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Abstract—We describe a system for content-based retrieval and classifi-
cation of multispectral images. Our system models images on pixel, region
and scene levels. To reduce the gap between low-level features and high-
level user semantics, and to support complex query scenarios that consist
of many regions with different feature characteristics, we propose a prob-
abilistic visual grammar that includes automatic identification of region
prototypes and modeling of their spatial relationships. A Bayesian frame-
work is used to automatically classify scenes based on these models. We
demonstrate our system with query scenarios that cannot be expressed by
traditional region or scene level approaches but where the visual grammar
provides accurate classifications and effective retrieval.

I. I NTRODUCTION

Automatic content extraction, classification and retrieval are
highly desired goals in intelligent remote sensing databases.
Most of the proposed approaches use low-level features like
spectral values and texture features to index images and then
use distance measures in these feature spaces to find similarities
between them. However, there is a large semantic gap between
the low-level features and the high-level user expectations and
search scenarios.

The VisiMine system [1] supports interactive classifica-
tion and retrieval of multispectral images by modeling them
on pixel, region and scene levels. Pixel level characteriza-
tion includes spectral bands, spectral unmixing for surface
reflectance, Gabor, co-occurrence and Laws texture features,
line-angle-ratio statistics, and DEM information. After the fea-
tures are computed for each pixel, an automatic region segmen-
tation algorithm is used to compute an approximate polygon
decomposition of each scene. Then, region level features are
computed using moments for shape and orientation informa-
tion, and statistics of pixel features within and around individ-
ual regions.

To reduce the gap between low-level features and high-level
user semantics, Schroderet al. [2] developed a Bayesian label
training algorithm that operates on individual pixels. Tradi-
tional region or scene level search algorithms assume that the
regions or scenes consist of uniform pixel feature distributions.
However, complex query scenarios usually contain many pixels
and regions that have different feature characteristics. Further-
more, two images with similar regions can have very differ-
ent interpretations if the regions have different spatial arrange-
ments. Therefore, we need a higher level visual grammar to
describe these scenarios.

This work is supported by NASA SBIR contracts NAS5-98053 and NRA2-
37143.

Previous approaches for modeling spatial relationships of re-
gions [3] include manual delineation by experts and construc-
tion of graph models that are powerful representations but are
not usable due to the infeasibility of manual annotation in large
remote sensing databases. In this paper we describe an auto-
matic probabilistic framework that includes prototypes of prim-
itive regions, their spatial relationships, and automatic and su-
pervised algorithms to use them for content-based retrieval and
classification.

II. PROTOTYPEREGIONS

The first step to construct a visual grammar is to find mean-
ingful regions in an image. To mimic the identification of re-
gions by experts, we define the concept of prototype regions. A
prototype region is a region that has a relatively uniform low-
level pixel feature distribution and describes a simple scene or
part of a scene. Ideally, a prototype is frequently found in a spe-
cific class of scenes and differentiates this class of scenes from
others. Also, using prototypes reduces the number of associ-
ations between regions and makes the combinatorial problem
more tractable.

VisiMine uses unsupervised model-based clustering to au-
tomate the process of finding prototypes. We use a Gaussian
mixture model where each component corresponds to a pro-
totype. The maximuma posterioriprobability (MAP) rule is
used to assign a prototype label to each region with the degree
of match being the posterior probability of the prototype given
the feature vector of that region. Interesting prototypes in re-
mote sensing images can be cities, rivers, lakes, residential ar-
eas, tidal flats, forests, fields, snow, clouds, etc. An extension of
this prototype framework can be to use supervised algorithms
like Bayesian label training or relevance feedback to learn and
improve the prototype models.

III. R EGION RELATIONSHIPS

A. Second-order Region Relationships

Second-order region relationships consist of the relation-
ships between region pairs. These pairs can occur in the image
in many possible ways. However, the regions of interest are
usually the ones that are close to each other. Representations of
spatial relationships depend on the representations of regions.
In VisiMine, regions are represented by their boundary pix-
els. Other possible representations include minimum bounding
rectangles, centroid-based and graph-based approaches [3].
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DISJOINED BORDERING INVADED_BY SURROUNDED_BY

Fig. 1. Spatial relationships of region pairs:disjoined, bordering, invadedby
andsurroundedby.
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Fig. 2. Fuzzy membership functions for spatial relationships based on region
perimeter ratios.

The spatial relationships between all region pairs in an image
can be represented by a region relationship matrix. For a pair
of regions, we first compute
• perimeter of the first region,πi

• perimeter of the second region,πj

• common perimeter between two regionsπij

where i, j ∈ {1, . . . , n} and n is the number of regions in
the image. Then × n region relationship matrix is defined as
R = {rij = πij

πi
| i, j = 1, . . . , n, ∀i 6= j}. Then, relation-

ships can be derived by quantizing therij values. Quantiza-
tion gives crisp (Boolean) decisions aboutrij which may have
limited expressiveness. A more flexible method is to define
the relationships as relationship classes. Each region pair can
be assigned a degree of their spatial relationship using fuzzy
class membership functions. The pairwise relationships used
in VisiMine are shown in Fig. 1. The class membership func-
tions are denoted asΩc wherec is one ofdisjoined, bordering,
invadedby andsurroundedby. Then, the valueΩc(rij) repre-
sents the degree of membership of regionsi andj to classc.
We use the trapezoidal membership functions shown in Fig. 2.

The motivations for the choice of these functions are as fol-
lows. Two regions are disjoined when they are not touching
each other. They are bordering each other when they have a
common perimeter. When the common perimeter gets closer
to 50%, the larger region starts invading the smaller one. When
the common perimeter goes above 80%, the relationship is con-
sidered an almost complete invasion, i.e. surrounding.

The class membership functions are chosen so that only one
of them is the largest for a given perimeter ratio. To have the
relationship between the region pairi andj uniquely defined,
we label them as having the relationship

cij = arg max
c

Ωc(max{rij , rji}) (1)

BORDERING DISJOINEDBORDERING

Fig. 3. Spatial relationships of three regions decomposed into second-order
relationships. This particular example is used to recognize mountain lakes with
surrounding hills with trees.

with the degree

dij = Ωcij
(max{rij , rji}). (2)

B. Higher-order Region Relationships

Higher-order region relationships can be decomposed into
multiple second-order relationships. The equivalent of the
Boolean “and” operation in fuzzy logic is the “min” operation.
The relationship between a combination ofk regions can be
represented as a list of

(
k
2

)
pairwise relationships using (1) as

c1...k = {cij | i, j = 1, . . . , k, ∀i < j} (3)

with its degree computed using (2) as

d1...k = min
i,j=1,... ,k

i<j

dij . (4)

See Fig. 3 for an example decomposition.

IV. I MAGE RETRIEVAL

Users can compose queries for complex scenarios by giving
a set of example regions. VisiMine encodes and searches for a
query scenario using the proposed visual grammar as follows:
1. Let k be the number of regions selected by the user. Find
the prototype label for each of thek regions.
2. Find the perimeter of each of thek regions and the common
perimeter for each of the

(
k
2

)
possible region pairs.

3. Find the spatial relationship and its degree among thesek
regions using (3) and (4). Denote them byc∗ = {c∗ij | i, j =
1, . . . , k, ∀i < j} andd∗, respectively.
4. For each image in the database,
(a) For each query region, find the list of regions with the

same prototype label as itself. Denote these lists byUi, i =
1, . . . , k.
(b) Rank region groups(u1, u2, . . . , uk) ∈ U1×U2×· · ·×Uk

according to the distance
∣∣∣d∗ − min

i,j=1,... ,k
i<j

Ωc∗ij
(ruiuj )

∣∣∣.



Fig. 4. Top 5 search results for the mountain lake described in Fig. 3. They all
include a lake with a similar hill structure around it.

Fig. 5. Top 5 search results for a residential area with a park where both are
neighboring water.

(c) The equivalent of the Boolean “or” operation in fuzzy
logic is the “max” operation. To rank image tiles, use the dis-
tance ∣∣∣∣d∗ − max

(u1,u2,... ,uk)∈
U1×U2×···×Uk

{
min

i,j=1,... ,k
i<j

Ωc∗ij
(ruiuj )

}∣∣∣∣.

Example queries on a LANDSAT database are given in Fig. 4
and 5.

V. I MAGE CLASSIFICATION

The visual grammar can also be used to classify images in
a Bayesian framework. The input to the system is a set of ex-
ample images for each class defined by the user. Lets be the
number of classes,m be the number of relationships defined
for region pairs (as in Fig. 1),k be the number of regions in
a region group, andt be a threshold for the number of region
groups that will be used in the classifier. Denote the classes by
w1, . . . , ws. VisiMine automatically builds classifiers from the
training data as follows:
1. Count the number of times each possible region group is
found in the set of training images for each class. Compute the
variance of the count for each region group across all classes.
A region group of interest is the one with a large variance, i.e.
the one that is frequently found in a particular class of images
but rarely exists in other classes.
2. Select the topt region groups with the largest variances.
Let x1, . . . , xt be Bernoulli random variables for these region
groups, wherexj = T if the region groupxj is found in an
image andxj = F otherwise. Letp(xj = T ) = θj . Then,
the number of timesxj is found in images from classwi has
a Binomial(vi, θj) distribution wherevi is the number of train-
ing images for classwi. Using a Beta(1, 1) distribution as the
conjugate prior, the Bayes estimate forθj is computed as

p(xj = T |wi) =
vij + 1
vi + 2

(5)

Fig. 6. Classification results for clouds that are modeled by white regions with
their neighboring shadows.

wherevij is the number of training images forwi that contain
xj . Using a similar procedure, the Bayes estimate for an image
belonging to classwi is computed as

p(wi) =
vi + 1∑s
i=1 vi + s

. (6)

In other words, discrete probability tables are constructed using
vi andvij , i = 1, . . . , s, j = 1, . . . , t, and conjugate priors are
used to update them when new images become available via
relevance feedback.
3. For an unknown image, search for each of thet region
groups and compute the probability for each class using the
conditional independence assumption. Assign that image to the
best matching class using the MAP rule as

w∗ = arg max
wi

p(wi|x1, . . . , xt)

= arg max
wi

p(wi)
t∏

j=1

p(xj |wi).
(7)

An example classification is given in Fig. 6.

VI. CONCLUSIONS

In this paper we proposed a probabilistic framework to au-
tomatically analyze complex query scenarios using spatial re-
lationships of regions and described algorithms to use them
for content-based image retrieval and classification. Future
work include using supervised methods to update prototype
models and developing new spatial relationships likenear, far,
right of, left of, above, below, etc.
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