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Abstract—We describe a system for content-based retrieval and classifi- ~ Previous approaches for modeling spatial relationships of re-
Cagon of mlll'tiSFIJeCtTra' i”(‘jagest-hour Sysbtet\n;mOdle'SilmaglefS on pixel, r(‘jaghi_(”;]gions [3] include manual delineation by experts and construc-
and scene levels. To reduce the gap between low-level features and high-; .
level user semantics, and to supp%rtpcomplex guery scenarios that cons?sttlon of graph models _that are_ POWGrfUl representatl_ons_ but are
of many regions with different feature characteristics, we propose a prob- Not usable due to the infeasibility of manual annotation in large
abilistic visual grammar that includes automatic identification of region remote sensing databases. In this paper we describe an auto-
prototypes and modeling of their spatial relationships. A Bayesian frame- matic probabilistic framework that includes prototypes of prim-
work is used to automatically classify scenes based on these models. We, . . . . . . .
demonstrate our system with query scenarios that cannot be expressed by ItiVE regions, their spatial relationships, and automatic and su-

traditional region or scene level approaches but where the visual grammar pervised algorithms to use them for content-based retrieval and
provides accurate classifications and effective retrieval. classification.

|. INTRODUCTION II. PROTOTYPEREGIONS

Automatic content extraction, classification and retrieval are The first step to construct a visual grammar is to find mean-
highly desired goals in intelligent remote sensing databas&§ful regions in an image. To mimic the identification of re-
Most of the proposed approaches use low-level features [&ONS by experts, we define the concept of prototype regions. A
spectral values and texture features to index images and tRE}OLYPe region is a region that has a relatively uniform low-
use distance measures in these feature spaces to find similari§¥8! Pixel feature distribution and describes a simple scene or
between them. However, there is a large semantic gap betwB@ff of @ scene. Ideally, a prototype is frequently found in a spe-
the low-level features and the high-level user expectations afiC class of scenes and differentiates this class of scenes from
search scenarios. others. Also, using prototypes reduces the number of associ-

The VisiMine system [1] supports interactive classificadtions between regions and makes the combinatorial problem
tion and retrieval of multispectral images by modeling theffore tractable. _ _
on pixel, region and scene levels. Pixel level characteriza-ViSIMine uses unsupervised model-based clustering to au-
tion includes spectral bands, spectral unmixing for surfat@mate the process of finding prototypes. We use a Gaussian
reflectance, Gabor, co-occurrence and Laws texture featuf8&ture model where each component corresponds to a pro-
line-angle-ratio statistics, and DEM information. After the fed©tyP€. The maximuna posterioriprobability (MAP) rule is
tures are computed for each pixel, an automatic region segmbfed 0 assign a prototype label to each region with the degree
tation algorithm is used to compute an approximate polyg&fw match being the posterior probabmty of_the prototype given
decomposition of each scene. Then, region level features §}g feature vector of that region. Interesting prototypes in re-
computed using moments for shape and orientation infornfgote sensing images can be cities, rivers, lakes, reS|den'§|aI ar-
tion, and statistics of pixel features within and around indivias: tidal flats, forests, fields, snow, clouds, etc. An extension of
ual regions. t_h|s prototype framewc_)rk can be to use supervised algorithms

To reduce the gap between low-level features and high-Ie\%F Bayesian label training or relevance feedback to learn and
user semantics, Schrodefral. [2] developed a Bayesian label'MProve the prototype models.
training algorithm that operates on individual pixels. Tradi-
tional region or scene level search algorithms assume that the
regions or scenes consist of uniform pixel feature distributions. Second-order Region Relationships

However, complex query scenarios usually contain many pixelsSecond-order region relationships consist of the relation-
and regions that have different feature characteristics. Furtheﬁe =9 . bs. . .

i R . .. _Ships between region pairs. These pairs can occur in the image
more, two images with similar regions can have very differ-

ent interpretations if the regions have different spatial arrang'l? _many possible ways. However, the regions of interest are
r

: : sually the ones that are close to each other. Representations of
ments. Therefore, we need a higher level visual grammar 10
describe these scenarios.

I11. REGION RELATIONSHIPS

spatial relationships depend on the representations of regions.

In VisiMine, regions are represented by their boundary pix-
This work is supported by NASA SBIR contracts NAS5-98053 and NRAﬁIS' Other pOSSIle representations include minimum bounding

37143. rectangles, centroid-based and graph-based approaches [3].
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Fig. 1. Spatial relationships of region paidisjoined bordering invadedby
andsurroundedby.
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Fig. 3. Spatial relationships of three regions decomposed into second-order
Ratio of relationships. This particular example is used to recognize mountain lakes with
' common perimeter surrounding hills wi
! : ‘ P - g hills with trees.
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Fig. 2. Fuzzy membership functions for spatial relationships based on rengi\th the degree
perimeter ratios.

dij = Qcij (max{rij, ’I’ji}). (2)

. . . , . . B. Higher-order Region Relationships
The spatial relationships between all region pairs in an image

can be represented by a region relationship matrix. For a paiffigher-order region relationships can be decomposed into
of regions, we first compute multiple second-order relationships. The equivalent of the

Boolean “and” operation in fuzzy logic is the “min” operation.
The relationship between a combinationfofegions can be
represented as a list QZ) pairwise relationships using (1) as

« perimeter of the first regior;

« perimeter of the second region;

« common perimeter between two regians
wherei,j € {1,...,n} andn is the number of regions in ek ={cjli,j=1,...k Vi<j} 3

the image. The: x n region relationship matrix is defined as ., . .
R={ry="9]i,j=1,..,n, Vi # j}. Then, relation- with its degree computed using (2) as

ships can be derived by quantizing the values. Quantiza- di.p= min d;;. 4)
tion gives crisp (Boolean) decisions abeyt which may have ”:ilgj-“ ok

limited expressiveness. A more flexible method is to defiréeee Fig. 3 for an example decomposition
the relationships as relationship classes. Each region pair ¢an 9: P P '
be assigned a degree of their spatial relationship using fuzzy IV. | MAGE RETRIEVAL

class membership functions. The pairwise relationships use({J ios f | 05 by givi
in VisiMine are shown in Fig. 1. The class membership func- serfs can c?mpo§e quta\;!eiﬂpr compdex scegarlos ﬁ/gl\f/mg
tions are denoted d3. wherec is one ofdisjoined bordering aseto exampie r_eglorr:s. IS! mz enco les an searcf EI3I8 or.a
invadedby andsurroundedby. Then, the valug, (r;;) repre- GUerY scenario using the proposed visua grammar as follows:
X o . 1. Letk be the number of regions selected by the user. Find
sents the degree of membership of regiomsdj to classc. .
. ; . - e prototype label for each of theregions.
We use the trapezoidal membership functions shown in Fig. 2.” . ) :
o . : . Find the perimeter of each of theegions and the common
The motivations for the choice of these functions are as fol-. . , . X .
) L . perimeter for each of th(efg) possible region pairs.
lows. Two regions are disjoined when they are not touchi : ; y ; )
. ?_Find the spatial relationship and its degree among these
each other. They are bordering each other when they have a. ; .l
. . regions using (3) and (4). Denote themdy= {c}. |i,j =
common perimeter. When the common perimeter gets close SN N . v
. . : ..., k, Vi < j}andd*, respectively.
to 50%, the larger region starts invading the smaller one. When . .
. For each image in the database,

the common perimeter goes above 80%, the relationship is co?é) For each query region, find the list of regions with the

sidered an almost complete invasion, i.e. surrounding. . ' .
: : same prototype label as itself. Denote these listd/hy =
The class membership functions are chosen so that only gne %

of them is the largest for a given perimeter ratio. To have the, " . ,

relationship between the region paiand; uniquely defined, %b) Rank region group8uy, uz, . . ., ux) € Uy xUsx- - -xUy
. X X according to the distance

we label them as having the relationship

d* — 4 £nin ka:‘ (Tuquj) .

Cij = argmax Qc(max{ri;, 7 }) 1) lvj—il<vj-- !



Fig. 4. Top 5 search results for the mountain lake described in Fig. 3. They| %
include a lake with a similar hill structure around it. !

Fig. 6. Classification results for clouds that are modeled by white regions with
their neighboring shadows.

wherev;; is the number of training images far; that contain
#'F. Using a similar procedure, the Bayes estimate for an image
belonging to class; is computed as

Fig. 5. Top 5 search results for a residential area with a park where both
neighboring water.

(c) The equivalent of the Boolean “or” operation in fuzzy
logic is the “max” operation. To rank image tiles, use the dis-
tance

() = = 1 ©)

S vits
In other words, discrete probability tables are constructed using
d* — max { ‘min ch_(ruiuj)}‘. v, andv;j,i=1,...,s,j =1,...,t, and conjugate priors are
I(}Llljﬁz’;,j?‘;,)i ”:ilgj“ ok used to update them when new images become available via
E | . LANDSAT datab venn Fi relevance feedback.

dxampequerles ona SAT database are givenin Figt o1 an unknown image, search for each of theegion
and 5. groups and compute the probability for each class using the
V. IMAGE CLASSIFICATION conditional independence assumption. Assign thatimage to the

] o best matching class using the MAP rule as
The visual grammar can also be used to classify images in

a Bayesian framework. The input to the system is a set of ex- w* = arg max p(w;| T, ... ,T¢)
ample images for each class defined by the user.slbet the Wi

number of classesn be the number of relationships defined i

for region pairs (as in Fig. 1); be the number of regions in —arg H}U%Xp(wi) Hp(xj\wi).
a region group, and be a threshold for the number of region 5=l

groups that will be used in the classifier. Denote the classes Qy example classification is given in Fig. 6.
wy, ... ,ws. VisiMine automatically builds classifiers from the

training data as follows: VI. CONCLUSIONS

1. Count the number of times each possible region group IS1h this paper we proposed a probabilistic framework to au-

found in the set of training images for each class. Compute tpe ) ) . )
omatically analyze complex query scenarios using spatial re-

variance of the count for each region group across all cIass% ionships of regions and described algorithms to use them

A region group of interest is the one with a large variance, |]e . . I
X . . . Or content-based image retrieval and classification. Future
the one that is frequently found in a particular class of images

o work include using supervised methods to update prototype
but rarely exists in other classes. models and developing new spatial relationships tikar, far
2. Select the top region groups with the largest variances, ping P P T

Letxy,...,x; be Bernoulli random variables for these reginght'Of’ left.of, above below etc.

groups, wherer; = T if the region groupr; is found in an REFERENCES
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