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Feature Selection: Evaluation, Application,
and Small Sample Performance

Anil Jain and Douglas Zongker

Abstract —A large number of algorithms have been proposed for
feature subset selection. Our experimental results show that the
sequential forward floating selection (SFFS) algorithm, proposed by
Pudil et al., dominates the other algorithms tested. We study the
problem of choosing an optimal feature set for land use classification
based on SAR satellite images using four different texture models.
Pooling features derived from different texture models, followed by a
feature selection results in a substantial improvement in the
classification accuracy. We also illustrate the dangers of using feature
selection in small sample size situations.

Index Terms —Feature selection, curse of dimensionality, genetic
algorithm, node pruning, texture models, SAR image classification.

————————   ✦   ————————

1 INTRODUCTION

THE problem of feature selection is defined as follows: given a set
of candidate features, select a subset that performs the best under
some classification system. This procedure can reduce not only the
cost of recognition by reducing the number of features that need to
be collected, but in some cases it can also provide a better classifi-
cation accuracy due to finite sample size effects [5]. The term fea-
ture selection is taken to refer to algorithms that output a subset of
the input feature set. More general methods that create new fea-
tures based on transformations or combinations of the original
feature set are termed feature extraction algorithms. This paper is
concerned primarily with the former group.

There has been a resurgence of interest in applying feature se-
lection methods due to the large numbers of features encountered
in the following types of problems:

1) Applications where data taken by multiple sensors are
fused. Jain and Vailaya [6], for instance, have merged both
color and shape features to provide an improved retrieval
accuracy for a trademark image database.

2) Integration of multiple models, where the parameters from
different mathematical models are pooled for the purpose of
classification, such as Solberg and Jain [16].

3) Data mining applications, where the goal is to recover the
hidden relationships among a large number of features, as
in Punch et al. [11].

The goal of this paper is to illustrate the value of feature selec-
tion in combining features from different data models, and to
demonstrate the potential difficulties of performing feature selec-
tion in small sample size situations, due to the curse of dimension-
ality. We present a taxonomy of feature selection algorithms. Sev-
eral well-known and some recently proposed feature selection
algorithms have been implemented and tested. Based on these
results, the sequential forward floating selection (SFFS) method
introduced in [10] has been found to be extremely powerful. We
have applied this method to a large data set, created by pooling
features from four different texture models, in order to classify SAR
satellite images. Feature selection results on this dataset demonstrate
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1) the existence of the curse of dimensionality, and
2) that combining features from different texture models leads

to a better classification accuracy than the performance of
individual models.

The curse of dimensionality phenomenon is further investigated
by performing feature selection on synthetic data sets of various
sizes drawn from two Gaussian distributions [17], and evaluating
the quality of the selected subset versus the known optimal subset.

2 FEATURE SELECTION ALGORITHMS

Let Y be the original set of features, with cardinality n. Let d repre-
sent the desired number of features in the selected subset X, X Õ Y.
Let the feature selection criterion function for the set X be repre-
sented by J(X). Without any loss of generality, let us consider a
higher value of J to indicate a better feature subset. Since we are
maximizing J(◊), one possible criterion function is (1 - pe), where pe

denotes the probability of error. The use of probability of error as a
criterion function makes feature selection dependent on the spe-
cific classifier used and the size of the training and test data sets.
Formally, the problem of feature selection is to find a subset X Õ Y
such that |X| = d and

J X J Z
Z Y Z d

b g b g=
Õ =
max .

,

An exhaustive approach to this problem would require examining

all n
d

F
H

I
K  possible d-subsets of the feature set Y. The number of pos-

sibilities grows exponentially, making exhaustive search impracti-
cal for even moderate values of n. Cover and Van Campenhout [1]
showed that no nonexhaustive sequential feature selection proce-
dure can be guaranteed to produce the optimal subset. They fur-
ther showed that any ordering of the error probabilities of each of
the 2n feature subsets is possible.

Fig. 1. A taxonomy of feature selection algorithms.

A taxonomy of available feature selection algorithms into broad
categories is presented in Fig. 1. We first divide methods into those
based on statistical pattern recognition (SPR) techniques, and those
using artificial neural networks (ANN). The SPR category is then
split into those guaranteed to find the optimal solution and those
that may result in a suboptimal feature set. The suboptimal meth-
ods are further divided into those that store just one “current”
feature subset and make modifications to it, versus those that
maintain a population of subsets. Another distinction is made
between algorithms that are deterministic, producing the same
subset on a given problem every time, and those that have a ran-

dom element which could produce different subsets on every run.
Some representative feature selection algorithms are listed beneath
each leaf node in the tree.

2.1 Deterministic, Single-Solution Methods
The first group of methods begin with a single solution (a feature
subset) and iteratively add or remove features until some termi-
nation criterion is met. These are also referred to as “sequential”
methods. These are the most commonly used methods for per-
forming feature selection. They can be divided into two categories,
those that start with the empty set and add features (the “bottom-
up,” or “forward” methods) and those that start with the full set
and delete features (the “top-down,” or “backward” methods).
Note that since they don’t examine all possible subsets, these algo-
rithms are not guaranteed to produce the optimal result. Kittler [7]
gives a comparative study of these algorithms and the optimal
branch-and-bound algorithm using a synthetic two-class Gaussian
data set. Pudil et al. [10] update this study by introducing the two
“floating” selection methods, SFFS and SFBS.

2.2 Deterministic, Multiple-Solution Methods
Siedlecki and Sklansky [15] have discussed performing a best-first
search in the space of feature subsets, as well as a restricted ver-
sion of this, called “beam search.” Both these methods maintain a
queue of possible solutions.

These are examples of methods that treat the space of subsets as a
graph, called a “feature selection lattice,” (where each node repre-
sents a subset, and an edge represents the containment relationship)
and then apply any one of a number of standard graph-searching
algorithms. Since this approach does not appear to be widespread in
the literature, we have not included these methods in our evaluation.

2.3 Stochastic, Multiple-Solution Methods
Siedlecki and Sklansky [15] introduced the use of genetic algo-
rithms (GA) for feature selection. In a GA approach, a given fea-
ture subset is represented as a binary string (a “chromosome”) of
length n, with a zero or one in position i denoting the absence or
presence of feature i in the set. Note that n is the total number of
available features. A population of chromosomes is maintained.
Each chromosome is evaluated to determine its “fitness,” which
determines how likely the chromosome is to survive and breed
into the next generation. New chromosomes are created from old
chromosomes by the processes of:

1) crossover, where parts of two different parent chromosomes
are mixed to create offspring, and

2) mutation, where the bits of a single parent are randomly
perturbed to create a child.

2.4 Optimal Methods
The branch-and-bound (BB) feature selection algorithm, proposed
by Narendra and Fukunaga [9], can be used to find the optimal
subset of features much more quickly than exhaustive search. One
drawback is that the branch-and-bound procedure requires the
feature selection criterion function to be monotone, i.e.,:

J(A < B) ≥ J(A) " A, B Õ Y. (1)

This means that the addition of new features to a feature subset
can never decrease the value of the criterion function. We know
from the curse of dimensionality phenomenon that in small sam-
ple size situations this may not be true. Also, the branch-and-
bound method is still impractical for problems with very large
feature sets, because the worst case complexity of this algorithm is
exponential. For a detailed explanation of the algorithm, the
reader is referred to Narendra and Fukunaga [9].
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Hamamoto et al. [4] give results showing that the branch and
bound procedure works well even in cases where the feature se-
lection criterion is nonmonotonic. Yu and Yuan [19] present a
modification of the Narendra and Fukunaga’s branch and bound
algorithm, called BAB+, and show, both analytically and experi-
mentally, that it outperforms the original algorithm. Their modifi-
cation essentially recognizes all “string-structure subtrees” (those
subtrees that consist of a single path from the root to a terminal
node) and immediately skips the search forward to the appropri-
ate terminal node, thus saving intermediate evaluations.

2.5 Node Pruning
Mao et al. [8] use a multilayer feedforward network with a back-
propagation learning algorithm for pattern classification [13]. They
define a “node saliency” measure and present an algorithm for
pruning the least salient nodes to reduce the complexity of the
network after it has been trained. The pruning of input nodes is
equivalent to removing the corresponding features from the fea-
ture set. The node-pruning (NP) method simultaneously develops
both the optimal feature set and the optimum classifier.

The squared-error cost function is used in training the network.
The saliency of a node is defined as the sum of the increase in er-
ror, over all the training patterns, as a result of removing that
node. Mao et al. [8] approximate the node saliency with a second-
order expansion and then compute that value by finding the ap-
propriate derivatives in a back propagation fashion. While com-
puting the saliency directly from the definition (i.e., by removing
each node from the network in turn and evaluating it over all the test
data) is impractical for a large network, this back propagation
method makes computing saliency values practical, as it requires
only one pass through the training data (versus one pass per node).

The node pruning-based feature selection methodology first
trains a network, and then removes the least salient node (input or
hidden). The reduced network is trained again, followed by re-
moval of the least salient node. This procedure is repeated until
the desired tradeoff between classification error and size of the
network is achieved.

3 EXPERIMENTAL RESULTS

We have reproduced the results of Kittler [7] and Pudil et al. [10],
comparing the feature selection algorithms in terms of classifica-
tion error and run time on a 20-dimensional, 2-class data set. The
two class-conditional densities were Gaussian, with mean vectors
m1 and m2 and a common covariance matrix S used in [7], [10]. The
criterion function for assessing the “goodness” of a feature subset
was the Mahalanobis distance ((m1 - m2)

t S-1 (m1 - m2)) between the
two class means. Under Gaussian class-conditional densities, the
probability of error is inversely proportional to the Mahalanobis
distance [2]. Maximum likelihood estimates of the covariance ma-
trix and mean vectors were computed from the data. A total of
fifteen feature selection algorithms, listed in Table 1, were evalu-
ated and compared.

Execution times reported are processor ticks (0.01 second)
spent in user space on a SUN SPARCserver 1000. Ten randomly
generated data sets, each with 1,000 patterns per class, were tested
and the averages of the runs are reported. Fig. 2 shows the results
for some of the algorithms compared.

TABLE  1
FEATURE SELECTION ALGORITHMS USED

IN EXPERIMENTAL EVALUATION

SFS SBS GSFS(2) GSBS(2)
GSFS(3) GSBS(3) SFFS SFBS
PTA((1), (2)) PTA((1), (3)) PTA((2), (3)
BB MM GA NP

Classification Performance

Executation Time

Fig. 2. Performance and execution times of selected algorithms on
synthetic 2-class Gaussian data set.

The following conclusions can be drawn based on these em-
pirical results:

• The max-min algorithm, while very fast, gives poor results
compared to the other algorithms. It gives better subsets than
SFS and SBS for small d, presumably because, unlike those al-
gorithms, it is initialized by choosing the best possible pair. This
initial advantage is quickly lost as the value of d increases.

• The SFS and SBS algorithms have comparable performance.
Both the algorithms suffered performance hits on this data
due to the nature of the generated data, which was engi-
neered to show nesting problems. (For instance, the optimal
three-subset is not contained in the optimal four-subset, the
optimal six-subset is not contained in the optimal seven-
subset, etc.) The forward method is faster than its backward
counterpart. This is to be expected, as the forward method
starts with small subsets and enlarges them while the back-
ward method starts with large subsets and shrinks them. It
is computationally more expensive to determine the crite-
rion value for large subsets than for small subsets. This is
also true of the generalized methods (GSFS and GSBS).

• The floating methods show results comparable to the opti-
mal algorithm (BB) despite being, for the most part, faster
than the branch-and-bound algorithm. The SFFS method
lags behind for low d, probably because the algorithm satis-
fied its termination condition before being able to “float” up
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and down exploring various subsets. The lack of an explic-
itly specified termination condition may be the cause for
this, since the original paper on floating methods [10] shows
near-optimal results for all values of d. A change in termi-
nation criterion (such as requiring a minimum number of it-
erations) could produce better results.

It has been argued that since feature selection is typically done
in an off-line manner, the execution time of a particular algorithm
is of much less importance than its ultimate classification perform-
ance. While this is generally true for feature sets of moderate size,
some recent applications (e.g., integration of multiple data models
and data mining) have focused on performing feature selection on
data sets with hundreds of features. In such cases execution time
becomes extremely important as it may be impractical to run some
algorithms even once on such large data sets. For instance, on a
500-feature data set, the GSFS(3) algorithm, which gives near-
optimal results in [10], would require over 20 million subset
evaluations for the first step.

The genetic algorithm proposed by Siedlecki and Sklansky was
also implemented and tested. Unfortunately, this algorithm has
several parameters for which no guidance is available on how to
specify their values. Using a population size of 100 for fifteen gen-
erations, with a probability of mutation pm = 0.02, we tried several
different settings of the feasibility threshold (ranging from 0.1 to
0.4) and the tolerance margin (ranging from 0.05 to 1.0). The best
result was obtained with threshold t = 0.1 and margin m = 0.05: an
8-element subset giving a recognition rate of 78.9%. The GA seems
to display a tendency towards premature convergence—most runs
reached their peak by the seventh or eighth generation and failed
to make further improvements after that.

It is difficult to compare the GA method with the sequential
methods. Unlike the sequential methods, this method does not
attempt to find the best subset of a specified size—its search space
encompasses all the subsets. It is hard to get the algorithm to find
the overall best subset since the chromosome score is so heavily
influenced by the subset size.

Siedlecki and Sklansky compared the GA approach with se-
quential search (forward and backward), and with a nonoptimal
variation of branch and bound (Foroutan-Sklansky BB search)
which is able to work with a nonmonotonic criterion. On a syn-
thetic 24-dimensional data set as well as on a real 30-dimensional
data set, the GA outperformed these other feature selection meth-
ods (in terms of both classification performance and computa-
tional effort).

Ferri et al. [3] compared SFS, SFFS, and the genetic algorithm
methods on data sets with up to 360 dimensions. Their results
show that SFFS gives good performance even on very high-
dimensional problems. They show that the performance of GA,
while comparable to SFFS on medium-sized problems (around 20–
30 dimensions), degrades as the dimensionality increases.

4 SELECTION OF TEXTURE FEATURES

We have applied feature selection for the purpose of land use clas-
sification using SAR (synthetic aperture radar) images. Some of
the SAR images used in our experiments are given in Fig. 3. Sol-
berg and Jain [16] have used texture features computed from SAR
images to classify each pixel into one of five classes. A total of 18
features per pattern (pixel) were computed from four different
texture models: local statistics, gray level co-ocurrence matrices
(GLCM), fractal features, and a lognormal random field model
(MAR). These 18 features are listed in Table 2. Our goal is to de-
termine whether the classification error can be reduced by apply-
ing feature selection to this set of 18 features derived from four
different texture models. A similar feature selection study for 2D
shape features was reported by You and Jain [18].

TABLE  2
SET OF 18 TEXTURE FEATURES FROM FOUR DIFFERENT MODELS

# feature model
1 mean local statistics
2 q1 MAR
3 q2 MAR
4 q3 MAR
5 s (variance) MAR
6 mean (logarithmic) MAR
7 angular second moment GLCM
8 contrast GLCM
9 inverse difference moment GLCM
10 entropy GLCM
11 inertia GLCM
12 cluster shade GLCM
13 power-to-mean ratio local statistics
14 skewness local statistics
15 kurtosis local statistics
16 contrast (from Skriver, 1987) local statistics
17 lacunarity fractal
18 dimension fractal

Fig. 3. Sample SAR images, with corresponding ground truth image at
lower right.

Fig. 4. Recognition rates of SFFS method on texture features.

TABLE  3
BEST CLASSIFICATION ACCURACY ACHIEVED
BY THE SFFS FEATURE SELECTION METHOD

Classifier Recognition rate
(%)

Optimal number
of features

1NN 89.3 12
3NN 88.4 11
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We report results for one SAR image (the Oct. 17 image from
[16]), containing approximately 22,000 pixels. This data was split
equally to form “independent” training and test sets.

The k-nearest neighbor (KNN) recognition rate was used as the
feature selection criterion. Both 1NN and 3NN classifiers were
used. Based on its consistently high performance for the synthetic
data in Section 3, we chose to apply the SFFS method to the texture
data set. The results of these runs are shown in Fig. 4. Feature se-
lection results based on KNN classifiers have the following be-
havior: as more features are added, there is a relatively smooth
rise in the recognition rate, which then peaks and eventually falls,
demonstrating the curse of dimensionality.

Table 3 gives, for each KNN run, the best recognition rate
achieved and the optimal number of features. The feature selection
process is not just using the features derived from a single texture
model but is utilizing features from different models to provide a
better performance. For instance, in every case, the five-feature
subset selected contains features from at least three different tex-
ture models. The best individual texture model for this data set
was the MAR model with a classification accuracy of 68.8% [16].
Pooling features from four different texture models and then ap-
plying feature selection increased the classification accuracy of a
1NN classifier to 89.3%.

5 EFFECT OF TRAINING SET SIZE
ON FEATURE SELECTION

How reliable are the feature selection results in the presence of
small amounts of training data? In the case where Mahalanobis
distance is used as the criterion, the error arising from estimating
the covariance matrix can lead the feature selection process astray,
producing inferior results (relative to the true distributions) on
independent test data even if the selected subset is optimal for the
given training data [12]. We have also seen this effect on the tex-
ture data set in the previous section. This phenomenon, which is
related to the curse of dimensionality, is highlighted by running the
feature selection algorithm on varying amounts of training data
drawn from known class conditional densities. Trunk [17] used the
following two-class example to illustrate the existence of the curse of
dimensionality. The two class-conditional densities are given below:

p(x|w1) , N(m, I) p(x|w2) , N(-m, I) (2)

where

m =
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and I denotes the n ¥ n identity matrix. Trunk showed the follow-
ing results:

1) If the mean vector m is known, then the probability of error
pe(n) monotonically decreases as the number of features n is
increased.

2) If the mean vector is unknown then, for a given training

sample size used to estimate m, the estimated probability of
error $p ne b g  shows a peaking behavior, i.e., lim $

n ep n
Æ•

=b g 1 2.

The class-conditional densities in (2) and (3) are useful to investi-
gate the quality of the feature subsets generated by various feature
selection methods because for any n and d, the optimal d-feature
subset of the given n features is known for the true distribution: it
is the first d features.

Data sets of various size, ranging from 10 to 5,000 training pat-
terns per class, were generated from the two 20-dimensional dis-
tributions ((2) and (3)). For each training set size, five data sets
were generated, and the results averaged. The feature selection

quality for a training set was calculated by taking the number of
commonalities in the resulting feature subset when compared with
the optimal subset of the true distribution: features that were in-
cluded in both subsets, and features that were excluded from both
subsets. This count was divided by the number of dimensions, and
that value was averaged over values of d from one to 19 inclusive
to give a final quality value for the feature set. Note that this value
is not a measure of the classification error, but a measure of the
difference between the subset produced by a feature selection
method and the ideal feature subset. The average quality for dif-
ferent training set sizes for the branch and bound and SFS meth-
ods is shown in Fig. 5.

Fig. 5. Quality of selected feature subsets as a function of the size of
training data.

Since the true class-conditional densities are not at all deceptive
with respect to feature selection—the features are all independent
with identical variance, only the differences in feature means pro-
vide discriminatory information—the selected feature subset
should not depend on the specific feature selection algorithm
used; any feature selection algorithm should perform well on such
a simple problem. Indeed, the performance of the SFS algorithm in
Fig. 5 closely matches that of the branch-and-bound algorithm. As
expected, the quality of the selected feature subset for small train-
ing sets is poor, but improves as the training set size increases. For
example, with 20 patterns in the training set, one run of branch-
and-bound selecting ten features chose the subset {1, 2, 4, 7, 9, 12,
13, 14, 15, 18} (the optimal ten-subset from the true distribution
being {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}). With 2,500 patterns in the training
set, one run of the branch-and-bound procedure selected the sub-
set {1, 2, 3, 4, 5, 6, 7, 9, 10, 11}.

6 SUMMARY

This paper illustrates the merits of various methods of feature
selection. In particular, the results of Pudil et al. [10] demonstrat-
ing the quality of the floating search methods are replicated. The
floating search methods show a great promise of being useful in
situations where the branch-and-bound method can not be used,
due to either the nonmonotonicity of the feature selection criterion
or computational reasons.

Results on texture data show that feature selection is useful in
utilizing feature derived from different texture models. We also
show the pitfalls of using feature selection with limited training
data. By using feature selection on a classification problem with
known distributions and comparing the selected subsets (under
finite sample size) with the true optimal subset, the quality of the
selected subset can be quantified. Our experiments show the po-
tential pitfalls of using feature selection on sparse data in a high
dimensional space.
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A Viewpoint Planning Strategy
for Determining True Angles on Polyhedral

Objects by Camera Alignment

Claus B. Madsen and Henrik I. Christensen

Abstract —The paper presents a viewpoint planning strategy which
automatically guides a movable camera from an arbitrary position to a
position where the optical axis is perpendicular to a plane spanned by
any two intersecting edges on a polyhedral object, i.e., a junction. In
related work it is common to use the changing length of edge
segments to control such alignment, but we demonstrate the use of the
apparent angle between the edge segments of the junction. By basing
the control on the apparent angle we achieve robustness as well as
independence of distance to the object and focal length. The strategy
is able to determine the true angle of a junction with an accuracy of
approximately 1∞, and align with an accuracy of approximately 6∞.

Index —Active vision, viewpoint planning, camera alignment, angle.

————————   ✦   ————————

1 INTRODUCTION

ACTIVE vision as introduced in [1] is aimed at purposive control of
various degrees of freedom of the sensory system. Most active
vision research has concentrated on controlling the optical degrees
of freedom or tracking objects using stationary camera heads. In
recent years there has been an increasing interest in controlling the
positional degrees of freedom of a camera—the so called viewpoint
planning or purposive viewpoint adjustment.

Viewpoint planning assumes that a camera can move around
and look at an object from different viewpoints. Work employing
viewpoint planning for object recognition and indexing include
[2], [3], [4], [5], or shape recovery [6], [7],. In these approaches the
concept of generic or special viewpoints is central. The purpose of
moving the camera is to arrive at special viewpoints, such that the
solution to an inherently three-dimensional problem is essentially
reduced to a 2D problem.

This paper describes a viewpoint planning strategy for deter-
mining the true angle between two intersecting object edges with-
out performing reconstruction. The aim of the strategy is to align
the optical axis with the normal of the junction plane to get a pro-
jection where the true angle can be measured directly from the
image. Motivation for this work grew out of work on single image
recognition of polyhedral objects using a probabilistic approach
[8], [9], [10],. Conditional probabilities linking angles in images to
true angles are used to rank beliefs in object models. The strategy
presented here could be used as a robust way of measuring one or a
few crucial junction angles for final disambiguation in such sys-
tems for recognizing polyhedral objects. The strategy can deter-
mine true angle, but is basically an alignment procedure and could
be applied to, e.g., welding or cutting sheet metal by aligning a
tool with the surface normal, by mounting the camera together
with the tool on a manipulator so as to have the optical axis paral-
lel to the tool axis.
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