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Subset-Sum Problem

Given: 

 a set of integers X = {x1, x2, …, xn}, and

 an integer B

Find:

 a subset of X that has maximum sum not exceeding B.

Notation: Sn,B = {x1, x2, …, xn: B} is the subset-sum problem

 The integers to choose from: x1, x2, …, xn

 Desired sum: B
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Subset-Sum Problem

Example:
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

S12,99: {20, 30, 14, 70, 40, 50, 15, 25, 80, 60,  10,  95: 99}

Find a subset of X with maximum sum not exceeding 99.

An optimal solution:
x1      x3 x5 x8

Nopt = {20, 14, 40, 25}

with sum 20 + 14 + 40 + 25 = 99
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Optimal Substructure Property

 Consider the solution as a sequence of n decisions:

ith decision: whether we pick number xi or not

Let Nopt be an optimal solution for Sn,B

Let xk be the highest-indexed number in Nopt

xk

Nopt (optimal for Sn,B)

Nʹopt = Nopt – {xk}
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Optimal Substructure Property

Lemma: Nʹopt = Nopt – {xk} is an optimal solution for

the subproblem Sk-1,B-xk = {x1, x2, …, xk-1: B-xk}

and 

c(Nopt) = xk + c(Nʹopt)

where c(N) is the sum of all numbers in subset N

xk

Nopt (optimal for Sn,B)

Nʹopt = Nopt – {xk} (optimal for Sk-1, B-xk)
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Optimal Substructure Property - Proof

Proof: By contradiction, assume that there exists another solution 

Aʹ for Sk-1, B – xk for which:

c(Aʹ) > c(Nʹopt) and c(Aʹ) ≤ B – xk

i.e. Aʹ is a better solution than Nʹopt for Sk-1, B-xk

Then, we can construct A = Aʹ ∪{xk} as a solution to Sk, B.

We have: 

c(A) = c(Aʹ) + xk

> c(Nʹopt) + xk = c(Nopt)

Contradiction! Nopt was assumed to be optimal for Sk,B.

Proof complete.
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Optimal Substructure Property - Example

Example:
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

S12,99: {20, 30, 14, 70, 40, 50, 15, 25, 80, 60,  10,  95: 99}

x1 x3 x5 x8

Nopt = {20, 14, 40, 25} is optimal for S12, 99

Nʹopt = Nopt – {x8} = {20, 14, 40} is optimal for 
x1 x2 x3 x4 x5 x6 x7

the subproblem S7,74 = {20, 30, 14, 70, 40, 50, 15: 74}

and

c(Nopt) = 25 + c(Nʹopt) = 25 + 74 = 99
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Recursive Definition an Optimal Solution

c[i, b]: the value of an optimal solution for Si,b = {x1, …, xi: b}

c[i,b] =

0     if  i = 0 or b = 0

c[i-1,b]     if  xi >  b

Max xi + c[i-1,b- xi ],c[i-1,b]{ }     if  i > 0 and b ³ xi

ì

í

ïï

î

ï
ï

According to this recurrence, an optimal solution Ni,b for Si,b:

 either contains xi ⟹ c(Ni,b) = xi + c(Ni-1, b-xi)

 or does not contain xi ⟹ c(Ni,b) = c(Ni-1, b)
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1 n

1

n

i

bb-xi

c[i, b]

i-1

Need to process:

c[i, b]

after computing:

c[i-1, b], 

c[i-1, b-xi]

c[i,b] =

0     if  i = 0 or b = 0

c[i-1,b]     if  xi >  b

Max xi + c[i-1,b- xi ],c[i-1,b]{ }     if  i > 0 and b ³ xi

ì

í

ïï

î

ï
ï
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1 n

1

m

i

bb-xi

c[i, b]

i-1

for i⟵ 1 to m

for b⟵ 1 to n

….

….

c[i, b] = 

c[i,b] =

0     if  i = 0 or b = 0

c[i-1,b]     if  xi >  b

Max xi + c[i-1,b- xi ],c[i-1,b]{ }     if  i > 0 and b ³ xi

ì

í

ïï

î

ï
ï
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Computing the Optimal Subset-Sum Value

SUBSET-SUM (x, n, B)

for b ← 0 to B do

c[0, b] ← 0

for i ← 1 to n do

c[i, 0] ← 0

for i ← 1 to n do

for b ← 1 to B do

if xi ≤ b then

c[i, b] ← Max{xi + c[i-1, b-xi], c[i-1, b]}

else

c[i, b] ← c[i-1, b]

return c[n, B]
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Finding an Optimal Subset

SOLUTION-SUBSET-SUM (x, b, B, c)

i   ← n

b  ← B

N ← ∅
while i > 0 do

if c[i, b] = c[i-1, b] then

i ← i – 1

else

N ← N ∪ {xi}

i   ←  i – 1

b  ← b – xi

return N
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Reminder: Binary Search Tree (BST)

All keys in the

left subtree 

less than 8

All keys in the

right subtree 

greater than 8

This property

holds for all nodes.
Image from Wikimedia
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Binary Search Tree Example

Example: English-to-French translation

Organize (English, French) word pairs in a BST

Keyword: English word

Satellite data: French word

end

do then

begin else if while

We can search for an 

English word (node key) 

efficiently, and  return the 

corresponding French

word (satellite data).
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Binary Search Tree Example

Suppose we know the frequency of each keyword in texts:

begin do  else end if   then while

5%       40%     8%      4%     10%    10%       23%

end

do then

begin else if while

4%

10% 23%8%5%

40% 10%
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Cost of a Binary Search Tree

end

do then

begin else if while

4%

10% 23%8%5%

40% 10%

Example: If we search for

keyword “while”, we need

to access 3 nodes. So, 23%

of the queries will have

cost of 3.

Total cost = (depth(i)+1) × freq(i)

i
å

= 1x0.04 + 2x0.4 + 2x0.1 + 3x0.05 + 3x0.08 + 3x0.1 + 3x0.23

= 2.42
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Cost of a Binary Search Tree

end
4%

if

10%

while

23%

else

8%

begin

5%

do

40%

then
10%

A different binary search tree (BST) leads

to a different total cost:

Total cost = 1x0.4 + 2x0.05 + 2x0.23 +

3x0.1 + 4x0.08 + 4x0.1 +

5x0.04

= 2.18

This is in fact an optimal BST.



20CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal 

Computer Engineering Department, Bilkent University

Optimal Binary Search Tree Problem

Given:

A collection of n keys K1 < K2 < … Kn to be stored in a BST.

The corresponding pi values for 1 ≤ i ≤ n

pi: probability of searching for key Ki

Find:

An optimal BST with minimum total cost:

Total cost = (depth(i)+1) × freq(i)

i
å

Note: The BST will be static. Only search operations will be 

performed. No insert, no delete, etc.
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Cost of a Binary Search Tree

Lemma 1: Let Tij be a BST containing keys Ki < Ki+1 < … < Kj.

Let TL and TR be the left and right subtrees of T. Then we have:

cost(Tij ) = cost(TL )+ cost(TR )+ ph
h=i

j

å

TL TR

Intuition: When we add the root node, the 

depth of each node in TL and TR increases 

by 1. So, the cost of node h increases by 

ph. In addition, the cost of root node r is pr. 

That’s why, we have the last term at the 

end of the formula above.
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Optimal Substructure Property

Lemma 2: Optimal substructure property

Consider an optimal BST Tij for keys Ki < Ki+1 < … < Kj

Let Km be the key at the root of Tij

Ti,m-1 Tm+1,j

Km

Then: 

Ti,m-1 is an optimal BST for subproblem 

containing keys: Ki < … < Km-1

Tm+1,j is an optimal BST for subproblem 

containing keys: Km+1 < … < Kj

cost(Tij ) = cost(Ti,m-1)+ cost(Tm+1, j )+ ph
h=i

j

å
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Recursive Formulation

Note: We don’t know which root vertex leads to the minimum total cost. So, we 
need to try each vertex m, and choose the one with minimum total cost.

c[i, j]: cost of an optimal BST Tij for the subproblem Ki < … < Kj

where Pij = ph
h=i

j

å

c[i, j] =

0     if  i > j

min
i£r£ j

c[i, r -1]+ c[r +1, j]+Pij{ }     otherwise

ì

í
ï

î
ï
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Bottom-up computation

Before computing c[i, j], we have to make sure that the 

values for c[i, r-1] and c[r+1,j] have been computed for all r.

How to choose the order in which we process c[i, j] values?

c[i, j] =

0     if  i > j

min
i£r£ j

c[i, r -1]+ c[r +1, j]+Pij{ }     otherwise

ì

í
ï

î
ï
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1 n

1

n

i

i j

r

j

c[i, j]

r

c[i,r-1]

c[r+1,j]

c[i,j] must be processed

after c[i,r-1] and c[r+1,j]

c[i, j] =

0     if  i > j

min
i£r£ j

c[i, r -1]+ c[r +1, j]+Pij{ }     otherwise

ì

í
ï

î
ï
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1 n

1

n

i

i j

j

c[i,j]

If the entries c[i,j] are

computed in the shown

order, then c[i,r-1] and

c[r+1,j] values are

guaranteed to be 

computed before c[i,j].

c[i, j] =

0     if  i > j

min
i£r£ j

c[i, r -1]+ c[r +1, j]+Pij{ }     otherwise

ì

í
ï

î
ï



27CS 473 – DP Examples Cevdet Aykanat and Mustafa Ozdal 

Computer Engineering Department, Bilkent University

Computing the Optimal BST Cost

COMPUTE-OPTIMAL-BST-COST (p, n)

for i ← 1 to n+1 do

c[i, i-1] ← 0

PS[1] ← p[1]    // PS[i]: prefix_sum(i): Sum of all p[j] values for j ≤ i

for i ← 2 to n do
PS[i] ← p[i] + PS[i-1]   // compute the prefix sum

for d ← 0 to n−1 do

for i ← 1 to n – d do

j ← i + d

c[i, j] ← ∞

for r ← i to j do

c[i, j] ← min{c[i, j], c[i,r-1] + c[r+1, j] + PS[j] – PS[i-1]} 

return c[1, n]
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Note on Prefix Sum

 We need Pij values for each i, j (1 ≤ i ≤ n and 1 ≤ j ≤ n), 

where: 

 If we compute the summation directly for every (i, j) pair, the 

total runtime would be Θ(n3).

 Instead, we spend O(n) time in preprocessing to compute the 

prefix sum array PS. Then we can compute each Pij in O(1)

time using PS.

Pij = ph
h=i

j

å
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Note on Prefix Sum

In preprocessing, compute for each i:

PS[i]: the sum of p[j] values for 1 ≤ j ≤ i

Then, we can compute Pij in O(1) time as follows:

Pij = PS[i] – PS[j-1]

Example: 

1           2          3          4          5         6          7          8

p:   0.05    0.02   0.06   0.07   0.20   0.05   0.08   0.02

PS:   0.05    0.07   0.13   0.20   0.40   0.45   0.53   0.55

P27 = PS[7] – PS[1] = 0.53 – 0.05 = 0.48 

P36 = PS[6] – PS[2] = 0.45 – 0.07 = 0.38  


