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Introduction

I Graphs are an intuitive way of representing and visualizing
the relationships among many variables.

I Probabilistic graphical models provide a tool to deal with
two problems: uncertainty and complexity.

I Hence, they provide a compact representation of joint
probability distributions using a combination of graph theory
and probability theory.

I The graph structure specifies statistical dependencies
among the variables and the local probabilistic models
specify how these variables are combined.
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Introduction

(a) Undirected graph (b) Directed graph

Figure 1: Two main kinds of graphical models. Nodes correspond to random
variables. Edges represent the statistical dependencies between the
variables.
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Introduction

I Marginal independence:

X ⊥ Y ⇔ X ⊥ Y |∅ ⇔ P (X, Y ) = P (X)P (Y )

I Conditional independence:

X ⊥ Y |V ⇔ P (X|Y, V ) = P (X|V ) when P (Y, V ) > 0

X ⊥ Y |V ⇔ P (X, Y |V ) = P (X|V )P (Y |V )

X ⊥ Y|V ⇔ {X ⊥ Y |V , ∀X ∈ X and ∀Y ∈ Y}
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Introduction

I Marginal and conditional independence examples:
I Amount of speeding fine ⊥ Type of car | Speed
I Lung cancer ⊥ Yellow teeth | Smoking
I (Position, Velocity)t+1 ⊥

(Position, Velocity)t−1 | (Position, Velocity)t, Accelerationt

I Child’s genes ⊥ Grandparents’ genes | Parents’ genes
I Ability of team A ⊥ Ability of team B
I not(Ability of team A ⊥

Ability of team B | Outcome of A vs B game)
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Bayesian Networks

I Bayesian networks (BN) are probabilistic graphical models
that are based on directed acyclic graphs.

I There are two components of a BN model: M = {G,Θ}.
I Each node in the graph G represents a random variable and

edges represent conditional independence relationships.
I The set Θ of parameters specifies the probability

distributions associated with each variable.
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Bayesian Networks

I Edges represent
“causation” so no directed
cycles are allowed.

I Markov property: Each
node is conditionally
independent of its
ancestors given its parents.

Figure 2: An example BN.
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Bayesian Networks

I The joint probability of a set of variables x1, . . . , xn is given as

P (x1, . . . , xn) =
n∏

i=1

P (xi|x1, . . . , xi−1)

using the chain rule.

I The conditional independence relationships encoded in the
Bayesian network state that a node xi is conditionally
independent of its ancestors given its parents πi. Therefore,

P (x1, . . . , xn) =
n∏

i=1

P (xi|πi).

I Once we know the joint probability distribution encoded in the
network, we can answer all possible inference questions about
the variables using marginalization.
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Bayesian Network Examples

Figure 3: P (a, b, c, d, e) =
P (a)P (b)P (c|b)P (d|a, c)P (e|d)

Figure 4:
P (a, b, c, d) = P (a)P (b|a)P (c|b)P (d|c)

Figure 5: P (e, f, g, h) =
P (e)P (f |e)P (g|e)P (h|f, g)
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Bayesian Network Examples

Figure 6: When y is given, x and z
are conditionally independent. Think
of x as the past, y as the present, and
z as the future.

Figure 7: When y is given, x and z
are conditionally independent. Think
of y as the common cause of the two
independent effects x and z.

Figure 8: x and z are marginally
independent, but when y is given, they
are conditionally dependent. This is
called explaining away.
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Bayesian Network Examples

I You have a new burglar alarm installed at home.

I It is fairly reliable at detecting burglary, but also sometimes
responds to minor earthquakes.

I You have two neighbors, Ali and Veli, who promised to call
you at work when they hear the alarm.

I Ali always calls when he hears the alarm, but sometimes
confuses telephone ringing with the alarm and calls too.

I Veli likes loud music and sometimes misses the alarm.

I Given the evidence of who has or has not called, we would
like to estimate the probability of a burglary.
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Bayesian Network Examples

Figure 9: The Bayesian network for the burglar alarm example. Burglary (B)
and earthquake (E) directly affect the probability of the alarm (A) going off,
but whether or not Ali calls (AC) or Veli calls (VC) depends only on the alarm.
(Russell and Norvig, Artificial Intelligence: A Modern Approach, 1995)
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Bayesian Network Examples

I What is the probability that the alarm has sounded but
neither a burglary nor an earthquake has occurred, and
both Ali and Veli call?

P (AC, V C, A,¬B,¬E)

= P (AC|A)P (V C|A)P (A|¬B,¬E)P (¬B)P (¬E)

= 0.90× 0.70× 0.001× 0.999× 0.998

= 0.00062

(capital letters represent variables having the value true,
and ¬ represents negation)

CS 551, Spring 2012 c©2012, Selim Aksoy (Bilkent University) 13 / 27



Bayesian Network Examples

I What is the probability that there is a burglary given that Ali calls?

P (B|AC) =
P (B,AC)
P (AC)

=
∑

vc

∑
a

∑
e P (AC|a)P (vc|a)P (a|B, e)P (B)P (e)
P (B,AC) + P (¬B,AC)

=
0.00084632

0.00084632 + 0.0513
= 0.0162

I What about if Veli also calls right after Ali hangs up?

P (B|AC, V C) =
P (B,AC, V C)
P (AC, V C)

= 0.29
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Bayesian Network Examples

Figure 10: Another Bayesian network example. The event that the grass
being wet (W = true) has two possible causes: either the water sprinkler was
on (S = true) or it rained (R = true). (Russell and Norvig, Artificial
Intelligence: A Modern Approach, 1995)
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Bayesian Network Examples

I Suppose we observe the fact that the grass is wet. There
are two possible causes for this: either it rained, or the
sprinkler was on. Which one is more likely?

P (S|W ) =
P (S, W )

P (W )
=

0.2781

0.6471
= 0.430

P (R|W ) =
P (R,W )

P (W )
=

0.4581

0.6471
= 0.708

I We see that it is more likely that the grass is wet because it
rained.
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Applications of Bayesian Networks

I Example applications include:

I Machine learning
I Statistics
I Computer vision
I Natural language

processing

I Speech recognition
I Error-control codes
I Bioinformatics
I Medical diagnosis
I Weather forecasting

I Example systems include:
I PATHFINDER medical diagnosis system at Stanford
I Microsoft Office assistant and troubleshooters
I Space shuttle monitoring system at NASA Mission Control

Center in Houston
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Two Fundamental Problems for BNs

I Evaluation (inference) problem: Given the model and the
values of the observed variables, estimate the values of the
hidden nodes.

I Learning problem: Given training data and prior information
(e.g., expert knowledge, causal relationships), estimate the
network structure, or the parameters of the probability
distributions, or both.
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Bayesian Network Evaluation Problem

I If we observe the “leaves” and try to infer the values of the
hidden causes, this is called diagnosis, or bottom-up
reasoning.

I If we observe the “roots” and try to predict the effects, this is
called prediction, or top-down reasoning.

I Exact inference is an NP-hard problem because the
number of terms in the summations (integrals) for discrete
(continuous) variables grows exponentially with increasing
number of variables.
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Bayesian Network Evaluation Problem

I Some restricted classes of networks, namely the singly
connected networks where there is no more than one path
between any two nodes, can be efficiently solved in time
linear in the number of nodes.

I There are also clustering algorithms that convert multiply
connected networks to single connected ones.

I However, approximate inference methods such as
I sampling (Monte Carlo) methods
I variational methods
I loopy belief propagation

have to be used for most of the cases.
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Bayesian Network Learning Problem

I The simplest situation is the one where the network structure is
completely known (either specified by an expert or designed
using causal relationships between the variables).

I Other situations with increasing complexity are: known structure
but unobserved variables, unknown structure with observed
variables, and unknown structure with unobserved variables.

Table 1: Four cases in Bayesian network learning.

Observability
Structure Full Partial
Known Maximum Likelihood Estimation EM (or gradient ascent)

Unknown Search through model space EM + search through model space

CS 551, Spring 2012 c©2012, Selim Aksoy (Bilkent University) 21 / 27



Known Structure, Full Observability

I The joint pdf of the variables with parameter set Θ is

p(x1, . . . , xn|Θ) =
n∏

i=1

p(xi|πi, θi)

where θi is the vector of parameters for the conditional
distribution of xi and Θ = (θ1, . . . ,θn).

I Given training data X = {x1, . . . ,xm} where
xl = (xl1, . . . , xln)T , the log-likelihood of Θ with respect to X
can be computed as

log L(Θ|X ) =
m∑

l=1

n∑
i=1

log p(xli|πi, θi).
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Known Structure, Full Observability

I The likelihood decomposes according to the structure of the
network so we can compute the MLEs for each node
independently.

I An alternative is to assign a prior probability density
function p(θi) to each θi and use the training data X to
compute the posterior distribution p(θi|X ) and the Bayes
estimate Ep(θi|X )[θi].

I We will study the special case of discrete variables with
discrete parents.
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Known Structure, Full Observability

I Let each discrete variable xi have ri possible values
(states) with probabilities

p(xi = k|πi = j, θi) = θijk > 0

where k ∈ {1, . . . , ri}, j is the state of xi’s parents and
θi = {θijk} specifies the parameters of the multinomial
distribution for every combination of πi.

I Given X , the MLE of θijk can be computed as

θ̂ijk =
Nijk

Nij

where Nijk is the number of cases in X in which xi = k and
πi = j, and Nij =

∑ri

k=1 Nijk.
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Known Structure, Full Observability

I Thus, learning just amounts to counting (in the case of
multinomial distributions).

I For example, to compute the estimate for the W node in the
water sprinkler example, we need to count

#(W = T, S = T, R = T ),

#(W = T, S = T, R = F ),

#(W = T, S = F, R = T ),

...

#(W = F, S = F, R = F ).
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Known Structure, Full Observability

I Note that, if a particular event is not seen, it will be assigned
a probability of 0.

I We can avoid this using the Bayes estimate with a
Dirichlet(αij1, . . . , αijri

) prior (the conjugate prior for the
multinomial) that gives

θ̂ijk =
αijk + Nijk

αij + Nij

where αij =
∑ri

k=1 αijk and Nij =
∑ri

k=1 Nijk as before.

I αij is sometimes called the equivalent sample size for the
Dirichlet distribution.
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Naive Bayesian Network

I When the dependencies among the features are unknown, we
generally proceed with the simplest assumption that the features
are conditionally independent given the class.

I This corresponds to the naive Bayesian network that gives the
class-conditional probabilities

p(x1, . . . , xn|w) =
n∏

i=1

p(xi|w).

. . .x2x1 xn

w

Figure 11: Naive Bayesian network structure. It looks like a very simple
model but it often works quite well in practice.
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