
1

CS473 - Algorithms I

CS 473 – DP Examples

Other Dynamic Programming

Problems

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

View in slide-show mode

2

CS473 - Algorithms I

CS 473 – DP Examples

Problem 1

Subset Sum

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

3CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Subset-Sum Problem

Given:

 a set of integers X = {x1, x2, …, xn}, and

 an integer B

Find:

 a subset of X that has maximum sum not exceeding B.

Notation: Sn,B = {x1, x2, …, xn: B} is the subset-sum problem

 The integers to choose from: x1, x2, …, xn

 Desired sum: B

4CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Subset-Sum Problem

Example:
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

S12,99: {20, 30, 14, 70, 40, 50, 15, 25, 80, 60, 10, 95: 99}

Find a subset of X with maximum sum not exceeding 99.

An optimal solution:
x1 x3 x5 x8

Nopt = {20, 14, 40, 25}

with sum 20 + 14 + 40 + 25 = 99

5CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Optimal Substructure Property

 Consider the solution as a sequence of n decisions:

ith decision: whether we pick number xi or not

Let Nopt be an optimal solution for Sn,B

Let xk be the highest-indexed number in Nopt

xk

Nopt (optimal for Sn,B)

Nʹopt = Nopt – {xk}

6CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Optimal Substructure Property

Lemma: Nʹopt = Nopt – {xk} is an optimal solution for

the subproblem Sk-1,B-xk = {x1, x2, …, xk-1: B-xk}

and

c(Nopt) = xk + c(Nʹopt)

where c(N) is the sum of all numbers in subset N

xk

Nopt (optimal for Sn,B)

Nʹopt = Nopt – {xk} (optimal for Sk-1, B-xk)

7CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Optimal Substructure Property - Proof

Proof: By contradiction, assume that there exists another solution

Aʹ for Sk-1, B – xk for which:

c(Aʹ) > c(Nʹopt) and c(Aʹ) ≤ B – xk

i.e. Aʹ is a better solution than Nʹopt for Sk-1, B-xk

Then, we can construct A = Aʹ ∪{xk} as a solution to Sk, B.

We have:

c(A) = c(Aʹ) + xk

> c(Nʹopt) + xk = c(Nopt)

Contradiction! Nopt was assumed to be optimal for Sk,B.

Proof complete.

8CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Optimal Substructure Property - Example

Example:
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

S12,99: {20, 30, 14, 70, 40, 50, 15, 25, 80, 60, 10, 95: 99}

x1 x3 x5 x8

Nopt = {20, 14, 40, 25} is optimal for S12, 99

Nʹopt = Nopt – {x8} = {20, 14, 40} is optimal for
x1 x2 x3 x4 x5 x6 x7

the subproblem S7,74 = {20, 30, 14, 70, 40, 50, 15: 74}

and

c(Nopt) = 25 + c(Nʹopt) = 25 + 74 = 99

9CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Recursive Definition an Optimal Solution

c[i, b]: the value of an optimal solution for Si,b = {x1, …, xi: b}

c[i,b] =

0 if i = 0 or b = 0

c[i-1,b] if xi > b

Max xi + c[i-1,b- xi],c[i-1,b]{ } if i > 0 and b ³ xi

ì

í

ïï

î

ï
ï

According to this recurrence, an optimal solution Ni,b for Si,b:

 either contains xi ⟹ c(Ni,b) = xi + c(Ni-1, b-xi)

 or does not contain xi ⟹ c(Ni,b) = c(Ni-1, b)

10CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

1 n

1

n

i

bb-xi

c[i, b]

i-1

Need to process:

c[i, b]

after computing:

c[i-1, b],

c[i-1, b-xi]

c[i,b] =

0 if i = 0 or b = 0

c[i-1,b] if xi > b

Max xi + c[i-1,b- xi],c[i-1,b]{ } if i > 0 and b ³ xi

ì

í

ïï

î

ï
ï

11CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

1 n

1

m

i

bb-xi

c[i, b]

i-1

for i⟵ 1 to m

for b⟵ 1 to n

….

….

c[i, b] =

c[i,b] =

0 if i = 0 or b = 0

c[i-1,b] if xi > b

Max xi + c[i-1,b- xi],c[i-1,b]{ } if i > 0 and b ³ xi

ì

í

ïï

î

ï
ï

12CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Computing the Optimal Subset-Sum Value

SUBSET-SUM (x, n, B)

for b ← 0 to B do

c[0, b] ← 0

for i ← 1 to n do

c[i, 0] ← 0

for i ← 1 to n do

for b ← 1 to B do

if xi ≤ b then

c[i, b] ← Max{xi + c[i-1, b-xi], c[i-1, b]}

else

c[i, b] ← c[i-1, b]

return c[n, B]

13CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Finding an Optimal Subset

SOLUTION-SUBSET-SUM (x, b, B, c)

i ← n

b ← B

N ← ∅
while i > 0 do

if c[i, b] = c[i-1, b] then

i ← i – 1

else

N ← N ∪ {xi}

i ← i – 1

b ← b – xi

return N

14

CS473 - Algorithms I

CS 473 – DP Examples

Problem 2

Optimal Binary Search Tree

Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

15CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Reminder: Binary Search Tree (BST)

All keys in the

left subtree

less than 8

All keys in the

right subtree

greater than 8

This property

holds for all nodes.
Image from Wikimedia

16CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Binary Search Tree Example

Example: English-to-French translation

Organize (English, French) word pairs in a BST

Keyword: English word

Satellite data: French word

end

do then

begin else if while

We can search for an

English word (node key)

efficiently, and return the

corresponding French

word (satellite data).

17CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Binary Search Tree Example

Suppose we know the frequency of each keyword in texts:

begin do else end if then while

5% 40% 8% 4% 10% 10% 23%

end

do then

begin else if while

4%

10% 23%8%5%

40% 10%

18CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Cost of a Binary Search Tree

end

do then

begin else if while

4%

10% 23%8%5%

40% 10%

Example: If we search for

keyword “while”, we need

to access 3 nodes. So, 23%

of the queries will have

cost of 3.

Total cost = (depth(i)+1) × freq(i)

i
å

= 1x0.04 + 2x0.4 + 2x0.1 + 3x0.05 + 3x0.08 + 3x0.1 + 3x0.23

= 2.42

19CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Cost of a Binary Search Tree

end
4%

if

10%

while

23%

else

8%

begin

5%

do

40%

then
10%

A different binary search tree (BST) leads

to a different total cost:

Total cost = 1x0.4 + 2x0.05 + 2x0.23 +

3x0.1 + 4x0.08 + 4x0.1 +

5x0.04

= 2.18

This is in fact an optimal BST.

20CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Optimal Binary Search Tree Problem

Given:

A collection of n keys K1 < K2 < … Kn to be stored in a BST.

The corresponding pi values for 1 ≤ i ≤ n

pi: probability of searching for key Ki

Find:

An optimal BST with minimum total cost:

Total cost = (depth(i)+1) × freq(i)

i
å

Note: The BST will be static. Only search operations will be

performed. No insert, no delete, etc.

21CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Cost of a Binary Search Tree

Lemma 1: Let Tij be a BST containing keys Ki < Ki+1 < … < Kj.

Let TL and TR be the left and right subtrees of T. Then we have:

cost(Tij) = cost(TL)+ cost(TR)+ ph
h=i

j

å

TL TR

Intuition: When we add the root node, the

depth of each node in TL and TR increases

by 1. So, the cost of node h increases by

ph. In addition, the cost of root node r is pr.

That’s why, we have the last term at the

end of the formula above.

22CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Optimal Substructure Property

Lemma 2: Optimal substructure property

Consider an optimal BST Tij for keys Ki < Ki+1 < … < Kj

Let Km be the key at the root of Tij

Ti,m-1 Tm+1,j

Km

Then:

Ti,m-1 is an optimal BST for subproblem

containing keys: Ki < … < Km-1

Tm+1,j is an optimal BST for subproblem

containing keys: Km+1 < … < Kj

cost(Tij) = cost(Ti,m-1)+ cost(Tm+1, j)+ ph
h=i

j

å

23CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Recursive Formulation

Note: We don’t know which root vertex leads to the minimum total cost. So, we
need to try each vertex m, and choose the one with minimum total cost.

c[i, j]: cost of an optimal BST Tij for the subproblem Ki < … < Kj

where Pij = ph
h=i

j

å

c[i, j] =

0 if i > j

min
i£r£ j

c[i, r -1]+ c[r +1, j]+Pij{ } otherwise

ì

í
ï

î
ï

24CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Bottom-up computation

Before computing c[i, j], we have to make sure that the

values for c[i, r-1] and c[r+1,j] have been computed for all r.

How to choose the order in which we process c[i, j] values?

c[i, j] =

0 if i > j

min
i£r£ j

c[i, r -1]+ c[r +1, j]+Pij{ } otherwise

ì

í
ï

î
ï

25CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

1 n

1

n

i

i j

r

j

c[i, j]

r

c[i,r-1]

c[r+1,j]

c[i,j] must be processed

after c[i,r-1] and c[r+1,j]

c[i, j] =

0 if i > j

min
i£r£ j

c[i, r -1]+ c[r +1, j]+Pij{ } otherwise

ì

í
ï

î
ï

26CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

1 n

1

n

i

i j

j

c[i,j]

If the entries c[i,j] are

computed in the shown

order, then c[i,r-1] and

c[r+1,j] values are

guaranteed to be

computed before c[i,j].

c[i, j] =

0 if i > j

min
i£r£ j

c[i, r -1]+ c[r +1, j]+Pij{ } otherwise

ì

í
ï

î
ï

27CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Computing the Optimal BST Cost

COMPUTE-OPTIMAL-BST-COST (p, n)

for i ← 1 to n+1 do

c[i, i-1] ← 0

PS[1] ← p[1] // PS[i]: prefix_sum(i): Sum of all p[j] values for j ≤ i

for i ← 2 to n do
PS[i] ← p[i] + PS[i-1] // compute the prefix sum

for d ← 0 to n−1 do

for i ← 1 to n – d do

j ← i + d

c[i, j] ← ∞

for r ← i to j do

c[i, j] ← min{c[i, j], c[i,r-1] + c[r+1, j] + PS[j] – PS[i-1]}

return c[1, n]

28CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Note on Prefix Sum

 We need Pij values for each i, j (1 ≤ i ≤ n and 1 ≤ j ≤ n),

where:

 If we compute the summation directly for every (i, j) pair, the

total runtime would be Θ(n3).

 Instead, we spend O(n) time in preprocessing to compute the

prefix sum array PS. Then we can compute each Pij in O(1)

time using PS.

Pij = ph
h=i

j

å

29CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal

Computer Engineering Department, Bilkent University

Note on Prefix Sum

In preprocessing, compute for each i:

PS[i]: the sum of p[j] values for 1 ≤ j ≤ i

Then, we can compute Pij in O(1) time as follows:

Pij = PS[i] – PS[j-1]

Example:

1 2 3 4 5 6 7 8

p: 0.05 0.02 0.06 0.07 0.20 0.05 0.08 0.02

PS: 0.05 0.07 0.13 0.20 0.40 0.45 0.53 0.55

P27 = PS[7] – PS[1] = 0.53 – 0.05 = 0.48

P36 = PS[6] – PS[2] = 0.45 – 0.07 = 0.38

