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Structural Matching in Computer Vision 
Using Probabilistic Relaxation 

William J. Christmas, Josef Kittler, Member, IEEE, and Maria Petrou, Member, IEEE 

Abstract-In this paper, we develop the theory of probabilistic 
relaxation for matching features extracted from 2D images, de- 
rive as limiting cases the various heuristic formulae used by re- 
searchers in matching problems, and state the conditions under 
which they apply. We successfully apply our theory to the prob- 
lem of matching and recognizing aerial road network images 
based on road network models and to the problem of edge 
matching in a stereo pair. For this purpose, each line network is 
represented by an attributed relational graph where each node is 
a straight line segment characterized by certain attributes and 
related with every other node via a set of binary relations. 

Index Terms-Matching, probabilistic relaxation, object 
recognition. 

I. INTRODUCTION 

ATCHING is one of the all pervading problems in com- M puter vision. It arises in 2D and 3D object recognition 
from 2D and 3D image descriptions (for an extensive survey 
on 3D object recognition see [4]). It is a prerequisite to depth 
recovery from binocular or motion stereo where the corre- 
spondence of image tokens must be established before their 3D 
position can be estimated. It is fundamental to image fusion 
and registration and many other problems. 

In essence the matching problem involves a collection of 
object primitives or features extracted from the image. The 
aim is to relate the set of primitives to a similar collection rep- 
resenting a model or a reference object (e.g., second image of 
a stereo or motion pair). Each image object primitive assumes 
a label from a given label set. The label identifies and estab- 
lishes the correspondence between the observed and model 
entities. As object identity is defined by the properties of its 
constituent primitives and their relations, the assignment of 
labels in the matching process is based on these major sources 
of information, together with any prior knowledge that can be 
brought to bear on the problem. 

Mathematically, image and model object primitives can be 
represented as the nodes in a graph with the connecting arcs 
representing their relations. The properties of the primitives 
are encoded as the node attributes. The matching problem can 
be then formulated as one of attributed relational graph 
matching. 

The graph matching problem has been approached in many 
different ways in the computer vision literature [2], [5], [ti], 
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[111, [121, [ W ,  [141, [161, [171, [201, P21, [351, [371, P81, 
[40], [41], [44]. The early attempts, still widely popular, rely 
on graph search techniques with heuristic measures employed 
to reduce the inherently NP-complete problem to a manage- 
able process. More recent are the efforts based on energy 
minimization using simulated annealing [l], [ 191, [27], mean 
field theory [18] or deterministic annealing [9], [lo], [24], 
[30], [42], and relaxation labeling [6], [7], [14], [ E ] ,  [17], 
[25], [36], [39]. The latter approach, in particular, has the ad- 
vantage that it replaces the NP complete problem with one of 
polynomial complexity. 

Although probabilistic relaxation has been shown to offer a 
very effective method for attributed relational graph matching, 
its foundations, and consequently the relaxation process design 
methodology are very heuristic. The recent work of Kittler and 
Hancock [29] directed towards theoretical underpinning of 
probabilistic relaxation using the Bayesian framework proved 
very successful. It led to the development of an evidence- 
combining formula which fuses observational and a priori con- 
textual information in a theoretically sound manner. The poly- 
nomial combinatorial complexity has been reduced even further 
using the concept of a label configuration dictionary. Unfortu- 
nately, the methodology is applicable only to low-level matching 
problems such as edge or line postprocessing. The main reason 
for this limitation is that the process does not make use of meas- 
urements with the exception of the initialization stage where 
observations are used to compute the initial noncontextual prob- 
abilities for the candidate labels at each object primitive. Inci- 
dentally, the failure to utilize measurement information through- 
out the relaxation process has been the perennial point of criti- 
cism aimed at probabilistic relaxation. 

Some workers have attempted to remedy this problem by 
heuristic means. Yamamoto [43] used an information-theoretic 
approach to derive a compatibility measure from relational 
measurements, and then from this measure generated by heu- 
ristic means compatibility coefficients to fit the relaxation 
method of Rosenfeld et al. [36]. Li [31] incorporated relational 
measurements into compatibility coefficients which figure in 
his probability updating formula. In this way he overcame a 
major criticism of the probabilistic relaxation approach as 
measurements were used in all stages of the iterative process to 
find consistent labeling. However, his solution retained the 
heuristic framework of probabilistic relaxation as introduced 
by Rosenfeld, Hummel, and Zucker [36] and Hummel and 
Zucker [25]. In particular, the compatibility and support func- 
tions were specified heuristically. 

In this paper we present theoretical foundations for the 
probabilistic relaxation process which significantly advance 
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the mathematical apparatus developed in Hancock and Kittler 
[23] and make it applicable to general matching problems. The 
matching problem is formulated in the Bayesian framework for 
contextual label assignment. The formulation leads to an 
evidence-combining formula which prescribes in a unified and 
consistent manner how unary attribute measurements relating 
to single entities, binary relation measurements relating to 
pairs of objects, and prior world knowledge encapsulating the 
known interactions of objects should be jointly brought to bear 
on the object labeling problem. The evidence-combining 
scheme can be shown to be unbiased. 

The significance of the theoretical foundation developed is 
manifold. It not only offers a better understanding of the prob- 
abilistic relaxation labeling process and removes its heuristic 
components, but most importantly, from the computer vision 
point of view, it offers a clear methodology for designing such 
processes. It will be shown that the measurements on both 
unary and binary relations enter the process in the most natural 
way through measurement error distributions, which in most 
applications are likely to be assumed to be Gaussian. The 
methodology can cope with many-to-one matches which are 
frequently required in the computer vision context. 

The compatibility coefficients of the process are defined in 
terms of the binary relation measurement error distributions. 
Thus, through the compatibility coefficients, measurements are 
used in all iterations of the relaxation process. The support 
function is also derived from the formulation, rather than being 
specified and ad hoc. Its product rule or arithmetic average 
forms are shown to depend on the assumptions made about the 
nature of the contextual information influencing the matching 
process. In the general case the product rule is shown to be 
appropriate but in low context situations or in case of contex- 
tual information redundancy, the arithmetic average support 
function can be derived from the product rule. 

The theoretical framework also suggests how the probabil- 
istic relaxation process should be initialized based on unary 
measurements. This contrasts with the approach adopted by Li 
[31] who commenced the iterative process from a random as- 
signment of label probabilities. 

We show how the theory and methodology developed in the 
paper can be applied to problems in which the graph nodes 
represent straight line segments in a 2-D image. We illustrate 
this using two different matching problems: One is concerned 
with the matching of road networks extracted from an image 
and a much larger digital map, and the other with the matching 
of edges in a stereo pair. 

The paper is organized as follows: In Section I1 we outline 
the main features of the notation used in the rest of the paper. 
In Section I11 we formulate the problem and derive the product 
rule support function which incorporates binary relation meas- 
urements. In Section IV we discuss the compatibility coeffi- 
cients, and show how to initialize the update rule in Section V. 
In Section VI we compare our method with other probabilistic 
relaxation methods. In Section VI1 we discuss the application 
of the algorithm to graphs whose nodes consist of straight line 
segments. We present some experimental results in Section 
VIII, and we draw our conclusions in Section IX. 

11. NOTATION 

We represent the nodes of the graph of the scene to be 
matched as a set A of N objects: 

A = {ai, a2, ...,a N I  
These objects could be extracted from the image in a bottom- 
up way. 

We wish to match the scene to a model. We therefore assign 
to each object a, a label e,, which may take as its value any of 
the M + 1 model labels that form the set Q: 

Q = { w o  Jq,...,qf} 

where wo is the null label used to label objects for which no 
other label is appropriate. We use the notation we, to indicate 
that we specifically wish to associate a model label with a par- 
ticular scene label e,. At the end of the labeling process, we 
expect each object to have one unambiguous label value. 
However, we allow the labels of more than one object to have 
the same value (i.e., we allow many-to-one matches). 

For convenience we define two sets of indices: 

No= { 1,2, ..., N }  

N I =  {1,2, ..., i -  l , i +  1 ,  ..., N }  

For each object a, we have a set of ml measurements x, 
corresponding to the unary attributes of the object: 

XI = [ x : ~ ) , x : ~ ) , . . . , x y  1 
Examples of unary attributes are the length, color, or orienta- 
tion of an object. The abbreviation x , , ~ , ~ ~  denotes the set of 
all unary measurement vectors x, made on the set A of objects; 
i.e., 

'i,icN0 = ('1, " ' 9  

For each pair of objects a, and a, we have a set of m2 binary 
measurements A,,: 

Examples of binary relations are the relative position of one 
object with respect to another, relative size, or orientation. 
Each measurement has a range DCk) of possible values; 

we denote the width of DCk) by p C k ) .  Thus, if A?' is the dis- 

tance between two objects, would range from 0 to the 
maximum dimension of the image, and p@) is the maximum 
dimension of the image. Similarly we use 
2) = DC1) x . . . x D(m2) to denote the range of Ay. 

We use the abbreviation-aij,jGN, to denote all the binary 
relations object ai has with the other objects in the set; i.e., 

Aj , j .N,  = {AI, %-I, -%+I, ...) 4 N )  

The same classes of unary and binary measurements are 
also made on the model, to create the model graph. These are 
respectively: #a, to denote the unary measurements of model 
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label w,, and A,fi, to denote the binary measurements be- 

tween model labels 0, and wp. 
There is also a set Qi of mo parameters which relate the 

model and scene coordinate systems: 

Qi = (p, q(2), ..., f#J(mo)) 

For example, if one of the unary measurements is the orienta- 
tion of the object with respect to the coordinate systems of the 
image and model, the corresponding parameter would be the 
relative orientation of the model coordinates relative to those 
of the scene. 

We use an upper-case P to represent the probability of an 
event; thus P(8, = w,)  denotes the probability that scene la- 

bel 0; is matched to model label w,. The lower-case p repre- 
sents a probability density function; thus p(xJ  denotes the 
probability density function of the random variable x;.l 

We use the notation Nx(p,  o) to denote a Gaussian prob- 
ability density function with mean p and standard deviation 0; 
i.e., 

We also extend the notation to the multivariate distribution 
N x ( p ,  E) of a vector x ,  where p represents the vector mean 
and Z is the covariance matrix. 

111. THEORETICAL FRAMEWORK FOR OBJECT LABELING 
USING PROBABILISTIC RELAXATION 

In Section I11 we formulate the general problem of shape 
matching in the framework of Bayesian probability theory and 
derive the necessary formulae for the relaxation labeling 
approach. 

The label Oi of an object ai will be given the value w e ; ,  
provided that it is the most probable label given all the infor- 
mation we have for the system, i.e., all unary measurements 
and the values of all binary relations between the various ob- 
jects. We argue that for certain types of binary relations used, 
the label of an object is only affected by the values of the bi- 
nary relations in which it is directly involved, and there is no 
need for the consideration of ternary and higher order rela- 
tions. The type of binary relations we assume are metric rela- 
tions which once given specify uniquely one object given the 
identity of the others. Examples of such binary relations are: 
Object U;  is at 135” angle from object uj and at distance 25 
units from it. Topological or symbolic relations like “object a; 
is on the top of object ai’ are not appropriate for this type of 
formalism, because they may not specify uniquely the label of 

1 .  We also write 
d 

- d r  
P(x;. e; = U , )  A --(I, I X ,  e, = U , )  

where P ( x ,  5 x ,  e, = m a )  denotes the probability of the compound event 
defined by its arguments. Note that p ( x i  O i  = m a )  is not strictly a density 

function, since p ( x , ,  e, = 0,) dr, # 1 in general. 

an object and higher order relations may have to be used. Sur- 
prisingly, however, many standard matching problems in com- 
puter vision fall into the admissible category. 

Assuming the right type of binary relations, it can be shown 
by mathematical induction that there is no need for the inclu- 
sion of all binary relations of all objects in order to identify an 
object, and thus we may say that the most appropriate label of 
object U; is we, given by: 

The explicit use of binary relations as evidence in computing 
the contextual a posteriori probability of event 8;  = wk repre- 
sents a crucial point of departure from the previous formula- 
tion [29] which relied on unary relations only. 

In the remainder of this section we show that, under certain 
often-adopted assumptions, the conditional probabilities in this 
equation can be expressed in a form that indicates that a re- 
laxation updating rule would be an appropriate method of 
finding the required maximum. We find that the general form 
of our updating rule is very similar to the heuristic updating 
rule suggested in [29]. 

Using Bayes’s formula, we can write: 

(2) 
Using the theorem of total probability to expand the right-hand 

The joint probability density, which appears in the numera- 
tor and the denominator of the above equation, can be 
expressed as: 

x p ( e ,  =we , , . . . ,e; =me, ,...,eN = w e N y 4 j , j c N , )  

(4) 
Assuming that the occurrence of unary measurements is inde- 
pendent of binary relations, we can write: 

Further, it is reasonable to assume that the unary measure- 
ments are conditionally statistically independent and that the 
measurement xj is independent of all of the labelings except 
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The second factor on the right hand side of (4) can be factor- 
ized as follows: 

~ ( 8 1  = m e l , . . . , e i  =we,, . . . ,eN =weN,  4 y , j E N , )  

= p(AilI 4 2 ,  .. ., A i i - 1 ,  Aii+l,.  . ., 

x p(Ai2l Ai39 ...? Aii- ly  A i i+ l ,  . . .Y  = ...) = 

81 = Wel  7 . .  ., 6, = meN ) 

x ... x ~ ( A , I  e, = m o l ,  ..., e, = w o N )  

X P ( ~ ,  = m e , ,  ..., 8, = w e N )  

(7) 
We assume that the binary relations in the set dij , jEN, are in- 
dependent of each other; in other words, 4,, by itself pro- 
vides no information about 4,* without knowledge of Ajlj2, 
which is not in the set We also assume that the rela- 
tion 4, is affected by the labels of objects ai and aj only. Fi- 
nally, it is obvious that knowledge of the labeling Oi 
does not by itself tell us anything about the labeling 8 = W e , .  

We can then simplify the above expression to obtain: 

p(el = w e l 9 . .  ., ei = 0 0 ,  . . ., e N  = me,,, A j , j E N , )  

where &ei = wei ) is the prior probability of label Wei being 

assigned to object ai. Substituting from (6) and (8) into (4) and 
subsequently into (3) we obtain: 

P('i = WOi I ' j , j E N 0  9 -%j. jENi)  

where 

n p(e j  =wej I  x j )  P ( 4 j l  8, = m a , e j  =me,)  
j e N ,  

We notice that each factor in the product in the above expres- 
sion depends on the label of only one other object apart from 
the object ai under consideration. We can, therefore, simplify 
it as follows: 

Q(ei = U , ) =  n 
J E W  

P(Bj  =wPI  x j )  
(1 1) 

p ( 4 j l  ei = ma,  e j  =aP)  

Thus, (9) and (11) tell us how to express the match prob- 
abilities conditional on both unary and binary measurements as 
a function of 

0 the probabilities conditional only on the unary measure- 
ments, and 
information about the binary measurements. 

It is interesting to check what form (9) takes in the absence of 
any measurement information. If 2&y,jsNi does not convey any 

information, then p (a, /ei = ma , e, = ma) is a constant, and if 
x ~ , ~ ~ , ,  does not convey any information, then, for all 

and all ma E R, we have 

p(ei = w,[ x i >  = i ( e i  = m a )  (12) 

By substituting in (9) and ( 1  1), we obtain 

p ( e i  x j , j € N o , 4 j , j E N , ) = i ( e i  = W e , )  (13) 

which is correct. 
Another interesting point to notice is that even if the unary 

measurements do not convey any information, the binary rela- 
tions may still be informative. That is the reason schemes 
which almost ignore the unary measurements, but use binary 
ones, are able to find good solutions to the labeling problem 
(e.g., PI]) .  

Clearly the last term in (1 1) is a quantity that is known to us 
at the outset of the matching process; hence the equations ef- 
fectively tell us how to update the probabilities P(8,  = W e i  \ x i )  
given information about the binary measurements. This sug- 
gests that the desired solution to the problem of labeling, as 
defined by (l), can be obtained by combining (9) and (1  1 )  in 
an iterative scheme where the probabilities P(Oi = mei \ x i )  are 
those calculated at one level (level n,  say) of the iteration 
process, and the probabilities P(Bi = Wei I x j , j C ~ ,  , ' a i j , j € ~ ~  ) 

are the updated probabilities of a match at level n 
(c$ W I ,  [ W ) :  

P(")(Oi = 0 0 ,  ) Q("'(Qi = @e, ) 

P'"'(ei = mi)Q'"'(ei = w A )  olcn 
(ei = me,) = 

p ( " + l )  

where 

The quantity Q(")(Oi = m a )  expresses the support the 
match Bi  = w, receives at the nth iteration step from the other 
objects in the scene, taking into consideration the binary rela- 
tions that exist between them and object ai. The density func- 
tion p ( 4 , l  Bi  = m,,Oj  =up)  corresponds to the compatibil- 
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ity coefficients of other methods (e.g., [25], [36]; that is, it 
quantifies the compatibility between the match O j  = up. and a 
neighboring match 8, = 0,. It appears, therefore, that we have 
compatibility coefficients that are not dimensionless (since a 
density function has dimensions which are the reciprocal of the 
relevant random variable). However, they may be normalized 
by an appropriate datum without affecting the computation. 
This datum is typically chosen so that a coefficient which rep- 
resents indifference (i.e., neither compatibility nor incom- 
patibility) has a normalized value of 1. 

The iteration scheme can be initialized by considering as 
P(o)(Bi = w,, ) the probabilities computed by using the unary 
attributes only, i.e., 

We discuss this initialization process in detail later (Section 
VI. 

Ideally the process would terminate when an unambiguous 
labeling is reached, that is when each object is assigned one 
label only with probability one, the probabilities for all other 
labels for that particular object being zero. Since we find in  
practice that the updating rule we have derived generally ap- 
proaches the state of unambiguous labeling asymptotically, we 
terminate the algorithm if any one of the following conditions 
is true: 

For each scene node one of the match probabilities ex- 
ceeds 1 - €1, where e l  4 1. 

0 In the last iteration, none of the probabilities changed by 
more than e2, where e2 < 1. 

0 The number of iterations has reached some specified 
limit. 

We then use (1) to determine the actual match 

Iv. EVALUATING THE COMPATIBILITY COEFFICIENTS 

The relaxation process of (14) and (15) requires the 
preevaluation of the compatibility coefficients which have the 
form ~(3~1 Bi  =w,,Oj  = w P ) ;  that is they are the density 

functions for the binary measurements a, given the matches 
8; = m a  and B j  = U  

In evaluating the density function we first consider the gen- 
eral case, in which neither u, nor uj is matched to the null label 
U,,; in this case, because the density function is conditional on 
both matches, there is an associated model attribute measure- 

ment Asp. If we assume that the noise in the scene attribute 
measurements is Gaussian, we may write the density func- 
tion as 

P '  

where X is the covariance matrix for the measurement vectors 
4,. In practice, to limit the number of parameters that have to 
be estimated, we assume that the errors associated with each 
one of the measurements are statistically independent; hence: 

k = l  

where q?' is the value of the kth binary relation between 

scene objects ai and uj and A$) the value of the correspond- 

ing binary relation between the matching model labels U, and 
up. The constants ok are the standard deviations of the distri- 
butions of errors in the measurements of the values of the cor- 
responding binary relations. The values of these standard de- 
viations should be small compared with the corresponding 
range sizes p'k' because we assume that the tails of the Gaus- 
sian distribution that lie outside the range D(k) are insignifi- 
cant. If this assumption is not true, some distribution with a 
finite domain (for example the pdistribution) must be used 
instead. Clearly, the theory does not in itself indicate what type 
of distribution should be used, since this is a property of the 
measurement data. Thus if better knowledge of the form of the 
distributions is available, this should be used instead. 

It is important to note that we have assumed that the scene 
and model measurements are compatible; e.g., if A?' and 

A$) are distance measurements, the scales of the scene and 
model should be the same. So if there is uncertainty in the 
relative scaling, this should be built into the expression for 
p ( 4 , l  8; = U,,  O j  = w p ) .  This problem (of uncertainty in 
the relationship between scene and model measurements) is 
encountered more often when the unary measurements are 
used to initialize the probabilities, and so is discussed in more 
detail in Section V. 

Of the remaining types of compatibility coefficient, either 
ai, ai or both are matched to the null node w 0 .  In previous 
methods that used null nodes [12], the attributes were simply 
discarded when the null node was used as the label. Our 
method requires that measurements are used for all labelings, 
so a distribution must be estimated for the binary measure- 
ments that include a null labeling. The reasoning for the case 
in which both objects are labeled as null is similar to that in 
which there is one null label, leading to the same result; we 
therefore do not consider it explicitly here. Also since the 
density function is symmetric in the two matches, we need 
only examine say the case where a, is matched to w 0 .  

There are two reasons why a null labeling might be gener- 
ated. The model may be incomplete, in which case some 
model nodes will be missing and the null node provides an 
alternative label. Also if the image is noisy, we may find that 
the feature extraction process generates spurious nodes, which 
should therefore be labeled with the null model node. We 
consider these two situations in turn. 
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A. Noisy Scene Data 

Because the scene data is usually noisy, not only will this 
affect the measurements of genuine features extracted from the 
scene, but it also creates the possibility that spurious scene 
nodes may be generated that do not correspond to actual 
physical features at all. We cope with this situation by permit- 
ting such spurious nodes to be labeled with the null model 
node. In this case, the null node has no physical existence, so it 
neither has attributes nor has relations with any other model 
node. Thus the conditional part of the expression for the den- 
sity function (i.e., the matches Bi = w ,  and 0, = w o  in the 
expression p ( 4 , l  Qi = w,, O j  = U, ) )  tells us nothing about 
the relations involving the spurious scene nodes, and hence 
provides no information towards evaluating the density func- 
tion. We therefore take the maximum entropy view, and as- 
sume that in the absence of any other information the density 
functions are uniformly distributed within their domain D. 
Hence 

“ J  € D ,  1 

p ( ~ , l  ei =u,,ej = w 0 ) =  nm2 k=l P ( k )  (19) 
l o  otherwise 

B. Incomplete Model 

In some applications, because the model is imperfect it may 
have some missing nodes. For example, in the stereo matching 
application described below (Section VIII), there may be an 
edge in the scene image that is occluded in the model image, 
or it may lie just outside the border of the model image. In 
such a case, we take the view that the missing node does exist, 
but its attributes and relations with other nodes are unknown; 
this node therefore has the character of a “wild card,” to which 
we can match all nodes in the scene whose genuine match is 
missing. That there is only one null model node presents no 
problem, because our theory explicitly permits one model node 
to label many scene nodes. 

From this viewpoint, we consider that the measurements 

A a o  between the null node and another model node W, have 
unknown values, so we can represent them as a set of random 
variables. Therefore in order to calculate the appropriate com- 
patibility coefficient, we use the theorem of total probability to 

expand the density function, making the measurements A a o  
explicit: 

p ( ~ ~ l  e, = w,, e j  = w o )  = J p ( q j l  Aao,ei = U , ,  e j  = w o )  

p ( A 0 l  e, = e, = w o ) d 3 a o  

(20) 
This first term under the integral, 

p < q , (  Aunoei = O , , O ~  = U , ) ,  

is the conditional density function for 4, given the location 
of the missing model node wo.  It is therefore of the same form 
as the density function p ( 4 , l  Bi = U,,  O j  = up)  in the case 

where neither label is the null node (in which, we may remem- 

ber from Section 111, the model measurement AaP was in- 
cluded implicitly). In other words, if we make the assumption 
of a Gaussian distribution as before, 

For the second term, p(A,,l  Oi = w,, B j  = wo ), we again 
adopt the maximum entropy approach. Thus, in the absence of 
any information apart from the possible range of each compo- 

nent of A0, &? should be uniformly distributed over 

that range. If for example is a distance measurement, its 
value could range from around zero (if the missing model node 
should have been located close to the node 0,) to the maxi- 
mum dimension of the scene (if the missing model node should 
have been located at the opposite corner of the scene to the 

node 0,). Thus in general, the likely range of is of the 

order of Ok), the range of A$ . Assuming that the attributes 

are independent, and denoting the width of Gk) by p ( k )  

(Section II), we can put 

l o  otherwise 

and hence 

where the approximation holds provided that, as before, 

An extension to this approach would be to calculate 

p ( a a o l  Oi = U,, B j  = a,) by using the total probability 
theorem to consider all possible positions for o0; this will 
usually give values that are larger than those that result from 
the maximum-entropy approach. 

One may reduce the uncertainty by considering only a win- 
dow of the range of measurements located around the point 
defined by the measurements of the scene node. Then clearly 
one will obtain larger values of p ( 4 , l  Bi = w,, O j  = wo>. At 
the limit, the missing model node will be exactly at the same 
location in the measurement space as the scene node, and 
p(A,l Bi = m , , e j  =a,) will have the maximal value of 

1 /(*”]CI). In this limiting case, the null match would 

therefore be preferred to any of the possible non-null matches 

CTk 4 P ( k )  Vk. 
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except those which match exactly; we conclude, therefore, that 
p ( 4 , l  Bi = w,, 8, = w,) .  should be well below this maximal 
value. 

We note that both ways of dealing with the problem of null 
matches lead to the same formula for the compatibility coeffi- 
cients that involve them. This is very convenient in that we 
may have no means of discriminating a priori between the two 
situations that can create a null match. 

Since the null match density, p ( q j l  Oi =w, ,B ,  = w o ) ,  
has a constant value over the region of interest, we denote its 
value by the symbol q, i.e., 

where the symbol R is introduced for convenience in later sec- 
tions. In Section VI11 we experiment with a range of values of 
v to determine the sensitivity of the algorithm to it. 

v. ASSIGNING THE INITIAL PROBABILITIES 

In this section we provide a rationale for the assignment of 
the probabilities of the initial label matches P'O'(Oi = w , )  
based on the unary measurements. As was discussed in Sec- 
tion 111, we assume that the unary measurements are independ- 
ent, so we are seeking to evaluate the quantities: 

P(O)(e, = w , )  = P(ei  = w , I  x i ) .  

We can expand this using Bayes's theorem and the theorem 
of total probability: 

In order to evaluate this expression, we firstly consider the 
prior probabilities k(ei = U , ) .  If w ,  is the null label w o ,  we 
define the prior probability of a match with this label to be 
some constant <, and the prior probabilities of matches with all 
other labels are assumed to be equal to each other. Thus: 

< i f a = o  
i ( e i  = m a ) =  (27) V ' w , ~ R a n d a # O  

Thus, < represents the proportion of scene nodes that match 
the null model node. Since this proportion will depend on the 
application, <must be determined experimentally. 

In order to be able to evaluate the expression 
p(xi l  Bi  = U,) ,  we need some information about the relation- 
ship between the frames of reference of the scene and model. 
Thus for example, if we were to use the color of a node as a 
unary measurement, this would require some knowledge of the 
relative scale and offset of the color values of the scene and 
model. Similarly, if we were to use the node orientation, we 
would need to have some notion of the overall orientation of 
the model coordinate system with respect to that of the scene. 
The knowledge we have of this overall relation may be imper- 
fect; furthermore it is important to distinguish this uncertainty 

from the uncertainty arising from noise in the measurements of 
the attributes themselves. We do this by expanding the condi- 
tional density function for the unary measurements in terms of 
@, which expresses the (possibly uncertain) relationship be- 
tween the frames of reference, again using the total probability 
theorem: 

j P ( X ,  I 0 1  = wa 9 @)p(ei = Q ) P ( @ ) ~ @  
- - w 1  = U , )  

(28) 
Without knowledge of the unary measurements x, the prob- 
ability of a given match is independent of @; that is, 
P(0,  = w,I @) = P(OL = ma).  Hence (28) simplifies to: 

~ ( ~ 1 1  8, = m a ) =  ~ ( ~ 1 1  0,  @)p(@)'@ (29) 

In this equation, the first term under the integral sign contains 
information about the unary attribute measurement x, for a 
given match, The second term, p(@), is a density function that 
expresses what we know of the relationship between the coor- 
dinate systems used to express the scene and model node 
attributes. 

In general, @ represents a function that transforms meas- 
urements from the model domain into the image domain; 
therefore the form of the function, and hence the evaluation of 
(29), will depend on the nature of the application. We there- 
fore illustrate how we might evaluate the terms in (29) for a 
simple application in which each node has one attribute, whose 
measurement errors have a Gaussian distribution. This attrib- 
ute is such that the function @ is represented by a constant (but 
unknown) offset $ between the scene and model attribute val- 
ues, and the attribute measurement is denoted by the scalar x .  
We consider each of the terms of (29) in turn. 

A. The Effect of the Unary Attributes Given the Relation- 
ship Between the Frames of Reference 

In the case of nonnull matches, if a label ma has a measure- 

ment i,, and if we make the above simplifying assumptions, 
we can say: 

where oo is the standard deviation of the errors. 
Using the same reasoning that we employed for the binary 

relation densities, we assign a constant value qo for the density 
conditional on a null match: 

p(xil Q i  = w o , $ ) = v o  (31) 

~ ( ~ i l  ei = W O )  = 770 

and therefore 

(32) 
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B. The Relationship Between the Scene and Model Frames 
of Reference 

Because 4 is a constant, it could be regarded as a parameter 
whose value should be estimated in some way; ideally we 
would estimate it as part of the matching process. If, however, 
we regard it as another random variable, we must decide on its 
likely distribution. In some applications we will know the re- 
lationship between the coordinate systems. In this case, the 
density function p ( 4 )  collapses to a delta function, and (29) 
becomes (for non-null matches): 

(33) 

Alternatively we may only be able to estimate the mean and 
standard deviation of 4. In this case, from maximum entropy 
considerations, p ( $ )  should take the form of a Gaussian distri- 
bution, with mean and standard deviation om, say; from this 
we may deduce that 

If all that we know is (or if our system specification tells us) 
that 4 say, lies in the range 4, ... &, then maximum entropy 
indicates that we should use an equiprobable density function: 

(35) 

Assuming (as in the case of the binary measurements) that the 
standard deviation of the unary measurements is small, i.e., 
00 4 & - 4,, (29) becomes: 

C. Pruning the Set of Initial Matches 

If our choice of p ( @ )  is such that some of the initial match 
probabilities P'0'(8i = w,) are zero, the form of the updating 
rule of (14) will prevent that match from ever being selected. 
In this case, these potential matches can be excluded from the 
relaxation process, possibly resulting in a significant reduction 
in the computational load. In practice, we also exclude 
matches where the initial probabilities are very small. This 
pruning of the set of possible matches will modify the algo- 
rithm, since the size of the set may now be different for each 
scene node. In other words, each scene label Oi will now be 
matched against its own set of possible model labels SZi c SZ,  
where 

n. = wj,,wj, )...) COiM,] 

VI. COMPARISON WITH O T H E R  RELAXATION METHODS 

In this section we compare our method to those of other 
workers, in particular to the methods of Kittler and Hancock 
[29], Rosenfeld, Hummel, and Zucker [36], Hummel and 
Zucker [25] and Li, Kittler, and Petrou [32]. 

Our method is similar in principle to that of Kittler and 
Hancock, with the important difference that we include binary 
as well as unary information. In both cases the support func- 
tion is initially derived in the form of a multiple summation of 
a product, which is of exponential complexity ((11) in our 
case). In [29], this problem is resolved in one of two ways: 
either the model is sufficiently small that a dictionary method 
may be used, or it is assumed that the number of neighboring 
nodes that interact directly with a given node is very small, 
which enables the factorization of the support function. With 
our method, the inclusion of the binary information leads to a 
form of the support function which can be factorized without 
needing to make any further assumptions; this means that we 
can apply it to large problems in which each node interacts 
with all other nodes. In this factorized form our support func- 
tion is then in a similar form to that derived in [29]. This type 
of product-of-sum support function has also been derived, us- 
ing different approaches, by several other authors [26] ,  [28], 
[331, [451. 

It is interesting to note that unless the binary relations used 
are of an entirely different nature than the unary relations, all 
the information concerning the binary relations is already pres- 
ent in the unary relations. For example, if the unary attributes 
of a node are color and size, and the binary relations used are 
relative position and orientation, the binary relations clearly 
contain additional information to that conveyed by the unary 
measurements. In such a case the unary measurements con- 
cerning a certain object are indeed independent from the 
measurements concerning any other object in the scene, and 
the assumption made in order to derive (9) (and a correspond- 
ing one in the Kittler and Hancock formalism) is correct. 
However, if for example the unary measurements used concern 
position and orientation of the objects in the image coordinate 
system and the binary relations are relative position and rela- 
tive orientation, then the binary relations do not convey any 
extra information over that of the unary measurements, and 
one would expect that the inclusion of the binary relations in 
the relaxation scheme would not make any difference to the 
process. However, this is not the case. The explicit inclusion 
of information that is already there implicitly, greatly acceler- 
ates the process of convergence to the solution because it al- 
lows the modelling of this information. There is an analogous 
situation in the message-centered approaches where optimiza- 
tion of the joint posterior distribution is sought (e.g., [19]): 
Through the Gibbs distribution the long range and higher order 
interactions are implicitly included in the process, but mul- 
tiresolution schemes which make these implicit interactions 
explicit, greatly accelerate the convergence to the solution 
(e.g., [21]). In our case, the inclusion of the binary relations 
and their assumed metric nature in effect allows us to model 
explicitly the overall shape of the configuration of the objects 
we try to label. 

We can see that our updating rule (14) is of the same form 
as that proposed by Rosenfeld et al. (if we view our support 
function Q as being related to their support function q by 
Q = 1 + q), although the form of the support function (15) is 
different. However, we can show that the method of Rosenfeld 
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et al. is the limiting case of our method when we assume that 
the contextual information conveyed by the binary constraints 
4, is small. We may normalise the density function in (15) 
without affecting the overall result; thus we may put 

Q(")(e; = m a >  = n C PCfl)(ej = w p ) r ( e i  = wa,ej  = w P )  
j e N ,  ma& 

(37) 
where 

po being the value of the density function for which match 
Oi = w, is expressing support neither for nor against the match 
0; = or For example, in the application discussed in Sec- 
tion VII, we might put po = 1/R. Thus, r(Gi = U,, e, = wp) is a 
positive quantity, which we can view as expressing compati- 
bility between the matches 0; = wa and e, = wr In particular if 
the match 0; = w, supports the match 9 = up, r is greater than 
one, and vice versa. 

If the influence of match Oi = w, on match e, = wp is small, 
we can put 

r e ;  = w a , e j  =wp)=1+n(e i  =w,,ej =up )  (39) ( 
where we are assuming that the quantities n(0; = y, e, = ma) 
are some small numbers, i.e., 

=U, ,  e j  =up )I (40) 

Substituting (39) into (37), we obtain: 
I 

(41) 
which, on expanding the product and retaining only first order 
terms, becomes 

Q'"'(0; = m a ) =  I +  C C p(")(e ,  =mP)n(ei =wa,e j  =up 1 
jeNioasR 

(42) 

Thus, if the m in this form of the support function are equiva- 
lent to the weighted correlation coefficients of Rosenfeld et al., 
we can see that the two methods are equivalent. In practice 
however, the form of the density function 
p ( A , , (  8; =aa,  e j  = w p )  is Gaussian, with relatively small 
standard deviations (Section IV); therefore the assumption that 
In(€Jj = w p ,  Bi = ma)[  *: 1 is not valid, and indeed in general 

will not even guarantee that Q is nonnegative. Attempts to use 
the method by scaling down the m were not satisfactory: 
matches were more frequently incorrect than those obtained 
using the support function of (1 5), and the number of iterations 
required for convergence was typically greater by about one 
order of magnitude. 

The method of Li et al. uses a similar form of support func- 
tion to that of (42). Also their compatibility coefficients n 
are similar, although they are derived heuristically. The updat- 
ing rule is a modified form of the projected gradient algorithm 
of Hummel and Zucker. From the analysis earlier, it is clear 
that the approach of Li et al. corresponds to the case of low 
contextual information. This assumption clearly does not hold, 
since the unary measurements themselves do not seem to con- 
tain much information in the application they considered. 
In fact the authors could obtain good results even when their 
scheme was initialized at random. However, their scheme 
needed many more iterations to converge (typically 30-50), 
whereas our scheme reaches a consistent solution typically 
within 2 4  iterations. The reason is that the restrictions im- 
posed by the assumption of low contextual information permits 
only a "diluted" version of the contextual information to be 
taken into account at each step, so that many more iterations 
are necessary. 

VII. APPLICATION OF T H E  METHOD T O  GRAPHS W H O S E  
NODES ARE S T R A I G H T  L I N E  S E G M E N T S  

So far we have not indicated what particular objects the 
nodes of the graph represent. We now show how the theory 
may be applied to problems in which the graph nodes corre- 
spond to straight line segments extracted from a scene and a 
corresponding model. 

We use one unary measurement x)l' (i.e., ml = I) ,  namely 
the absolute orientation of each line segment. Therefore, in the 
remainder of this section we use the scalar xi  instead of the 
vector xi to denote a unary measurement, and oo to denote its 
standard deviation. The relationship @, therefore, reduces to 
the addition of @, the orientation of the scene relative to the 
model. The constant po denotes the extent of the possible val- 
ues of the xi;  in the case of line features, since the matching 
process is oblivious to a 180" mismatch, po = 180". 

-a,j.')-the angle between line segments ai and a,. This can 

range from -90" to 90", so 4:)-&a has a value in the 

range -90" . . . +90". Hence (cf. the unary measurement) p(') 
= 180". 

We use four binary relations (m2 = 4): 

" (1) 

-AF'-the angle between segment ai and the line joining the 
center-points of segments ai and ai. Since the orientation of 

ai lies in the range -90"... +90", we constrain 2lf)-Ag 
to lie in this range as well; hence p(2) = 180". 

-$-the minimum distance between the endpoints of line 

segments a; and aj; thus the range p(3) of possible values is 
some measure d of the scene size (measured in pixels). 

4y ) - the  distance between the midpoints of line segments ai 

and ai; therefore p(4) = P'~ ' .  
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An important issue in representations for computer vision 
and pattern recognition is invariance. Structures like the at- 
tributed relational graphs are meant to give rise to intrinsically 
invariant representations of objects [3]. Of the above binary 
relations, the angle relation between lines is invariant to (2D) 
rotation, translation and scale changes; the distance relation is 
invariant to (2D) rotation and translation but not to scale 
changes. Therefore, our graph matching is independent of 
translation and rotation, but not of scale changes. Further, as 
distances between segments are used as matching cues, the line 
segments involved should be of roughly the same size. For this 
purpose, the lines extracted from the model and the scene are 
divided into segments of roughly similar size. 

From the foregoing we see that the implementation of the 
method depends on the values of several parameters; we dis- 
cuss each in turn: 

00, ok,-the standard deviations of the errors in the unary and 
binary measurements. Initially we estimate these values 
from a visual comparison of a typical scene with the corre- 
sponding model. However once a match is established, the 
errors themselves can be obtained from the matched seg- 
ments, and improved estimates of the standard deviations 
can be calculated from these measurements. These im- 
proved estimates can then be used in subsequent instantia- 
tions of the algorithm. 

+the orientation of the scene with respect to the model. The 
distribution of $J will depend on what we know about the 
origins of the data, and is therefore determined by the par- 
ticular problem being solved. 

c-the a priori probability of obtaining a null match. This is 
dependent on the quality of the algorithms that extract line 
segments for the scene and model. A fairly small value is 
chosen initially (< = 0.1). An improved estimate can be ob- 
tained by counting the proportion of null matches obtained 
from match results that are deemed to be good. 

qo, 17-the null match densities for the unary and binary meas- 
urements respectively. The analysis of Section IV indicates 
that we might use one of a range of possible values for the 
null match density. In practice values for 7 in the region of 
1/R from (24) were found to give better results (Section 
VIII). Similarly, we used a value of U180 for qO. 
To find a solution we proceed as follows. Firstly we initial- 

ize the probabilities P'o'(8, = w,), using (25) and (26): 

Then at each iteration step and for each possible match, we 
compute the support function as given by (15): 

Q'"'(Oi = U,) 

and update the probability of each possible match using (14): 

The process is halted when, for each object ai, there is one 
label w,, for which P'"'(8, = 0 8 ,  ) is within some small dis- 

tance E from unity. This ensures that the final labeling is 
in general effectively unambiguous, i.e., P(Bi = w,, ) = 1 for 

some we,, and P(Oi = a) = 0 V a  E R, a f we, ; in other 
words, each node has a single interpretation. 

VIII. EXPERIMENTAL RESULTS 

We applied the theory developed in the previous sections to 
two problems. The first was to match roads extracted from an 
aerial photograph with the corresponding roads in a digital 
map; the second was to match corresponding edges extracted 
from a stereo pair of images. In both applications we assume 
that the line networks have already been extracted by some 
means (e.g., [34] and each of the networks is represented by an 
attributed relational graph, where the nodes are line segments. 
Problems of line or edge extraction and polygon fitting do not 
concern us here. 

A. The Road-Matching Problem 

We assume that the aerial photograph has already been 
roughly corrected for perspective and other geometric distor- 
tions and that a digital map is available, covering a large area 
which includes the area depicted in the photograph. Our pur- 
pose is to identify on the map where exactly the area depicted 
by the photograph is. For this purpose, we chose to match the 
road networks of the image and the map, as opposed to 
matching roundabouts (traffic circles) or junctions which are 
not usually detected robustly by the various edge detectors. 

We used a model consisting of road segments that were ex- 
tracted from a large-scale digital Ordnance Survey map, cover- 
ing a mainly urban area 1-km square. The map is shown scaled 
so that it approximately matches the image (Fig. la). In prac- 
tice this would reflect the knowledge of the height of the air- 
craft and the direction of flight derived from on-board sensors. 

For the scene we used an aerial image from which we ex- 
tracted a series of 19 small square subimages, of varying in- 
formation content and quality; each subimage corresponds to 
an area that is about 10% of that of the region contained in the 
map (Fig. lb). In most cases the line segment extraction proc- 
ess generated around 8%-10% of the number of line segments 
extracted from the map. 

In both scene and model, long line segments (more than 20 
pixels long) are broken into shorter ones to make line sizes in 
model and scene more consistent; this is because we use binary 
relations derived from distances between the centers of pairs of 
line segments. One might argue that the process of breaking 
long line segments may lead to impossible graphs, and that it 
would have been better to resort to other solutions, like for 
example using the length of the segment as a unary attribute. 
Line strings, however, tend to get broken in unpredictable 
places during the process of their detection, and their lengths 
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are very unreliable attributes. Short line segments (less than 
8 pixels long) are omitted in order to limit the size of the data 
sets because the computation time is proportional to the square 
of the product of the scene and model data set sizes. 

(a) Subimages 

Fig. 1 .  Model and image data. 

A.1 Measures of Match Accuracy 

Since there are many geometrical relations between the line 
segments, it is clear that there are several ways we might select 
some group of these relations to measure the goodness of 
match between scene and model. We used two such measures, 
one which relies on knowing the correct match in advance, and 
one which does not. 

The "position error" measure compares the center of gravity 
of the matched segments in the map with the correct position 
obtained using a priori knowledge. This measure is therefore 
only of use for testing the matching algorithm. The errors are 
measured in units of pixels of the image, each image in Fig. 1 b 
being 60-pixels square. By comparison, the map when cor- 
rectly scaled is about 185-pixels square. We assume here that 
the scales of the map and the image are approximately the 
same. 

The "match spread" measure is calculated as follows. Firstly 
the center of gravity of the matched segments in image and 
map is found, and the map is rotated about this center of grav- 
ity to fit the image. The measure is then computed as the stan- 
dard deviation of the difference in position of the segments in 
image and map, measured with respect to their respective cen- 
ters of gravity. This measure, therefore, does not require any 
prior knowledge of where the correct match is on the map; 
hence it is a measure of the plausibility of the match, or in 
other words an indication of how well the algorithm performed 
compared with what one might expect from it. 

Consider the matches illustrated in Fig. 2. In Fig. 2a the 
match is a good one, and so the position error is zero. The 
match spread is 2.8 pixels, which is substantially less than the 
measured standard deviation of the distance measures (8 pix- 
els). In Fig. 2b the match is incorrect, with a position error of 
40 pixels. Also two null matches, indicated by the white line 
segments in the scene, were required in order to find the 
match. The match spread is still only 3 pixels however, indicat- 
ing that the match is a reasonably good fit in spite of being 
incorrect. We can see that the fit is good if we note that the 
match is out by about 180". 

(a) Correct match 

.o I I. ,.. c-: I. , . / '  ,..- 

( I , )  Incorrect but  plausible match 

Fig. 2. Examples of correct and incorrect matches. 

A.2 Dependence on the Unary Measurements 

In our application we include unary information in the form 
of the orientations of the line segments. The usefulness of this 
information depends, therefore, on our knowledge of the rela- 
tive orientation 4 of the image and map. In our experiments we 
assumed that the distribution of 4 was either Gaussian or uni- 
form over some range. In the limiting case of a uniform distri- 
bution over the full range of 4, the algorithm ignores the unary 
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matches 
no. of bad 
matches 
no. of failed 
matches 

information altogether. We tested all 19 scenes of Fig. lb., 
with seven different distributions for 4. The results are shown 
in Table I, with 17 = 1/R and 6 = 0.1. The values for ok were 
estimated as 20", 5", 5 pixels, and 5 pixels for k = 1 ... 4, re- 
spectively. In Table I, a good match is considered to be one 
that is less than 10 pixels in error, a fair one between 10 and 
20 pixels, and a bad one more than 20 pixels in error. This 
large tolerance was used because of the uncertainty in position 
of line segments along their length. A more sophisticated 
analysis might make a distinction between errors along and 
perpendicular to the direction of the segments. In all cases a 
match was found, and all but one of the match spread meas- 
urements were within one standard deviation (8 pixels) of the 
distance relation measurements. We can see from Table I that 
there was little dependence on the unary measurements; good 
results were obtained even when the unary measurements 
contained no information at all (last row of Table I). 

TABLE I 
RESULTS FOR DIFFERENT DISTRIBUTIONS OF $, USING 19 IMAGES 

53 14 18 132 67 73 

0 59 412 424 0 0 

A.3 Dependence on the Values of 77, 4 and Ok 

In order to find good values for these parameters, we used 
the same 19 images that were used in Table I. Using the same 
range of unary constraints and the same values of the noise 
standard deviations, c&, we first tested the algorithm with a 
range of possible combinations of the null match density, 77, 
and the prior null match probability <. We chose a wide range 
of values for q in order to cover the full range of possible val- 
ues for the null match density (Section IV); <took the values 
successively of 1(N + l), 0.1,0.3, and 0.6. 

Table I1 shows the dependence on 77 of the position error 
and the number of null matches (there were on average about 
12 scene nodes to be matched). The first row of the table gives 
the values of q, divided by the constant normalizing factor v of 
the corresponding Gaussian density function: 

1 

matches 
no. of failed 
matches 

The results are an average over all of the images, unary distri- 
butions and values of 6. A bad match is one for which the po- 
sition error is more than 20 pixels; a failed match is one in 
which all of the matches were to the null node. We can see 
from this that good performance is obtained for 77 in the region 
of 1/R, and that the matching process degrades significantly for 
higher values of q. 

We use the same set of results to examine the dependence 
on the null match prior probability, <, except that we discard 
the two highest values for q. The value <= 1/(N + 1) implies 

0 5 16 38 

that <has the same value as the prior probabilities of the non- 
null matches. From Table I11 it appears that the match accu- 
racy is little affected by variations of <, although the number of 
failed matches increases with <, as might be expected. 

TABLE I1 
PERFORMANCE AS A FUNCTION OF THE NULL MATCH DENSITY q. 

(N.B.  Il(vR) E 0.002 IN THESE EXPERIMENTS) 

01 (") 
no. of bad matches 
out of 2850 total 

I 0.0001 I 0.001 I Il(vR) I 0.02 I 0.25 I 1.0 
I 479 I 518 I 514 I 341 I 53 I 35 

5 8 12 20 

42 20 13 46 , 

~~ 

OdO) 
no. of bad matches 
out of 1900 total 

TABLE 111 
PERFORMANCE AS A FUNCTION OF THE PRIOR NULL MATCH PROBABILITY { 

0.1 I 0.3 I 0.6 
467 I 463 I 455 

5 8 12 16 20 25 

30 27 17 12 9 26 

3 5 8 12 20 

17 19 19 19 47 

q (pixels) 
no. of bad matches 
out of 2280 total 

----- 

0 4  (pixels) 3 5 8 12 
no. of bad matches 
out of 2280 total 24 14 16 21 

20 

46 
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A.4 Scaling and Orientation Errors 

We tested the effects of errors in scaling and orientation of 
the map. Good matches were generally obtained provided that 
the map scaling error was within the range -20% . . . + 30%. If 
the scale error is significantly outside this range, gross mis- 
matches usually occur. 

The orientation error that could be tolerated depended 
strongly on the unary constraints; good matches were usually 
obtained provided that the magnitude of the orientation error 
was less than the standard deviation of the unary measure- 
ments. When there were no unary constraints, the results were 
unaffected by the orientation error, as might be expected. 

Table V indicates how the overall match is dependent on 
both orientation and scaling errors. The same 19 images were 
used, and a Gaussian distribution was used for the unary con- 
straints, with a standard deviation of 20". A bad overall match 
was deemed to be one in which the position error was more 
than 20 pixels. 

TABLE V 
MATCH QUALITY AS A FUNCTION OF SCENE SCALE AND ROTATION 

MISMATCH, EXPRESSED AS THE NO. OF BAD OVERALL MATCHES OUT OF 19 

B. Stereo Image Pair Matching 

In the problem of stereo matching we assume that we have 
extracted the edges in the two images and fitted them with 
straight line segments. We also assume that the two images 
have the same orientation, so that we use (33) into (43) in or- 
der to determine the initial probabilities. 

Using a stereo pair of images, we extracted the edges and 
generated a set of line segments for each image. Line segments 
less than 20 pixels long were discarded in order to reduce the 
data set to a size that would fit in the computer memory. We 
used the left-hand image as the model and the right-hand one 
as the scene. The match results indicated that many of the val- 
ues of the parameters needed were similar to the previous ap- 
plication; the exceptions were the angle standard deviation and 
null match parameters. Also the relative orientation of the two 
images is known in this application. We, therefore, used a 
Gaussian distribution for the unary measurements with oo = 5", 
and set ol = oz = 5". We set c= 0.25 to reflect the greater in- 
cidence of null matches. 

Fig. 4 shows a typical result of the matching of a stereo im- 
age pair. The left image contains 84 edges to be matched, and 

I rotation (I 

A.5 The Effects of Extraneous Scene Nodes and Incomplete 
Models 

If the image has a particularly poor signal-to-noise ratio, 
there may well be extraneous nodes in the corresponding scene 
graph. Similarly, if the model graph size is reduced in order to 
limit the problem size, some of the model nodes that are omit- 
ted may be ones that are needed to match the scene nodes. In 
this case the algorithm should match the relevant scene nodes 
to the null model node. Fig. 3 illustrates this. In Fig. 3a, all of 
the nodes in the scene are matched to model nodes. In the 
match shown in Fig. 3b, three spurious scene nodes were 
added, and several model nodes removed, including three for 
which there are matches in the scene. The same parameters 
were used in both cases. We can see that the correct match was 
still obtained, the scene nodes for which there is no match be- 
ing shown in white. These results were picked arbitrarily and 
do not show the limits of the robustness of the algorithm. More 
lines can be deleted from the model and more false lines can 
be added to the scene without the overall match failing. Obvi- 
ously, there comes a point when the scene and the model have 
been degraded enough so that the algorithm fails. Its tolerance 
to errors, however, is very high due to the redundancy built 
into it. 

[a) Scene with no extraneous nodes matched to complete map 

(b)  Scrnr with extraneous lines matched to incomplete map 

Fig. 3. Showing the effect of extraneous scene nodes and incomplete model. 
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the right 69 edges. 60 matching pairs were found, of which two 
are incorrect. The black lines in both images are those that 
remained unmatched. Otherwise corresponding edges in the 
two images are indicated by white lines. Also in the occasional 
instance where two (or more) edges of one image are mapped 
to the same edge of the other, one of the edges will be 
obscured. 

Fig. 4. Matching edge segments from a stereo pair of images. 

C. Algorithm Performance 

We see from (45) and (44) that the computation consists of 
two parts: The precalculation of the compatibility coefficients 
and the relaxation process. Each has a complexity proportional 
to the square of the total possible number of matches, which 
we denote as n,. Thus, n, I NM,  the product of the number of 
scene and model nodes, the equality being obtained when no 
matches have been pruned. 

The calculation of the compatibility coefficients is thus a 
fixed overhead; with our algorithm it is usually the more time- 
consuming part of the computation, taking for example about 
10 sec on a Sun Sparcstation 10 for an example that had a total 
of 951 possible matches. The coefficients also dominate the 
memory consumption, occupying n, floating-point words. 

The computation for each iteration essentially requires one 
multiply-accumulate for each match; in the example above 
each iteration took about 800 msec on the same machine. 
Fig. 5 shows a histogram for the number of iterations required 
for convergence for the road-matching example, accumulated 
over about 3,600 experiments using different parameters and 
scene locations. The relaxation process for this test was 
stopped when for each scene node there was one match that 
had a probability of at least 0.9. 

1x. DISCUSSION AND CONCLUSIONS 

We have developed a theory of probabilistic relaxation for 
structural matching. By using as our starting point the Maxi- 
mum A Posteriori probability rule, we were able to specify 
completely the relaxation algorithm, including the calculation 
of the compatibility coefficients. 

The theory rests heavily on the assumption that binary rela- 
tions between primitives are adequate for the description of the 
whole structure and that higher order relations are superfluous. 
This is certainly true if the binary relations are defined in such 

a way that their knowledge uniquely defines the absolute posi- 
tion (and thus the identity) of a primitive (object) given the 
absolute position of the object with respect to which the binary 
relations are defined. Examples of such binary relations are the 
relative orientation between lines, or the relative orientation, 
midpoint distance and size between line segments. Counter 
examples are relations like “object ai is on the left of object 
uj,” etc. If the binary relations have been chosen in the appro- 
priate way, the number of relations needed to define the whole 
structure fully is given by the square of the graph size, as op- 
posed to an exponentially growing number if higher order re- 
lations were to be involved. This considerably reduces the 
computational overhead. 

800 

600 

400 

200 

0 
5 10 15 20 25 0 

Fig. 5.  Histogram of the number of iterations required for convergence. 

In the specific application we discussed in this paper, fur- 
ther redundancy would be possible if a much more reliable line 
map could be extracted from the image. For example, humans 
could match road networks by simply matching two or three 
roads which are at specific orientations from each other. 
Similarly, objects often can be recognized by recognizing a 
small subpart of them. In principle, this should be possible in 
machine vision too. However, machine vision data are too 
noisy and the matching process has to rely on the cooperative 
matching of all visible subparts. That is why, in the algorithm 
that we implemented, all binary relations between objects are 
taken into consideration. This may sound excessive; however 
it results in a very robust algorithm which, as shown in the 
previous section, can cope with very noisy data containing 
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many extraneous line segments as well as missing whole parts 
of the matched networks. 

Because of the choice of unary and binary relations, our 
matching is invariant to translation and rotation but not to 
scale changes. Clearly the results are not affected if both net- 
works are changed by the same scale factor. However, they 
will deteriorate drastically when scales are changed relative to 
each other by a factor larger than about 20%. Our work is 
aimed at performing inexact matching under distortions caused 
by noise, but not at dealing with rubber-like shape changes. 
This is because the constraints used are geometric rather than 
topological. 

The computational algorithm for the matching may be paral- 
lelized at different levels, according to the requirements of the 
available hardware. Thus, for a coarse-grained parallelism we 
may implement the update rule for each scene node on a sepa- 
rate processor; alternatively on vector-processor or SIMD ar- 
chitectures we may treat the multiply-accumulate operation at 
the heart of the support function as a vector process. 
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