm{i}+\mathrm{d}$
$c[i, j] \leftarrow \infty$
for $\mathrm{r} \leftarrow \mathrm{i}$ to j do

$$
c[i, j] \leftarrow \min \{c[i, j], c[i, r-1]+c[r+1, j]+\operatorname{PS}[j]-\operatorname{PS}[i-1]\}
$$

return $\mathrm{c}[1, \mathrm{n}]$

## Note on Prefix Sum

$\square$ We need $\mathrm{P}_{\mathrm{ij}}$ values for each $\mathrm{i}, \mathrm{j}(1 \leq \mathrm{i} \leq \mathrm{n}$ and $1 \leq \mathrm{j} \leq \mathrm{n})$,

$$
\text { where: } \quad P_{i j}=p_{h=i}^{j} p_{h}
$$

$\square$ If we compute the summation directly for every $(i, j)$ pair, the total runtime would be $\Theta\left(\mathrm{n}^{3}\right)$.
$\square$ Instead, we spend $\mathrm{O}(\mathrm{n})$ time in preprocessing to compute the prefix sum array PS. Then we can compute each $\mathrm{P}_{\mathrm{ij}}$ in $\mathrm{O}(1)$ time using PS.

## Note on Prefix Sum

In preprocessing, compute for each i :
$\operatorname{PS}[\mathrm{i}]$ : the sum of $\mathrm{p}[\mathrm{j}]$ values for $1 \leq \mathrm{j} \leq \mathrm{i}$
Then, we can compute $\mathrm{P}_{\mathrm{ij}}$ in $\mathrm{O}(1)$ time as follows:

$$
\mathrm{P}_{\mathrm{ij}}=\mathrm{PS}[\mathrm{i}]-\mathrm{PS}[\mathrm{j}-1]
$$

Example:

|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{p}:$ | 0.05 | 0.02 | 0.06 | 0.07 | 0.20 | 0.05 | 0.08 | 0.02 |
| $\mathrm{PS}:$ | 0.05 | 0.07 | 0.13 | 0.20 | 0.40 | 0.45 | 0.53 | 0.55 |
| $\mathrm{P}_{27}=\mathrm{PS}[7]-\mathrm{PS}[1]=0.53-0.05=0.48$ |  |  |  |  |  |  |  |  |
| $\mathrm{P}_{36}=\mathrm{PS}[6]-\mathrm{PS}[2]=0.45-0.07=0.38$ |  |  |  |  |  |  |  |  |

