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A recent paper posed the question: “Graph Matching: What are we really talking
about?”. Far from providing a definite answer to that question, in this paper we will
try to characterize the role that graphs play within the Pattern Recognition field. To
this aim two taxonomies are presented and discussed. The first includes almost all the
graph matching algorithms proposed from the late seventies, and describes the different
classes of algorithms. The second taxonomy considers the types of common applications
of graph-based techniques in the Pattern Recognition and Machine Vision field.
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1. Introduction

Starting from the late seventies, graph-based techniques have been proposed

as a powerful tool for pattern representation and classification in structural

Pattern Recognition (PR). After the initial enthusiasm induced by the apparent

“smartness” of this data structure, graphs have been practically left unused for

a long period of time. Recently, the use of graphs in PR is obtaining a growing

attention from the scientific community (see Table 1). This is perhaps due to the

fact that the computational cost of the graph-based algorithms, although still high

in most cases, is now becoming compatible with the computational power of new

computer generations.

In this scenario it is usual to observe that relatively recent applications make use

of graph algorithms that date back to the early eighties. Moreover, the analysis of

the state of the art of graph-based techniques is made difficult by the considerable

extension of the bibliography sources that must be taken into account, being spread

over the last three decades.
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Table 1. The number of papers dealing with different applicative areas by means of graph

matching techniques as a function of the time periods. In parentheses is the number of papers
that are centered around the presentation of an application.

2D & 3D Biomedical
Image Document Biometric Image Video and

Period Analysis Processing Identification Databases Analysis Biological

up to 1990 3 (0) 1 (1)

1991–1994 3 (0) 2 (2) 1 (1) 1 (1)

1995–1998 8 (3) 9 (5) 6 (6) 5 (5) 1 (0)

1999–2002 19 (6) 8 (4) 8 (8) 8 (7) 6 (6) 2 (2)

Here we attempt to catalogue the literature on basic techniques for graph match-

ing and related problems. Further, we report on the Pattern Recognition and Ma-

chine Vision applications where graphs are used sometimes in the recognition pro-

cess.

To this end, our review is centered around two different taxonomies: a taxon-

omy of matching algorithms, that is presented discussing the different problems

and solution strategies involved. The second is the taxonomy of the most common

applications of graph-based techniques in the PR field.

2. Algorithms Taxonomy

In many applications a crucial operation is the comparison between two objects or

between an object and a model to which the object could be related. When struc-

tured information is represented by graphs this comparison is performed using some

form of graph matching. Graph matching is the process of finding a correspondence

between the nodes and the edges of two graphs that satisfies some (more or less

stringent) constraints ensuring that similar substructures in one graph are mapped

to similar substructures in the other.

In this section we will present a review of the algorithms that have been pro-

posed and used in the PR field for the graph matching problem (in the several

forms in which this problem can be posed), and associated problems, such as graph

prototyping and graph clustering. Figure 1 presents a synoptic picture of the works

that will be reviewed, organized according to the kind of problem tackled by each

algorithm and the solution technique.

We have divided the matching methods into two broad categories: the first

contains exact matching methods that require a strict correspondence among the

two objects being matched or at least among their subparts. The second category

defines inexact matching methods, where a matching can occur even if the two

graphs being compared are structurally different to some extent. Sections 2.1 and

2.2 will be dedicated to exact and inexact matching, respectively; in Sec. 2.3, we will

discuss algorithms dealing with other (i.e. non graph-matching) problems involving

graphs in PR.
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Figure 1: The taxonomy of the reviewed algorithms. For each algorithm the taxonomy reports the 
first author, the year and the corresponding bibliographic reference. 
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Fig. 1. The taxonomy of the reviewed algorithms. For each algorithm the taxonomy reports the
first author, the year and the corresponding bibliographic reference.

2.1. Exact matching algorithms

Exact graph matching is characterized by the fact that the mapping between the

nodes of the two graphs must be edge-preserving in the sense that if two nodes

in the first graph are linked by an edge, they are mapped to two nodes in the

second graph that are linked by an edge as well. In the most stringent form of exact

matching, graph isomorphism, this condition must hold in both directions, and the

mapping must be bijective. That is, a one-to-one correspondence must be found

between each node of the first graph and each node of the second graph. A weaker

form of matching is subgraph isomorphism, that requires that an isomorphism holds

between one of the two graphs and a node-induced subgraph of the other. Actually,

some authors (e.g. Ref. 172) use the term subgraph isomorphism in a slightly weaker
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sense, dropping also the condition that the mapping should be edge-preserving in

both directions. The resulting matching type, that other authors (e.g. Ref. 60) call

monomorphism, requires that each node of the first graph is mapped to a distinct

node of the second one, and each edge of the first graph has a corresponding edge

in the second one; the second graph, however, may have both extra nodes and extra

edges. A still weaker form of matching is homomorphism, that drops the condition

that nodes in the first graph are to be mapped to distinct nodes of the other; hence,

the correspondence can be many-to-one. Finally, another interesting matching type

maps a subgraph of the first graph to an isomorphic subgraph of the second one;

since such a mapping is not uniquely defined, usually the goal of the algorithm is

to find the largest subgraph for which such a mapping exists. Hence, this problem

is known in literature as finding the maximum common subgraph (MCS ) of the two

graphs. Actually, there are two possible definitions of the problem, depending on

whether node-induced subgraphs or plain subgraphs are used. In the first case, the

maximality of the common subgraph is referred to the number of nodes, while in

the second it is the number of edges that is maximized. It is widely known that

the problem of finding the MCS of two graphs can be reduced to the problem of

finding the maximum clique (i.e. a fully connected subgraph) in a suitably defined

association graph.4 Hence we will also cite some maximum clique detection methods

that have been used in PR.

The matching problems mentioned above are all NP-complete except for graph

isomorphism, for which it has not yet been demonstrated if it belongs to NP or not.

Polynomial isomorphism algorithms have been developed for special kinds of graphs

(e.g. for trees by Aho et al.1 in 1974, for planar graphs by Hopcroft and Wong68 in

1974, for bounded valence graphs by Luks97 in 1982) but no polynomial algorithms

are known for the general case. Hence, exact graph matching has exponential time

complexity in the worst case. However, in many PR applications the actual compu-

tation time can be still acceptable, because of two factors: first, the kinds of graphs

encountered in practice are usually different from the worst cases for the algorithms.

Second, node and edge attributes can be used very often to reduce dramatically the

search time.

Of the above-mentioned matching problems, exact isomorphism is very seldom

used in PR, since more often than not the graphs being compared are obtained

as the result of a (sometimes very complex) description process that is inevitably

subject to some form of noise, and so missing or extra nodes and edges can ap-

pear, hampering the isomorphism. Subgraph isomorphism and monomorphism, in-

stead, albeit more demanding from a computational viewpoint, can be effectively

used in many contexts, and several algorithms for these problems have been pro-

posed. Finally, the MCS problem is receiving much attention, albeit exact meth-

ods known up to now are only able to deal with graphs with a small number

of nodes.
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2.1.1. Techniques based on tree search

Most of the algorithms for exact graph matching are based on some form of tree

search with backtracking. The basic idea is that a partial match (initially empty) is

iteratively expanded by adding to it new pairs of matched nodes; the pair is chosen

using some necessary conditions that ensure its compatibility with the constraints

imposed by the matching type with respect to the nodes mapped so far, and usually

using also some heuristic condition to prune as early as possible unfruitful search

paths. Eventually, either the algorithm finds a complete matching, or it reaches a

point where the current partial mapping cannot be further expanded because of the

matching constraints. In this latter case the algorithm backtracks, i.e. undoes the

last additions until it finds a partial matching for which an alternative extension

is possible. If all the possible mappings that satisfy the constraints have already

been tried, the algorithm halts. Several different implementation strategies of this

kind of algorithm have been employed, differing in the order the partial matches

are visited. Probably the simplest is depth-first search that requires less memory

than others and lends itself very well to a recursive formulation; it is also known as

branch and bound. A nice property of such algorithms is that they can be very easily

adapted to take into account the attributes of nodes and edges in constraining the

desired matching, with no limitations on the kind of attributes that can be used.

This is very important for PR applications where often attributes play a key role

in reducing the computational time of the matching.

The first important algorithm of this family is due to Ullmann156 in 1976.

Ullmann’s algorithm is widely known and, despite its age, it is still widely used and

is probably the most popular graph matching algorithm. The problems addressed by

the algorithm are graph isomorphism, subgraph isomorphism and monomorphism,

but the author also suggests a way to employ it for maximum clique detection and

hence for the MCS problem (although the nature of the algorithm makes it less

suited to this problem). To prune unfruitful matches, Ullmann proposes a so-called

refinement procedure, that works on a matrix of possible future matched node pairs

to remove, on the basis of a suitably defined necessary condition, the ones that are

not consistent with the current partial matching.

Another interesting monomorphism algorithm based on backtracking has been

proposed by Ghahraman et al.60 in 1980. In this paper the authors, in order to

prune the search space, use a technique that is somewhat resembling the associa-

tion graph cited before. Namely, they work on the so-called netgraph obtained from

the Cartesian product of the nodes of two graphs being matched. Monomorphisms

between these two graphs correspond to particular subgraphs of the netgraph. The

authors devise two necessary conditions that must be satisfied by the netgraph

if the current partial mapping is going to lead to a complete monomorphism: a

strong necessary condition and a weak necessary condition, less stringent than the

former but also fairly easier to verify. From these conditions stem two versions of

the algorithm in which the conditions are used to quickly detect unfruitful partial
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solutions. A major drawback of these algorithms is that, at least in the implemen-

tation suggested by the authors, the netgraph is represented using a matrix of size

N
2
×N

2, where N is the number of nodes of the largest graph. Consequently, only

small graphs can be reasonably dealt with.

A more recent algorithm for both isomorphism and subgraph isomorphism is

the VF algorithm, due to Cordella et al.28,32 The authors define a heuristic that is

based on the analysis of the sets of nodes adjacent to the ones already considered

in the partial mapping. This heuristic is fast to compute leading in many cases to a

significant improvement over Ullmann’s and other algorithms, as shown in Refs. 33

and 38. In a 2001 paper,29 the authors propose a modification of the algorithm

(called VF2) that reduces the memory requirement from O(N2) (that compares

favorably with other algorithms) to O(N) with respect to the number of nodes in

the graphs, thus making the algorithm particularly interesting for working with

large graphs.

One of the most recent tree search methods for isomorphism has been proposed

by Larrosa and Valiente86 in 2002; the authors reformulate graph isomorphism

as a Constraint Satisfaction Problem (CSP), a problem that has been studied very

deeply in the framework of discrete optimization and operational research. Thus the

authors apply to graph matching some heuristics derived from the CSP literature.

The tree search approach has also been used for the clique detection and the

MCS problem. In particular, the most famous clique detection algorithm, developed

by Bron and Kerbosh14 in 1973, falls into this category. This algorithm, also cited

as ACM Algorithm #457, has been among the first algorithms using backtracking

for a problem related to graph matching. It is based on the use of a simple but

effective heuristic for pruning the search tree that requires a relatively small data

structure to be computed (an array of counters). Its simplicity, together with an

acceptable performance in most cases (compared to more recent algorithms), make

it still widely used.

A more recent, effective algorithm for clique detection is due to Balas and Yu6;

like Bron–Kerbosh, this algorithm also searches for maximum cliques using tree

search. The difference lies in the heuristic, that, for Balas–Yu, is based on graph

coloring techniques.

Since maximum clique detection is inherently an expensive problem, some recent

work (Refs. 117 and 143, both in 1998) has also investigated the possibility of

obtaining a significant speed-up by a parallel algorithm. In particular, Shinano

et al. applied to clique detection a publicly available tool (PUBB)a for developing

parallel branch and bound algorithms. Pardalos et al., instead, presented an original

parallel algorithm developed using the MPIb message passing library.

Another algorithm that applies backtracking to the MCS problem is due to

McGregor102 in 1982. Differently from the methods outlined above, McGregor’s

ahttp://al.ei.tuat.ac.jp/∼yshinano/pubb/
bhttp://www-unix.mcs.anl.gov/mpi/
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algorithm faces the MCS problem without converting it into a maximum clique

problem. An experimental comparison between MCS algorithms performed by

Bunke et al.16 shows that under some conditions (namely, sparse graphs) this algo-

rithm may outperform clique based methods.

Finally, we can also cite two papers presenting algorithms for problems that

are strongly related to MCS. In the paper by Koch81 in 2001, a slightly simplified

version of the MCS problem is faced: the search of the connected MCS. The author

introduces a technique to reduce this problem to maximum clique detection, and

then suggests the use of the Bron–Kerbosh algorithm to find the maximum clique.

In the paper by Demko35 in 1997, a generalization of MCS to hypergraphs is inves-

tigated. The proposed method is not based on depth-first search but explores the

search tree by using the widely known A* algorithm.130

2.1.2. Other techniques

Probably the most interesting matching algorithm that is not based on tree search

is Nauty, developed by McKay103 in 1981. The algorithm deals only with the iso-

morphism problem, and is regarded by many authors as the fastest isomorphism

algorithm available today. It is based on group theory. In particular, it uses some

results coming from this theoretical framework to construct in an efficient way the

automorphism group of each of the input graphs. From the automorphism group, a

canonical labeling is derived, that introduces a node ordering that is uniquely de-

fined for each equivalence class of isomorphic graphs. So, two graphs can be checked

for isomorphism by simply verifying the equality of the adjacency matrices of their

canonical forms. The equality verification can be done in O(N2) time, but the con-

struction of the canonical labeling can require an exponential time in the worst case

(Miyazaki111 in 1997 showed some classes of graphs that exhibit this exponential

behavior). Anyway, in the average case this algorithm has quite impressive perfor-

mance, although in Refs. 38 and 53, it has been verified that under some conditions

it can be outperformed by other algorithms like the above mentioned VF2. Fur-

thermore, it does not lend itself very well to exploit node and edge attributes of

the graphs, that in many PR applications can provide an invaluable contribution

to reduce the matching time.

The fact that the canonical labeling needs to be computed separately for each

graph, independently of the other graph being matched, can make the Nauty algo-

rithm really effective for matching a single graph against a large, fixed database of

graphs, for which the canonical labeling has been pre-computed.

This property is shared by some other proposed algorithms that are specifically

aimed at reducing the cost of matching one input graph against a large library of

graphs, suitably preprocessed. Amongst the first algorithms of this kind is the one

introduced in Bruno Messmer’s Ph.D. thesis106 in 1995, and successively presented

in a paper by Messmer and Bunke107 in 2000. The proposed approach, that is in-

spired by the RETE algorithm (used for rule matching in expert system engines),
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is based on a recursive decomposition of each graph of the library into smaller

subgraphs, until trivial, one-node graphs are reached. The matching process, then,

exploits the fact that some of the parts are common to several graphs in the li-

brary, to avoid repeating their comparison against the input graph. In this way, the

total matching time has a sublinear dependency on the number of graphs in the li-

brary. The initial version of the algorithm addresses the isomorphism and subgraph

isomorphism problems.

Messmer and Bunke proposed a more impressive algorithm18,109 in 1997. Their

new algorithm, that deals with isomorphism and subgraph isomorphism, in a pre-

processing phase builds a decision tree from the graph library. Using this decision

tree, an input graph can be matched against the whole library in a time that is

O(N2) with respect to the input graph size, and completely independent of the

number of graphs in the library. An extension to MCS is presented in a paper by

Shearer et al.140 in 1997. More recently, Shearer et al.142 also proposed an exten-

sion of this method that is further optimized for the case of a sequence of input

graphs that are changing slowly over time. There is of course a price that must

be paid for the excellent performance of this algorithm: the preprocessing phase

requires a time that is always exponential with respect to the number of nodes in

the graphs. A still more important problem is that the space required to store the

decision tree is also exponential with respect to the number of nodes. For these

reasons, the algorithm is practically applicable only for very small graphs (no more

than a dozen nodes).

Other two recent papers, by Lazarescu et al.88 in 2000 and by Irniger and

Bunke73 in 2001, proposed the use of decision trees for speeding up the match-

ing against a large library of graphs. In these cases, the decision tree is not used

to perform the matching process, but only for quickly filtering out as many li-

brary graphs as possible, applying then a complete matching algorithm only to the

remaining ones.

2.2. Inexact matching algorithms

The stringent constraints imposed by exact matching are in some circumstances

too rigid for the comparison of two graphs. In many applications, the observed

graphs are subject to deformations due to several causes: intrinsic variability of the

patterns, noise in the acquisition process, presence of nondeterministic elements

(e.g. neural networks) in the processing steps leading to the graph representation,

are among the possible reasons for having actual graphs that differ somewhat from

their ideal models. So the matching process must be tolerant: it must accommodate

the differences by relaxing, to some extent, the constraints that define the match-

ing type. Even when no deformation is expected, this can be useful. As we have

seen, exact graph matching algorithms (except for special kinds of graphs) require

exponential time in the worst case. If this is too costly, it may be wiser to turn to

algorithms that do not guarantee to find the best solution, but that, at least, give
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a good approximate solution in reasonable time.

These two different needs (which may actually both be present) have led to the

development of inexact graph matching algorithms. Usually, in these algorithms the

matching between two nodes that do not satisfy the edge-preservation requirements

of the matching type is not forbidden. Instead, it is penalized by assigning to it a

cost that may take into account other differences (e.g. among the corresponding

node/edge attributes). So the algorithm must find a mapping that minimizes the

matching cost.

Optimal inexact matching algorithms always find a solution that is the global

minimum of the matching cost. This implies that if an exact solution exists, it will

be found by such algorithms. Hence they can be seen as a generalization of exact

matching algorithms. Optimal algorithms face the problem of graph variability and

they do not necessarily provide an improvement of the computation time. On the

contrary, they are usually fairly more expensive than their exact counterparts.

Approximate or suboptimal matching algorithms, instead, only ensure to find a

local minimum of the matching cost. Usually this minimum is not very far from

the global one, but there are no guarantees. Even if an exact solution exists, they

may not be able to find it and for some applications this may not be acceptable. If

it is acceptable, then the suboptimality of the solution is abundantly repaid by a

shorter, usually polynomial, matching time.

A significant number of inexact graph matching algorithms base the definition of

the matching cost on an explicit model of the errors (deformations) that may occur

(i.e. missing nodes, etc.), assigning a possibly different cost to each kind of error.

These algorithms are often denoted as error-correcting or error-tolerant. Another

way of defining a matching cost is to introduce a set of graph edit operations (e.g.

node insertion, node deletion, etc.); once each operation is assigned a cost, the

cheapest sequence of operations needed to trasform one of the two graphs into the

other is computed. The cost of this sequence is called the graph edit cost.

Some of the inexact matching methods also propose the use of the matching

cost as a measure of dissimilarity of the graphs, e.g. for selecting the most similar

in a set of graphs, or for clustering. In some cases, the cost formulation verifies

the mathematical properties of a distance function (e.g. the triangular inequality);

then we have a graph distance that can be used to extend to graphs some of the

algorithms defined in metric spaces. Of particular interest is the graph edit distance,

obtained if the graph edit costs satisfy some constraints (e.g. the cost of node inser-

tion must be equal to the cost of node deletion). Bunke demonstrated in a paper17

of 1997 that by a suitable assignment of costs to edit operations, the MCS problem

can be considered a special case of graph edit distance computation. In Ref. 19, a

demonstration of the metric properties of the resulting distance is provided, while in

a 1999 paper,15 the same author shows that the graph isomorphism and subgraph

isomorphism problems can be reduced to graph edit distance. Two recent papers by

Wallis et al.162 and by Fernandez and Valiente48 suggested further improvements

to the distance proposed by Bunke.
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In the following we will review the most important inexact graph matching

methods, grouped on the basis of the kind of algorithm employed for matching.

2.2.1. Techniques based on tree search

Tree search with backtracking can also be used for inexact matching. In this case

the search is usually directed by the cost of the partial matching obtained so far,

and by a heuristic estimate of the matching cost for the remaining nodes. This

information can be used either to prune unfruitful paths in a branch and bound

algorithm, or also to determine the order in which the search tree must be traversed,

as in the A* algorithm. In this latter case, if the heuristic provides a close estimate

of the future matching cost, the algorithm finds the solution quite rapidly; but if

this is not the case, the memory requirement is considerably larger than for the

branch and bound algorithm.

The first tree based inexact algorithm proposed in PR literature is due to Tsai

and Fu154 in 1979. The paper introduces a formal definition of error-correcting

graph matching of Attributed Relational Graphs (ARG), based on the introduction

of a graph edit cost. While the formalism is general, the proposed algorithm takes

into account only the operations of node and edge substitution, omitting insertion

and deletion. Hence, the graphs being matched are required to be structurally

isomorphic. The proposed heuristic is based on the computation of the future node

matching cost by neglecting the constraint that the mapping has to be injective;

the search method ensures to find the optimal solution. In a 1983 paper,155 the

same authors propose an extension of the method that also considers insertion and

deletion of nodes and edges, for an error-correcting subgraph isomorphism. A more

recent paper by Wong et al.172 in 1990 proposes an improvement of the heuristic

of Tsai and Fu for error-correcting monomorphism, taking into account also the

future cost of edge matching.

A similar approach is used in a paper by Sanfeliu and Fu132 in 1983 where

the definition of a true graph edit distance is attempted. In this paper the authors

consider as basic edit operations the node and edge substitution together with node

split and node merging.

Two successive papers by Eshera and Fu44,45 in 1984, proposed a suboptimal

method for the distance computation. This method is based on the decomposition

of the two ARG’s into the Basic ARG’s (BARG’s), that are subgraphs made by

a node together with the edges starting from that node and their other endpoints.

The graph matching is approximated by the simpler problem of finding an optimal

match between the sets of BARG’s of the two graphs, that can be computed in a

polynomial time using dynamic programming.

In a paper of 1980, Gharaman et al.,59 proposed an optimal inexact graph

monomorphism algorithm that is based on the use of branch and bound together

with a heuristic derived from the netgraph (see Sec. 2.1.1).

Another interesting early paper is due to Shapiro and Haralick136 in 1981, the
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authors propose an algorithm for finding the optimal error-correcting homomor-

phism between two hypergraphs. The matching algorithm is based on branch and

bound with heuristics. In a later paper (1985),137 the same authors showed that

the distance proposed by Sanfeliu and Fu132 in 1983 does not fulfil all the metric

properties and propose a distance between hypergraphs that is based on the number

of unmatched relations.

Among the more recent proposals based on tree search we can cite the optimal

algorithm by Dumay et al.40 in 1992, where a graph distance is computed using

A*. The use of A* has been proposed more recently by Berretti et al.9–11 in their

2000 and 2001 papers. The proposed algorithm uses a heuristic that is based on

the estimate of the future cost using a bipartite matching problem. This problem

consists in finding the largest matching between two sets of nodes forming a bipartite

graph, with the constraint that each node must be used at most once. This is a

considerably simpler problem than graph matching and can be solved in polynomial

time. Another interesting aspect of the method proposed by Berretti et al.11 is that

their heuristic is defined incrementally, in such a way to avoid recomputing most of

its terms when passing from a search state to its successors. A* search appears also

in a recent paper by Gregory and Kittler63 in 2002, where a fast, simple heuristic is

used that takes into account only the future cost of unmatched nodes. The authors

assume that at least for small graphs the less accurate estimate of the future cost

is abundantly repaid by the time savings obtained in computing a less complicated

heuristic.

Another recent inexact algorithm has been proposed by Cordella et al. in two

papers30,31 in 1996 and 1997. This algorithm deals with deformations by defining

a transformation model in which under appropriate conditions a subgraph can be

collapsed into a single node. The transformation model is contextual, in the sense

that a given transformation may be selectively allowed depending on the attributes

of neighboring nodes and edges.

Along the same lines, Serratosa et al.135 in 1999 presented an inexact matching

method that also exploits some form of contextual information. The authors define

a distance between Function Described Graphs (FDG) that are ARG’s enriched

with additional information relative to the joint probability of the nodes in order

to model with one FDG a set of observed ARG’s. The proposed method finds the

optimal distance using tree search. In a successive paper by the same authors134 a

more efficient, suboptimal algorithm is presented. This algorithm is based on the

distance between the expanded vertices that are analogous to the BARG’s cited

above.

As with exact matching, parallelization has also been investigated for the inexact

case. In particular, a parallel algorithm has been presented in 1997 by Allen et al.2

The algorithm uses a parallelized branch and bound to compute a graph distance

between two graphs having the same number of nodes.

Let us now consider some inexact matching algorithms that deal with special

restricted classes of graphs: trees, planar graphs and Region Adjacency Graphs
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(RAG’s). The following are only a small sample, with no pretension of completeness,

of the many algorithms that have been proposed for matching special kinds of

graphs. Shasha et al. in a 1994 paper,138 proposed a tree edit distance and compare

two algorithms for its computation: an optimal algorithm, based on tree search, and

a suboptimal one, that employs simulated annealing. Oflazer113 in 1997 defined an

error-correcting tree matching algorithm where only graph edit operations applied

to leaves are considered; the algorithm is based on branch and bound. In 1999,

Haris and Efstradiatis65 proposed a method for computing the error correcting

MCS between a tree and a directed acyclic graph (DAG), by performing a clique

detection on an association graph. Valiente, in a 2001 paper,158 proposed a tree

distance definition showing that it can be computed in linear time with respect to

the total number of nodes in the two trees being matched.

For planar graphs, Rocha and Pavlidis128 presented an optimal algorithm for

error-correcting homomorphism.

In a paper by Wang and Abe (1995),164 a distance between RAG’s is proposed,

and is computed using a suboptimal algorithm. More recently, Llados et al. in a

2001 paper95 defined a graph edit distance for RAGs using edit operations that

are devised to model common distortions in image segmentation; the distance is

computed using an optimal algorithm based on branch and bound.

2.2.2. Continuous optimization

The matching methods examined so far rely on a formulation of the matching

problems directly in terms of graphs, or of mathematical structures with the same

expressive power. A radically different approach is to cast graph matching, that is

inherently a discrete optimization problem, into a continuous, nonlinear optimiza-

tion problem. Then, there are many optimization algorithms that can be used to

find a solution to this problem. These algorithms do not ensure the optimality of

the solution (although the most sophisticated of them include techniques to avoid

trivial local optima). Furthermore, the found solution needs to be converted back

from the continuous domain into the initial discrete problem by a process that may

introduce an additional level of approximation. Nevertheless, in many application

contexts this approach is very appealing because of its extremely reduced compu-

tational cost that is usually polynomially dependent (and with a low exponent) on

the size of the graphs. Moreover, the solution is, in many cases, built by succes-

sive improvements of an initial tentative mapping, allowing the system designer to

choose between a quick and inaccurate solution and a more expensive one that is

possibly more precise, by tuning the parameters of the algorithms.

The first family of methods based on this approach uses relaxation labeling. One

of the pioneering works for this approach is due to Fischler and Elschlager51 in 1973.

The basic idea is that each node of one of the graphs can be assigned one label out

of a discrete set of possible labels, that determines which node of the other graph

it corresponds to. During the matching process, for each node there is a vector of
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the probabilities of each candidate label. Initially, these probabilities are computed

(heuristically) on the basis of node attributes, of node connectivity and possibly of

other available information. Then, in successive iterations, each probability is mod-

ified taking into account the label probabilities of the neighboring nodes, until the

process converges to a fixed point, or a maximum number of iterations is reached.

At this point, for each node the label having the maximum probability is chosen.

Among the drawbacks of the initial formulations of this technique, is the fact

that node/edge attributes are used only in the initialization of the matching pro-

cess; moreover, the design of iteration scheme lacked a theoretical foundation. These

problems have been solved by more recent papers adopting this technique. In par-

ticular, in 1989 Kittler and Hancock80 provided a probabilistic framework for re-

laxation labeling, in which the update rules previously used for the probabilities

are given a theoretical motivation. In 1995, Christmas et al.27 proposed a method,

based on the theoretical framework of Kittler and Hancock, that is able to take

into account during the iteration process (and not only during initialization) both

node and edge attributes. Wilson and Hancock167 in 1997 extended the probabilis-

tic framework by introducing a Bayesian consistency measure, that can be used

as a graph distance. The authors also compare three different relaxation schemes

on the basis of this measure. An extension of this method has been proposed by

Huet and Hancock71 in 1999. This method also takes into account edge attributes

in the evaluation of the consistency measure. Myers et al.112 in 2000 proposed a

new matching algorithm based on the Wilson and Hancock probabilistic relaxation

framework that introduces the definition of a Bayesian graph edit distance. This

distance is then approximated by considering independently the BARG’s of the

graphs (that the authors denote as supercliques), so as to perform the computation

in polynomial time. Finally, in a recent paper (2001), Torsello and Hancock151 pro-

posed the use of relaxation labeling also for computing an edit distance between

trees.

A recent method by Luo and Hancock98 is based, like the ones mentioned above,

on a probabilistic model of matching. In this case the nodes of the input graph play

the role of observed data while the nodes of the model graph act as hidden random

variables. The matching is then found by using the Expectation-Maximization (EM)

algorithm.36 It should be noted that EM, like the other algorithms described in this

section, is not guaranteed to determine a global minimum and moreover is critically

dependent on initial model estimates.

Given that these recent relaxation labeling algorithms do not suffer from the

problems of the early formulations, relaxation labeling only deals with a one-way

correspondence: at the completion of the algorithm each node gets a label, but

there is no guarantee that each label is assigned to only one node. Whether this is

required or not depends on the particular application.

A different family of methods is based on a formulation of the problem as a

Weighted Graph Matching Problem (WGM) that permits the enforcement of two-

way constraints on the correspondence.
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Weighted Graph Matching can be seen as a generalization of the MCS problem

if edge induced subgraphs are considered. It consists in finding a matching, usually

expressed by means of a matching matrix M , between a subset of the nodes of

the first graph and a subset of the nodes of the second graph. The edges of the

graphs are labeled with weights that are real numbers, usually between 0 and 1.

The desired matching must optimize a function depending on the weights of the

edges preserved by the match. The elements of M are constrained to assume only

the discrete values 0 and 1 and the sum of each row and of each column must be

not greater than 1 (it is the symmetry between the constraints on the rows and on

the columns of M that gives the two-way nature to the solutions of WGM). Usually

the problem is transformed into a continuous one by allowing M elements to have

continuous values between 0 and 1. In this case, the WGM problem becomes a

quadratic optimization problem. An important limitation of this approach, from

the perspective of PR applications, is that nodes cannot have attributes and edges

cannot have other attributes than their weight. This restriction imposes a severe

limit on the use of the semantic information often available in real applications.

Among the first papers based on this formulation is the work by Almohamad and

Duffuaa3 in 1993. In this paper the quadratic problem is linearized and solved using

the simplex algorithm.87 The approximate, continuous solution found this way is

then converted back into discrete form using the so-called Hungarian method87 for

the assignment problem.

Rangarajan and Mjolsness127 in 1996, proposed a method based on Lagrangian

relaxation networks in which the constraints on the rows and on the columns of the

matching matrix are satisfied separately and then equated through a Lagrange mul-

tiplier. The authors add to the function to be optimized a so-called self-amplification

term to break the symmetry in the solution space that could be an obstacle to the

convergence of the algorithm if multiple global optima exist.

Also in a 1996 paper, Gold and Rangarajan61 presented the Graduated Assign-

ment Graph Matching (GAGM) algorithm. In this algorithm a technique known as

graduated nonconvexity is employed to avoid poor local optima. With this method

the constraints on the matching matrix are enforced gradually through a control

parameter that is increased at each iteration of the algorithm. In this way, during

the initial iterations the algorithm will be free to converge to a good value of the

objective function that may not satisfy all the constraints. Then, successively, with

a larger value of the control parameter that imposes more stringent constraints, the

algorithm will move gradually towards a consistent solution, that of course is not

guaranteed to be optimal.

Another approach that uses continuous optimization to solve graph match-

ing problems is based on a theorem by Motzkin and Straus that establishes a

close relation between the clique problem and continuous optimization. Namely,

the Motzkin–Straus theorem proves that all the maximum cliques of a graph

correspond to maxima of a well-defined quadratic functional. The functional
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proposed by Motzkin and Straus does not satisfy the converse property: there may

be maxima of this functional that do not correspond to maximum cliques. More

recently, in 1997, Bomze12 proposed a modified functional for which the correspon-

dence holds in both senses.

Among the first papers to suggest the use of Motzkin–Straus theorem for graph

matching was that of Pelillo and Jagota120 in 1995 where the theoretical aspects

of the problem are discussed, together with a method to avoid spurious maxima

of the Motzkin–Straus functional (this paper appeared before Bomze theorem).

In the same year Pelillo119 proposed an implementation of the method where the

quadratic problem is solved by means of relaxation networks,129 an iterative local

optimization technique.

In 1998, Pelillo121 presented a unified framework for relational matching based

on the Bomze functional and on a family of replicator equations, derived from

evolutionary game theory, that can be used to solve the corresponding quadratic

problem; the author shows that the relaxation networks used previously can be

seen as a special case of replicator equations. The same author showed in a 1999

paper123 how this framework can be used to develop a neural architecture for graph

matching.

In 1999, Pelillo et al.122 introduced a technique to reduce the MCS problem

between trees to a clique problem and then solved it using replicator equations.

A generalization of the method is presented in a 2002 paper by Pelillo124 where

the algorithm is extended to free trees (i.e. trees without a single root), and also a

generalization of replicator equations: monotone game dynamics is used, showing

that, suitably chosen, nonlinear monotone game dynamics may exhibit a faster

convergence than linear replication equations.

Branca et al.13 proposed in 1999 an extension of the framework defined by

Pelillo121 that is able to deal with a weighted version of the clique problem: the

solution to be found is the one that maximizes the sum of the weights attributed to

the edges of the graph. Moreover, their method also works with hypergraphs that

they call high-order graphs.

Several other inexact matching methods based on continuous optimization have

been proposed in the recent years. Among them we can cite the Fuzzy Graph Match-

ing (FGM) by Medasani et al.,104,105 that is a simplified version of WGM based on

fuzzy logic. In FGM the objective function is considerably simpler than in WGM

since the cost of matching two nodes does not depend on the matching found for

the other nodes of the graphs. Hence the authors are able to derive in closed form

an optimal update equation for their iterative algorithm. Another recent approach,

proposed by van Wyk et al.159,160 in 2002 is based on the theory of the so-called

Reproducing Kernel Hilbert Spaces (RHKS) for casting the matching problem into

a system identification problem; this latter is then solved by constructing a RKHS

interpolator to approximate the unknown mapping function.
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2.2.3. Spectral methods

Spectral methods are based on the following observation: the eigenvalues and the

eigenvectors of the adjacency matrix of a graph are invariant with respect to node

permutations. Hence, if two graphs are isomorphic, their adjacency matrices will

have the same eigenvalues and eigenvectors. Unfortunately, the converse is not true:

we cannot deduce from the equality of eigenvalues/eigenvectors that two graphs are

isomorphic. However, since the computation of eigenvalues/eigenvectors is a well

studied problem, that can be solved in polynomial time, there is a great interest

in their use for graph matching. An important limitation of these methods is that

they are purely structural, in the sense that they are not able to exploit node or

edge attributes, that often, in PR applications, convey information very relevant

for the matching process. Further, some of the spectral methods are actually able

to deal only with real weights assigned to edges by using an adjacency matrix with

real valued elements.

Among the pioneering works on spectral methods there is the paper by

Umeyama157 in 1998. This work proposed an algorithm for the weighted isomor-

phism between two graphs. Although the author used the term Weighted Graph

Matching, it is a slightly more restricted problem than the WGM described above:

the graphs must have the same number of nodes, and the matching matrix must be a

permutation matrix (so all the nodes must participate to the matching). Umeyama

used the eigendecomposition of adjacency matrices of the graphs to derive (in closed

form) a simple expression of the orthogonal matrix that optimizes the objective

function, under the assumption that the graphs are isomorphic. From this expres-

sion he derived a method for computing the optimal permutation matrix when the

two graphs are isomorphic, and a suboptimal permutation matrix if the graphs are

nearly isomorphic. Unfortunately, if it is not known in advance that the graphs are

nearly isomorphic, this method can produce a very poor result.

A more recent paper of 2001, by Xu and King,173 proposed a solution to the

weighted isomorphism problem that combines the use of eigenvalues/eigenvectors

with continuous optimization techniques. In particular, the method approximates

the permutation matrix with a generic orthogonal matrix. An objective function is

defined using Principal Component Analysis and then gradient descent is used to

find the optimum of this function. The authors reported that this method is both

faster and more accurate than Umeyama’s.

In 2001, Carcassoni and Hancock21 proposed a spectral method that is based on

the use of spectral features to define clusters of nodes that are likely to be matched

together in the optimal correspondence; the method uses hierarchical matching by

first finding a correspondence between clusters and then between the nodes in the

clusters. This method does not suffer from the limitation that the graphs must have

the same number of nodes.

Another method that combines a spectral approach with the idea of clustering

has been presented by Kosinov and Caelli83 in 2002. In this method, a vector space,



April 29, 2004 13:49 WSPC/115-IJPRAI 00322

Thirty Years of Graph Matching in Pattern Recognition 281

called the graph eigenspace, is defined using the eigenvectors of the adjacency ma-

trices, and the nodes are projected onto points in this space. Then, a clustering

algorithm is used to find nodes of the two graphs that are to be put in correspon-

dence. The authors show that this method is very robust to graph distortions, in

the sense that corresponding nodes are always not very far in the graph eigenspace.

On the other hand there is no guarantee that the converse hold, since completely

unrelated nodes can have very close projections.

A method that is partly related to spectral techniques has been proposed in 2001

by Shokoufandeh and Dickinson.144 The authors use the eigenvalues to associate

to each node of a Directed Acyclic Graph a “Topological Signature Vector” (TSV)

that is related to the structure of the subgraph made of the descendants of the

node. These TSV are used both for a quick indexing in a graph database and for

the actual graph matching algorithm. This latter is based on the combination of a

greedy search procedure and of bipartite graph matching. As pointed out by the

authors, the algorithm does not provide any guarantee of optimality, but should

perform well on graphs with a rich structure in terms of depth and branching factor.

2.2.4. Other techniques

In this subsection, we will briefly present approaches to inexact matching that

do not fall within the previously mentioned categories. These are: decomposition

methods, neural networks, genetic algorithms, methods based on bipartite matching

and methods based on local properties.

The decomposition approach introduced by Messmer and Bunke for exact graph

matching has been extended to the inexact case in a 1998 paper by the same

authors.108 The proposed algorithm finds an optimal error-tolerant subgraph iso-

morphism between an input graph and a library of preprocessed model graphs, in

sublinearly time dependent on the number of model graphs. In 1999, Fuchs and Le

Men57 proposed an improvement of this algorithm, performing first a suboptimal

stochastic search to find a reasonable upper bound to the matching cost that is then

used to prune the search space while searching for the optimal solution. The same

authors, in a 2000 paper,56 further extended the method to exploit prior knowledge

possibly available from application-specific constraints.

Neural graph matching algorithms are usually based on an energy minimization

framework, and use some kind of Hopfield network like in the clique detection

method proposed by Shoukry and Aboutabl145 in 1996 or the method by Suganthan

and Yan149 in 1998. A different approach is followed by Suganthan146 in 2000. It is

based on the idea of an unsupervised training of a neural network that must learn

the correspondence between the nodes of a sample graph and the ones of a model

graph. The kind of network used is a neural gas that is derived from Kohonen’s self-

organizing maps (SOM). A recent interesting paper by De Mauro et al.34 in 2001

proposed the use of a recurrent neural network to compute the distance between

directed acyclic graphs by projecting the graphs on a vector space and then using
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Euclidean distance.

Among the applications of genetic algorithms to graph matching we can cite the

paper by Liu et al.93 in 1995, where a microgenetic algorithm is applied to the WGM

problem; the paper by Wang et al.196 in 1997, where a genetic algorithm is used for

error-correcting isomorphism; and the paper by Perchant et al.125 in 1999, where a

genetic algorithm is employed to find a fuzzy homomorphism. Another interesting

paper in this area is due to Khoo and Suganthan78 in 2001. Their method uses a

genetic algorithm to find the MCS between two graphs.

As already mentioned, bipartite graph matching is a simpler problem than graph

matching, for which polynomial algorithms exist. Hence, some methods have been

proposed that find an approximate graph matching by converting it into a bipartite

matching problem. For this approach we can cite the papers by Wang et al.163 in

1994, by El-Sonbaty and Ismail42 in 1998, by Baeza and Valiente5 in 2000 and by

Liu et al.92 in the same year.

Methods based on local properties perform the matching by considering only

features that can be computed directly from a node or from its immediate neighbors

to find a correspondence; hence the matching found may fail to preserve the overall

structure of the graphs. In this category we can cite the papers by Depiero et al.37

in 1996 and by Ozer et al.115 in 1999. An improvement over this technique is the

definition of an iterative algorithm in which the local constraints are propagated to

neighboring nodes at each iteration step. Although this scheme does not ensure to

find the optimal matching, it can provide in many cases good results. Examples of

this approach are the discrete relaxation algorithm proposed in 1979 by Kitchen and

Rosenfeld79 for hypergraph monomorphism, and the error-correcting isomorphism

algorithm proposed in 2002 by Hlaoui et al.66

Finally, we must say that other heuristic approaches to inexact graph match-

ing have been proposed: at least in principle, any of the heuristic techniques that

have been used for combinatorial problems or for continuous global optimization

problems can be adapted to some approximate form of graph matching. With no

presumption of completeness, we can cite here, as examples, simulated annealing74

(Jagota et al., 2000) and tabu search58,168 (Gendreau et al., 1993).

2.3. Other matching problems

In this section we briefly present other matching problems based on graphs, that

have been used in the context of Pattern Recognition and Machine Vision, but do

not fall strictly in the category of graph matching.

Among them, the most important is the so-called Elastic Graph Matching

problem (EGM). Despite its name, it is not really a graph matching problem but,

rather, an image matching problem that is based on a graph structure. More pre-

cisely, a regular or irregular grid is superimposed on the model image; some image

features are computed at the intersections of the grid lines and are used as at-

tributes. Successively, an isomorphic grid is superimposed on the sample image,
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and is then deformed in order to have the best matching between the features com-

puted at the sample grid points and the ones recorded previously for the model.

This deformation process uses the graph structure of the two grids to define a de-

formation cost that constrains the entity of the permissible deformations. The best

placement of the grid on the sample is usually looked for using simulated annealing

(but genetic algorithms also have been used).

Probably the first paper proposing EGM is the work by Lades et al.85 in 1993,

where the problem is formulated in a neural framework. A 1997 paper by Wiskott

et al.170 extended the method by introducing a bunch graph for the model, that is

a graph in which multiple alternative feature vectors are assigned to each node. In

1999, Duc et al.39 improved the matching error definition by allowing nodes with

different weights.

Other matching techniques have been proposed for Pattern Recognition appli-

cations. We will cite here just as examples a method employed for pattern classifi-

cation, and a method developed to solve an indexing problem. Pavlidis et al.118 in

1995 proposed an algorithm for matching graph embeddings : graphs whose nodes

corresponds to distinct points on the plane and whose edges represent strokes con-

necting these points. The matching algorithm is strongly dependent upon the geo-

metric information attached to the graphs. Chou and Shapiro26 in 1998 proposed

a pattern matching technique that is called probabilistic relational indexing. In this

method the patterns are represented by graphs. The matching is performed by de-

composing the graphs into 2-graphs (subgraphs made exactly of two nodes), and

then computing a probabilistic similarity measure between the two sets of 2-graphs.

3. Application Taxonomy

Over the past 30 years several applications of graph-based techniques in Pattern

Recognition and Machine Vision have been reported in the literature. Many of

these applications are used to evaluate the performance of given graph matching

techniques.

It is possible to identify at least six application areas where graph matching

techniques have been successfully used. They are:

• 2D and 3D image analysis;

• Document processing;

• Biometric identification;

• Image databases;

• Video analysis;

• Biological and biomedical applications.

A taxonomy reflecting these areas is shown in Fig. 2. Here, the aim is to draw a

closer link between applications and the basic graph matching techniques.

Many of the papers cited in the previous taxonomy within the image

analysis field use this kind of applications for testing the performance of a



April 29, 2004 13:49 WSPC/115-IJPRAI 00322

284 D. Conte et al.

 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Taxonomy of the reviewed graph matching applications. For each paper, the first author, 
the year and the corresponding bibliographic reference are reported. 

Eshera86[46], Wong90[172], Seong93[133], Suganthan95[147], Meth96[110], 
Wilson97[167], Koo98[82], Pelillo99[122], Perchant99[125], Wilson99[169], 
Zhang99[174], Belongie00[8], Hong00[67], Li00[90], Luo01[99], Torsello01[151], 
Kosinov02[83], Torsello02[152], van Wyk02[161], Shokoufandeh01[144] 

Ozer99[115], Shearer01[141, 142] 

Sanfeliu83[132], Grimson91[64], Shasha94[138], Christmas95[27], 
Olatunbosun96[114], Englert97[43], Jia98[75], Branca99[13], Fuchs99[57], 
Fuchs00[56], Myers00[112], Bauckhage01[7], Luo01[98], Shokoufandeh01[144] 

Filatov95[49] 

2D & 3D image analysis 

Chen90[25], Lu91[96], Rocha94[128], Hsieh95[69], Pavlidis95[118], 
Chan96[23], Cordella96[30], Rangarajan96[127], Suganthan98[149], 
Foggia99[54], Lee99[89], Liu00[92], Foggia01[52] 

Llados96[94], Jiang98[76], Jiang99[77], Changhua00[22], Cordella00[28], 
Llados01[95] 

Burge00[20], Triesch01[153] 
 

Dumay92[40], Wang98[165], Haris99[65], Fischer02[50] 

Maio96[101], Fan98[47] 

Lades93[85], Wiskott97[170, 171], Duc99[39], Lyons99[100], 
Kotropoulos00[84], Lim01[91], Tefas01[150] 

Elagin98[41], Wang98[165], Hong00[67] 

Park97[116], Petrakis97[126], Cho98[26], Huet98[70], Sharvit98[139], 
Huet99[71], Folkers00[55], Berretti01[11], De Mauro01[34], Huet01[72], 
Gregory02[63], Hlaoui02[66]  
 

Petrakis97[126], Berretti01[11] 

Chen01[24], Gomila01[62] 

Annotation and retrieval 
from databases 

Salotti01[131] 
 

2D image analysis 

3D image analysis 

OCR and handwritten 
recognition 

String recognition 

Symbol and graphics 
recognition 

Face Authentication & 
Recognition 

Fingerprint Recognition 

Other facial images 
applications 

Other biometric 
applications 

Indexing and retrieval 

Retrieval 

Object tracking 

Motion Estimation 

Document processing 

Biometric Identification 

Image database 

Video analysis 

Biomedical and 
biological applications 

Fig. 2. Taxonomy of the reviewed graph matching applications. For each paper, the first author,
the year and the corresponding bibliographic reference are reported.

given graph matching technique. For 2D image analysis, this is the case of pa-

pers that report results in the areas of pattern recognition,46,67,133,144,161,172,174

shape recognition83,99,122,147,151,152 scene recognition125 and processing of SAR

images.167,169 Among the papers dealing with 3D image analysis, we can recog-

nize the areas of robotic vision,132 stereo matching,27,112 object matching,98 object
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recognition64,75,138,144 and object reconstruction.43

On the other hand, among the papers that are focused on the applicative con-

text in the field of 2D image analysis, object recognition is afforded by Meth and

Chellappa,110 Li and Lee90 and Belongie and Malik,8 while Koo and Yoo82 pre-

sented an application in the field of visual inspection. As regards 3D image analysis

applications, Branca et al.13 addressed the problem of automatic navigation, while

Bauckhage et al.7 and Olatunbosun et al.114 the 3D object recognition, and Fuchs

and Le Men56,57 the 3D object reconstruction.

While the above mentioned 2D image analysis applications use quite different

matching techniques (tree isomorphism,82 error-correcting subgraph isomorphism

with a similarity measure,110 inexact graph matching with a neural approach,90

weighted bipartite matching8), the 3D applications use only two different matching

techniques: maximal clique search on the association graph13,114 or error-correcting

subgraph isomorphism algorithms.7,56,57

Graph matching have been used in document processing applications such as

OCR, handwritten recognition, string recognition, symbol and graphics recognition.

OCR and handwritten character recognition have been widely used as test-bed

applications for demonstrating the validity of graph-based techniques on real-world

problems — as illustrated in papers.30,52,54,23,127

In other cases the main focus of the work is on the application: for example,

Refs. 25, 69, 89, 92, 96, 118, 128 and 149.

While in Ref. 89, elastic graph matching is used in the recognition phase, the

other authors cited above use inexact graph matching for dealing with the high

variability of handwritten characters.

As regards handwritten recognition, some papers specifically deal with offline149

and online25,69,92,96 handwritten Chinese characters. They used different inexact

matching techniques: Hopfield networks (presented in Ref. 148) is proposed in

Ref. 149 while a tree search is performed in Ref. 96 and a relaxation labeling ap-

proach is adopted in Ref. 25. In Ref. 92, another suboptimal approach is proposed;

the graph matching problem is transformed into a two-layer assignment problem

and solved with the Hungarian method, while in Ref. 69, a bipartite weighted

matching is used. Within the OCR field, in Ref. 128, an error-correcting matching

algorithm based on tree search is used, while in Ref. 118, an ad hoc matching is

defined between the so-called graph embeddings. The handwritten digit string recog-

nition problem was addressed by Filatov et al. in Ref. 49 where an error-correcting

graph-subgraph isomorphism algorithm is used.

To the field of symbol and graphics recognition can be ascribed the papers by

Lladòs et al.94,95 and Changhua et al.22 The first two papers both use an inex-

act subgraph matching procedure that in Ref. 94 is based on discrete relaxation.

On the other hand, in Ref. 22, the recognition of graphical hand-sketched sym-

bols is realized through a similarity measure and the A* algorithm. Furthermore,

technical drawings and graphic symbols are used for testing graph-based techniques
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in Refs. 28, 76 and 77, respectively.

Graph-based techniques have been widely used within the context of biomet-

ric applications mainly with reference to identification problems implemented by

means of elastic graph matching procedures. Among all the biometric identification

problems, a key role is played by face authentication, face recognition and finger-

print recognition. Moreover, there are other applications based on facial images,

such as facial expression recognition and face pose estimation, as well as other less

known applications, such as hand posture recognition and ear recognition. All pa-

pers dealing with these problems by means of graph-based techniques have their

main focus on the application, per se.

In the areas of face authentication and face recognition graph matching has been

used in the systems proposed by Van Der Malsburg, Wiskott et al.,85,170,171 by Lim

and Reinders,91 by Kotropoulos et al.,84,150 by Duc et al.39 and by Lyons et al.100

In all these papers the face identification process is typically carried out by elastic

graph matching algorithms. Among the other applications dealing with face images,

papers by Wang et al.165 and Hong et al.67 made use of graph matching techniques in

the context of facial expression recognition while Elagin et al.41 use graph matching

for pose estimation. They all used elastic graph matching procedures.

The use of graph matching in the context of hand posture recognition is de-

scribed in the paper of Triesch and von der Malsburg.153 Once again, the authors

proposed elastic graph matching for recognition.

Another biometric system is the one proposed by Burge and Burger20 based

on the ear recognition. A subgraph error-correcting graph matching technique is

proposed by the authors. Finally, fingerprint recognition by graph matching has

been addressed in the papers by Maio and Maltoni101 and by Fan et al.47 They

used two different approaches for recognizing fingerprints. In Ref. 101, an inexact

graph matching based on a branch and bound search is proposed, while in Ref. 47,

a fuzzy bipartite graph matching technique is used.

Image databases are another field in which graph-based techniques have

been successfully employed. In this framework, typical applications are index-

ing and retrieval : few papers11,126 addressed both aspects, while, for the most

part,26,34,55,63,66,70–72,116,139 the retrieval problem is of most interest. Among these

papers only in Ref. 66, an image database is simply used for testing the performance

of an error-correcting isomorphism algorithm.

As regards the matching phase, error-correcting subgraph isomorphism algo-

rithms are mainly used.

Among the papers that address both the indexing and the retrieval problem,

Berretti et al in Ref. 11 proposed an error-correcting algorithm, combining the

A* search with an original look-ahead estimate. In the paper by Petrakis and

Faloutsos,126 a subgraph isomorphism matching algorithm with a distance mea-

sure is used.

Among the papers that mainly address the retrieval problem, Folkers et al.55 and

Sharvit et al.139 use exact algorithms. In particular, in Ref. 55, an exact subgraph
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isomorphism is proposed that makes use of a suitably defined similarity measure for

pruning some isomorphism checks, while in Ref. 139, a weighted graph matching

that is a variant of the method presented in Ref. 61, is employed. All the other

papers use error-correcting matching algorithms. Gregory and Kittler63 utilize an

error-correcting subgraph isomorphism based on tree search. Cho and Yoo26 pro-

posed a subgraph isomorphism algorithm that makes use of a similarity measure,

while Park et al.116 define a similarity measure directly obtainable by the adjacency

matrices of the graphs. Finally, a learning technique, based on a recurrent neural

network, is proposed by de Mauro et al.34 In the papers by Hancock and Huet,70–72

the aim is to retrieve 2D images from large databases. They also make use of inexact

graph matching algorithms. In Ref. 70, a fuzzy variant of the Hausdorff distance

that uses only the values of the edge attributes is proposed for comparing graphs.

In Ref. 71, the matching process is realized by means of a Bayesian graph matching

algorithm that uses an extension of the relaxation technique reported by Wilson

and Hancock.167 Huet et al.72 presented an application of the image retrieval for

verifying similarities among different technical drawings representing patents; the

matching is realized by means of the distance presented in Ref. 70.

Among the video analysis problems, retrieval from video databases,141,142 an-

notation of video databases,115 object tracking24,62 and motion estimation131 have

been addressed by using graph-based techniques. In all these papers the applica-

tion, per se, is of central focus. In this case, since the above mentioned applications

are very different, the matching techniques employed are quite unlike each other.

In the framework of retrieval from video databases, Shearer et al.141 used an

exact decision tree-based algorithm applied to the detection of the largest common

subgraph, while in Ref. 142, the same authors proposed an extension of the decision

tree-based isomorphism algorithm presented by Bunke and Messmer18 in order to

cope with dynamically changing graphs.

A quite peculiar approach to the problem of retrieval from databases is the

one presented by Ozer et al.115 The aim of this work was to annotate images or

videos where a particular object is present, so that a simple textual query can be

performed for retrieving images from a preprocessed database. They proposed a

cost-based inexact subgraph matching procedure in conjunction with a depth-first

search that uses a brute force approach.

Both the papers by Chen et al.24 and Gomila and Mayer62 exploit the use of

graph matching for object tracking in video sequences. They used different matching

techniques: in Ref. 24, a bipartite matching algorithm is applied, while in Ref. 62,

an error-correcting matching algorithm using relaxation labeling is proposed.

Salotti and Laachfoubi131 presented an application of motion estimation in aerial

videos. In this context, in order to collect information for preventing fires, their

aim is to estimate the shift of smoke clouds within a video. The shift estimation is

performed by means of an inexact matching procedure based on a cost function for

matching nodes relative to successive video frames.

Finally, graph matching techniques have been used within biomedical40,65,165
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and biological50 applications. While in Ref. 165, the problem of finding motifs in

multiple RNA secondary structures is used only for testing a graph-based approach,

the other biomedical applications have their main focus on the application context.

Both address the problem of the correct identification of coronary arteries (artery

labeling) starting from medical images, but the labeling is carried out by using

different graph matching techniques. In the paper by Dumay et al.,40 an inexact

graph matching procedure employing the A* algorithm to perform the tree search is

used, while Haris et al.65 reformulate the labeling problem in terms of the maximal

clique detection in the association graph.

As regards biological applications, the identification of diatoms described by

Fischer et al.50 can be cited. Diatoms are unicellular algae found in water and in

other places where there is humidity and enough light for allowing photosynthesis.

The matching procedure presented here can be seen as a simple form of error-

correcting graph matching.

4. Conclusions

In this paper we have reviewed, discussed and categorized more than 160 papers

reporting graph matching algorithms in the context of the Pattern Recognition and

Machine Vision. Among them, more than 100 papers discussing applications have

been cited.

The links between the different application areas and the graph-based techniques

employed have also been highlighted in order to provide useful hints to researchers

when considering the use of graph matching in a particular domain.
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