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Abstract
Image retrieval algorithms are generally based on the

assumption that visually similar images are located close
to each other in the feature space. Since the feature vec-
tors usually exist in a very high dimensional space, a para-
metric characterization of their distribution is impossible,
so non-parametric approaches, like the k-nearest neighbor
search, are used for retrieval.

This paper introduces a graph–theoretic approach for
image retrieval by formulating the database search as a
graph clustering problem by using a constraint that re-
trieved images should be consistent with each other (close
in the feature space) as well as being individually similar
(close) to the query image. The experiments that compare
retrieval precision with and without clustering showed an
average precision of 0.76 after clustering, which is an
improvement by 5.56% over the average precision before
clustering.

1. Motivation
Computing feature vectors is an essential step in image

database retrieval algorithms like in many computer vision
and pattern recognition applications. Usually these fea-
ture vectors exist in a very high dimensional space where
a parametric characterization of the distribution is often
impossible. Due to the high dimensionality, this problem
is usually not studied and non-parametric approaches, like
the k-nearest neighbor search, are used for retrieval.

In an image database retrieval application, we expect to
have visually similar images close to each other in the fea-
ture space. Unfortunately, none of the existing feature ex-
traction algorithms can always map visually similar images
to nearby locations. A common observation in retrieval re-
sults is that sometimes images that are quite irrelevant to
the query image are also retrieved simply because they are
close to the query image. We believe that an efficient re-
trieval algorithm should be able to retrieve images that are
not only close (similar) to the query image but also close
(similar) to each other.

In order to understand the behavior of the features,
which will help us determine the effectiveness of both the
features and the distance measures in establishing similar-
ity between images, clustering the feature space and vi-
sually examining the consistency of the results is impor-
tant. In their Blobworld system, Carson et al. [3] used
the expectation-maximization algorithm to cluster the blob
space to find representative blobs that can mimic human
queries. They noted that their clustering procedure tends to
ignore the blobs which have the best chance of distinguish-
ing among categories because the most distinctive blobs in
a given category occur much less often than less distinctive
blobs.

In this paper we introduce a graph–theoretic approach
for image retrieval by formulating the database search as a
graph clustering problem. We also use the idea in Carson
et al. [3] that clusters contain visually similar images but
use them in a post-processing step instead of forming the
initial queries. The goal is to have an additional constraint
that the retrieved images should be close to each other as
well as being close to the query image in the feature space.

Graph–theoretic approaches have been a popular tool in
the computer vision literature, especially in object match-
ing. Recently, graphs were used in image segmentation by
treating pixels as nodes and some features as edge weights,
and defining criteria like the normalized cut [7] and vari-
ations between intensity differences [4] to measure the
disassociations between possible partitions of the graph.
Graphs did not receive significant attention in image re-
trieval algorithms mainly due to the computational com-
plexity of graph-related operations. Huet and Hancock [5]
used attributed graphs to represent line patterns in images
and used these graphs for image matching and retrieval.

The rest of the paper is organized as follows. The fea-
tures used are discussed in Section 2. The new image re-
trieval algorithm is described in Section 3 and is followed
by the summary of a graph–theoretic clustering algorithm
in Section 4. Experiments and results are presented in Sec-
tion 5. Finally, conclusions are given in Section 6.



2. Feature Extraction
In this work, we use the textural features that were de-

scribed in [2, 1]. The feature vector consists of two sets of
features which are intended to perform a multi-scale tex-
ture analysis which is crucial for a compact representation
in large databases containing different types of complex
images.

The first set of features are computed from the line-
angle-ratio statistics which is a texture histogram method
that uses the spatial relationships between lines as well as
the properties of their surroundings. Spatial relationships
are represented by the angles between intersecting line
pairs and properties of the surroundings are represented
by the ratio of the mean gray levels inside and outside the
regions spanned by those angles. The second set of fea-
tures are the variances of gray level spatial dependencies
and are computed from the co-occurrence matrices for dif-
ferent spatial relationships. Each component f in the 28-
dimensional feature vector is normalized as f ′ = Ff (f),
where Ff (·) is the cumulative distribution function of that
component. This makes f ′ a random variable uniformly
distributed in the [0, 1] interval.

3. Image Retrieval
In most of the retrieval algorithms, a distance measure

is used to rank the database images in ascending order of
their distances to the query image, which is assumed to cor-
respond to a descending order of similarity. In our previous
work [2, 1] we defined a likelihood ratio to measure the rel-
evancy of two images, one being the query image and one
being a database image, so that image pairs which had a
high likelihood value were classified as “relevant” and the
ones which had a lower likelihood value were classified as
“irrelevant”. The distributions for the relevance and irrel-
evance classes were estimated from training sets and the
likelihood values were used to rank the database images.

Unfortunately, none of the existing feature extraction al-
gorithms can always map visually similar images to nearby
locations in the feature space and it is not uncommon to re-
trieve images that are quite irrelevant to the query image
simply because they are close to it. We believe that an effi-
cient retrieval algorithm should be able to retrieve images
that are not only close (similar) to the query image but also
close (similar) to each other, and propose a new retrieval
algorithm as follows. Assume we query the database and
get back the best N matches. For each of these N matches
we do a query and get back the best N matches again. De-
fine S as the set containing the original query image and
the images that are retrieved as the results of the above
queries. S will contain N2 + 1 images in the worst case.
Then, we can construct a graph with the images in S as
the nodes and can draw edges between each query image
and each image in the retrieval set of that query image.
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(a) Results of all possible queries.
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(b) Constructed graph when image
1 is the original query.

Figure 1: An example scenario for graph construction for
a database of 10 images when N = 5.

We call these edges the set R where R = {(i, j) ∈ S ×
S | image j is in the retrieval set when image i is the query}.
An example graph is given in Figure 1. The feature vector
distances between images, which correspond to two nodes
that an edge connects, can also be assigned as a weight to
that edge. We want to find the connected clusters of this
graph (S,R) because they correspond to similar images.
The clusters of interest are the ones that include the orig-
inal query image. The problem now becomes finding P ,
where P ⊆ S such that P ×P ⊆ R. This is called a clique
of the graph. The clique with the largest number of nodes
is called the major or maximal clique. The images that cor-
respond to the nodes in P can then be retrieved as the final
result of the query.

An additional thing to consider is that the graph (S,R)
can have multiple clusters and some of these clusters can
overlap. This is a desired property because image con-
tent is too complex to be grouped into distinct categories.
Hence, an image can be consistent with multiple groups of
images.

Additional measures are required to select the cluster
that will be returned as the result of the query. In the
next section we define the term “compactness” for a set
of nodes. The cluster with the largest number of nodes can
be retrieved as the final result. If more than one such clus-
ter exists, we can select the one with the maximum com-
pactness or we can compute the sum of the weights of the
edges in each of those clusters and select the one with the
minimum total weight.

This method increases the chance of retrieving similar
images by not only ensuring that the retrieved images are
close to the query image, but also adding another constraint
that they should be close to each other in the feature space.
In the next section we describe a graph–theoretic cluster-
ing algorithm which is used to find the clusters. Section 5
presents experimental results.



4. Graph–Theoretic Clustering
In the previous section, we proposed that cliques of the

graph correspond to similar images. Instead of finding
the cliques, to increase the speed, we use the algorithm
described in Shapiro and Haralick [6] that finds “near-
cliques” as dense regions instead of the maximally con-
nected ones in the graph. To increase the speed further, the
best N matches for the images in the database can be found
offline so that graph clustering becomes the only overhead
for a new query.

In the following sections, first we give some definitions,
then we describe the algorithm for finding dense regions,
and finally we present the algorithm for graph–theoretic
clustering. The goal of this algorithm is to find regions
in a graph, i.e. sets of nodes, which are not as dense as
major cliques but are compact enough within user specified
thresholds.

4.1. Definitions
• (S,R) represents a graph where S is the set of nodes

and R ⊆ S × S is a symmetric binary relation on S.

• The neighborhood of X is defined as
Neighborhood(X) = {Y | (X,Y ) ∈ R}.

• Conditional density D(Y |X) is the number of nodes
in the neighborhood of X which have Y as a neighbor,
D(Y |X) = #{N ∈ S | (N,Y ) ∈ R and (X,N) ∈
R}.

• Given an integer K, a dense region Z around a
node X ∈ S is defined as Z(X,K) = {Y ∈
S | D(Y |X) ≥ K}.

• Z(X) = Z(X, J) is a dense region candidate
around X where J = max{K | #Z(X,K) ≥ K}
because if M is a major clique of size L, then X,Y ∈
M implies that D(Y |X) ≥ L. Thus M ⊆ Z(X,L)
and K ≤ L ≤ #Z(X,K).

• Association of a node X to a subset B of S is defined
as

A(X|B) =
#{Neighborhood(X) ∩B}

#B
(1)

where 0 ≤ A(X|B) ≤ 1.

• Compactness of a subset B of S is defined as

C(B) =
1

#B

∑

X∈B

A(X|B) (2)

where 0 ≤ C(B) ≤ 1.

4.2. Algorithm for Finding Dense Regions
A dense region B of the graph (S,R) should satisfy

1. B = {N ∈ Z(X) | A(N |Z(X)) ≥ MINASSOC}
for some X ∈ S,

2. C(B) ≥ MINCOMP,

3. #B ≥ MINSIZE

where MINASSOC, MINCOMP and MINSIZE are thresh-
olds supplied by the user. To determine the dense region
around a node X ,

1. Compute D(Y |X) for every other node Y in S.

2. Find a dense region candidate Z(X,K ′) where K ′ =
max{K | #{Y |D(Y |X) ≥ K} ≥ K}.

3. Remove the nodes with a low association from the
candidate set. Iterate until all of the nodes have high
enough association.

4. Check whether the remaining nodes have high enough
average association (compactness) and whether the
set is large enough.

When MINASSOC and MINCOMP are both 1, the re-
sulting regions correspond to the cliques of the graph.

4.3. Algorithm for Graph Theoretic Clustering
Given dense regions, to find the clusters of the graph,

1. Define the dense-region relation F as

F = {(B1, B2) | B1, B2 are dense regions of R,

#B1 ∩B2

#B1

≥ MINOVERLAP or

#B1 ∩B2

#B2

≥ MINOVERLAP} (3)

where MINOVERLAP is a threshold supplied by the
user. Merge the regions that have enough overlap if
all of the nodes in the set resulting after merging have
high enough associations.

2. Iterate until no regions can be merged.

The result is a collection of clusters in the graph. Note that
a node can be a member of multiple clusters because of the
overlap allowed between them.

For the example graph in Figure 1, resulting cluster for
image 1 is {1, 2, 4, 3, 6}. Image 6 is retrieved instead of
image 8 because it is more consistent with the rest of the
retrieved images.
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(a) Graph for the whole database.
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(b) Example clusters are marked
by dashed lines.

Figure 2: Example clusters of the graph when all images
in Figure 1 are used as queries.

5. Experiments and Results
5.1. Database Population

The test set consists of 340 images which were ran-
domly selected from a database of approximately 10,000
aerial and remote sensing images. To form the groundtruth
for performance evaluation, these images were grouped
into 7 categories; parking lots, roads, residential ar-
eas, landscapes, LANDSAT USA, DMSP North Pole and
LANDSAT Chernobyl.
5.2. Clustering Experiments

The first step of testing the proposed retrieval algorithm
is to check whether the clusters formed by the graph–
theoretic clustering algorithm are visually consistent or
not. First, each image is used as a query, and for each
search, N top-ranked images are retrieved. Then, a graph
for the whole database is constructed with all images as
nodes and N edges corresponding to the N top-ranked im-
ages for each node. Some possible clusters for the example
database of Figure 1 are given in Figure 2.

To evaluate the consistency of a cluster, we define

Consistency =
1

K

K∑

k=1

#{i | GT(i) = GT(k), i = 1, . . . , K}

K

(4)
where K is the number of images in the cluster and GT(i)
is the groundtruth group that image i belongs to. The term
inside the summation indicates the percentage of the clus-
ter that image k is correctly associated with.

In our experiments, MINSIZE and MINOVERLAP
were fixed to be 12 and 0.80 respectively. 2220 clus-
tering tests were performed for various values of N ∈
[10, 100], MINCOMP ∈ [0.3, 1.0] and MINASSOC ∈
[0, MINCOMP]. Maximum average Consistency of 0.6013
was obtained with the parameters N = 24, MINCOMP =
0.5 and MINASSOC = 0.4. Example clusters using these
parameters are given in Figure 3. We obtained larger val-
ues for Consistency when we allowed some images to re-

(a) Consistency = 0.8347.

(b) Consistency = 0.8674.

Figure 3: Example clusters for N=24, MINCOMP=0.5,
MINASSOC=0.4.

main unclustered. For example, Consistency of 0.75 was
obtained when only 6% of the images were unclustered.
We observed that decreasing N or increasing MINCOMP
or MINASSOC increases both Consistency and the number
of unclustered images.

We also clustered the feature space using the k-means
algorithm. The results are not presented here due to space
limitations. For a given number of clusters, slightly lower
consistencies were obtained, mainly because clusters were
not allowed to overlap in this algorithm.

5.3. Retrieval Experiments
We performed experiments using all of the 340

groundtruth images as queries and retrieved images in the
cluster with the largest number of nodes for each query.
Results of the clustering experiments of the previous sec-
tion were used to select the best parameter set to be used in
retrieval. For comparison, we also retrieved only 12 top–
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(a) Group 1
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(b) Group 3
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(c) Group 4
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(d) Group 7

Figure 6: Precision as a function of the number of im-
ages retrieved. Solid lines correspond to retrievals using
only the top–ranked images and dashed lines represent the
graph–theoretic search.

ranked images (no clustering) for each query. When N is
set to be equal to the number of images in the database, the
graph reduces to a single clique and the graph–theoretic
search becomes equivalent to retrieving N top–ranked im-
ages.

Example queries are given in Figures 4 and 5. We can
observe that some images that are visually irrelevant to the
query image can be eliminated after the graph–theoretic
clustering. This is consistent with Figure 6 where average
precision for some groundtruth groups are given. The av-
erage precision for the whole database was 0.76 (compared
to 0.72 when only 12 top-ranked images are retrieved)
which shows that approximately 9 of the 12 retrieved im-
ages and the query image belong to the same groundtruth
group, i.e. the retrieved images are visally similar to the
query image.

Since we use the top-ranked images to construct the
graph, the initial precision before clustering should be large
enough to prevent the graph being dominated by images
visually irrelevant to the query image. In our experiments,
a significant improvement to an average precision of 0.83
was observed when the initial precision was greater than
0.5. On the other hand, when the initial precision was less
than 0.5, the average precision after clustering was 0.23.

The groundtruth used in the experiments and more
retrieval examples can be found in our home page at
http://isl.ee.washington.edu/∼aksoy/research/database.shtml.

6. Conclusions and Future Work
Image retrieval algorithms have a common assumption

that images which are mapped to nearby locations in the
feature space are always visually similar. However, it is
not uncommon to retrieve images that are quite irrelevant
to the query image simply because they are close to it in
the feature space. In this paper we addressed this problem
by introducing a graph–theoretic approach for image re-
trieval by formulating the database search as a problem of
finding the cliques of a graph that is constructed from the
top-ranked results of successive queries.

Experiments showed that some images that are visually
irrelevant to the query image can be eliminated after the
graph–theoretic clustering. This graph clustering approach
does not directly depend on the feature extraction algo-
rithm and is used as a post-processing step in retrieval. The
improvements in features will also improve the results of
clustering. Possible future work include feature selection
to find the images that are inconsistent with other images in
the same cluster and to check which features caused them
to be close to the rest of the images and which features can
distinguish them.
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(a) Using only 12 top–ranked images. (b) Using graph–theoretic clustering.

Figure 4: Example query 1. Upper left image is the query. Among the retrieved images, first three rows show the 12 most
relevant ones in descending order of similarity and the last row shows the 4 most irrelevant ones in descending order of
dissimilarity. When clustering is used, only 12 of the images that have the smallest distance to the original query image are
displayed if the cluster size is greater than 12.

(a) Using only 12 top–ranked images. (b) Using graph–theoretic clustering.

Figure 5: Example query 2.


