
N Degrees of Separation:
Multi-Dimensional Separation of Concerns

Peri Tarr
Harold Ossher

William Harrison
IBM Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

(914) 784-7278
{tarr,ossher,harrisn}@watson.ibm.com

Stanley M. Sutton, Jr.*
EC Cubed, Inc.

15 River Road, Suite 310
Wilton, CT 06897

(203) 761-3971
ssutton@eccubed.com

ABSTRACT
Done well, separation of concerns can provide many soft-
ware engineering benefits, including reduced complexity, im-
proved reusability, and simpler evolution. The choice of
boundaries for separate concerns depends on both require-
ments on the system and on the kind(s) of decompositionand
composition a given formalism supports. The predominant
methodologies and formalisms available, however, support
only orthogonal separations of concerns, along sdngle dimen-
sions of composition and decomposition. These characteris-
tics lead to a number of well-known and difficult problems.

This paper describes a new paradigm for modeling and im-

plementing software artifacts, one that permits separation of

overlapping concerns along multiple dimensions of composi-

tion and decomposition. This approach addresses numerous

problems throughout the software lifecycle in achieving well-

engineered, evolvable, flexible software artifacts and trace-

ability across artifacts.

Keywords
Hypermodules; hyperslices; software decomposition and
composition; multi-dimensional separation of concerns

1 INTRODUCTION
The primary goals of software engineering are to im-
prove software quality, to reduce the costs of software
production, and to facilitate maintenance and evolution.
In pursuit of these goals, software engineers constantly
seek development technologies and methodologies that
reduce software complexity, improve comprehensibility,
promote reuse, and facilitate evolution. These prop-
erties, in turn, induce several specific requirements on

+Stanley Sutton performed this work while at the University
of Massachusetts at Amherst. He was supported there in part
by the Air Force Materiel Command, Rome Laboratory, and the
Advanced Research Projects Agency under Contract F30602-94
c-0137.

Copyright ACM 1999 I-581 13-074-0/99/05...$5.00

the formalisms used to develop software artifacts. Re-
duced complexity and improved comprehensibility re-
quire decomposition mechanisms to carve software into
meaningful and manageable pieces. They also require
composition mechanisms to put pieces together usefully.
Reuse requires the development of large-scale reusable
components, low coupling, and powerful, non-invasive
adaptation and customization capabilities. Ease of evo-
lution depends on low coupling and also requires trace-
c&lity across the software lifecycle, mechanisms for min-
imizing the impact of changes, and substitutability.

Despite much good research in the software engineer-
ing domain, many of the problems that complicate soft-
ware engineering still remain. Software comprehensibil-
ity tends to degrade over time (if, indeed, it is present at
all). Many common maintenance and evolution activ-
ities result in high-impact, invasive modifications. Ar-
tifacts are of limited reusability, or are reusable only
with difficulty. Traceability across the various software
artifacts is limited, which further complicates evolution.

These somewhat diverse problems are due, in large part,
to limitations and unfulfilled requirements related to
separation of concerns [19]. Our ability to achieve the
goals of software engineering depends fundamentally on
our ability to keep separate all concerns of importance
in software systems. All modern software formalisms
support separation of concerns to some extent, through
mechanisms for decomposition and composition. How-
ever, existing formalisms at all lifecycle phases provide
only small, restricted sets of decomposition and compo-
sition mechanisms, and these typically support only a
single, “dominant” dimension of separation at a time.
We call this “tyranny of the dominant decomposition.”

We believe that achieving the primary goals of software
engineering requires support for simuktaneous separa-
tion of overlapping concerns in multiple dimensions. We
will illustrate how limitations on current mechanisms
prevent this and thereby lead directly to the failure to
achieve these goals. We propose a model of software
artifacts, decomposition, and composition to overcome

107

these limitations. This model allows for simultaneous,
multi-dimensional decomposition and composition. It is
not a “universal” artifact modeling formalism; rather, it
complements existing formalisms, giving developers ad-
ditional modularization flexibility while continuing to
use the formalisms of their choice. Moreover, this model
is not particular to any phase of the software lifecy-
cle. The extra flexibility to represent alternative de-
compositions of artifacts within a development phase
also enables us to relate artifacts in multiple ways across
phases, and even to co-structure artifacts-permit dif-
ferent artifacts, developed during different phases of the
software lifecycle, to be structured in such a way that
corresponding elements align clearly. We show how this
increased flexibility can help to address the problems
of software complexity and comprehensibility and dif-
ficulties with reuse, facilitate software evolution, and
enhance traceability between artifacts, both within and
across development phases.

The rest of this paper is organized as follows. Section
2 motivates the need for multiple dimensions of decom-
position and rich mechanisms for composition. Section
3 describes our abstract model of software artifacts. It
also shows how this model can address many of the is-
sues raised in Section 2. Section 4 describes the issues
involved in instantiating the model for particular arti-
fact development formalisms, such as UML [21] or Java
[5]. Section 5 describes related work shows how our
approach has been partially realized in some existing
work. Finally, Section 6 presents some conclusions and
future work.

2 MOTIVATION
To illustrate some pervasive and serious problems in
software engineering that help motivate our work, we
present a running example involving the construction
and evolution of a simple software engineering environ-
ment (SEE) for programs consisting of expressions. We
assume a simplified software development process, con-
sisting of informal requirements specification in natural
language, design in UML, and implementation in Java.

The First Go-Round
The initial set of requirements for the SEE are simple:

The SEE supports the specification of expres-
sion programs. It contains a set of tools that
share a common representation of expressions.
The initial toolset should include: an evalua-
tion capability, which determines the result of
evaluating an expression; a display capability,
which depicts an expression textually; and a
check capability, which checks an expression
for syntactic and semantic correctness.

Based on these requirements, we design the system us-

ing UML. Figure 1 shows a subset of the design, which

Key:

11 Class (name on top; methods inside)

Cl 4-42 C2 is a subclass of Cl

Figure 1: Initial (Partial) Design Artifact for SEE.

represents expressions as abstract syntax trees (ASTs)
and defines a class for each kind of AST node. Each class
contains accessor and modifier methods, plus methods
evalo, display()) and check()) which realize the re-
quired tools in a standard, object-oriented manner.

The code that implements this design has a similar
structure, except that it separates interfaces to AST
nodes from implementation classes, resulting in two hi-
erarchies instead of one.

This simple example raises some noteworthy issues that
occur commonly in software. Despite being representa-
tions of the same system, each of the three kinds of ar-
tifacts decomposes the system differently. The require-
ments decompose by tool, or feature (e.g., [23]), while
the design and code decompose by object. The code
further separates interface from implementation parts.
The difference in decomposition models leads directly to
scattering-a single requirement affects multiple design
and code modules-and tangling-material pertaining
to multiple requirements is interleaved within a single
module. These problems compromise comprehension
and evolution, as we will see shortly.

Evolving the SEE: An Environmental Hazard
After using the SEE for some time, clients request some
changes in the system:

l Expressions should be optionally persistent.
l Style checking should be supported as wfell as syn-

tax and semantic checking. It should be possi-
ble to check expressions against multiple styles.

108

Any meaningful combination of checks (e.g., syntax
only; syntax plus style(s)) should be permitted.

Unfortunately, these seemingly straightforward en-
hancements have a significant impact on the design and
code. Figure 2 shows the impact on the Java imple-
mentation class hierarchy. A simple implementation of
persistence requires adding “save” and “retrieve” meth-
ods to all AST classes, and inserting additional code
into all accessor and modifier methods to retrieve per-
sistent objects upon first access and to flush modifi-
cations back to the database. This represents a non-
trivial, invasive change to all AST design classes and
to all of the interfaces and implementation classes in
the code, a serious case of scattering.l Code to sup-
port retrieval and update of persistent objects becomes
tangled with other code in the accessor and modifier
methods, impeding comprehensibility and future evolu-
tion. Further, the persistence code also has an impact
on the new style checkers. If the persistence option is
present, the style checkers must include their state infor-
mation in the persistent representation of expressions.
This kind of context-dependent feature is extremely dif-
ficult to represent in modern formalisms.

The ability to permit arbitrary combinations of checks
is also problematic. It requires special infrastructure
support, in both the design and implementation. This
infrastructure is not present-it comes at high cost in
terms of conceptual complexity and run-time overhead,
so it was not included originally as it was not necessary.
We choose to address this problem by retrofitting the
Visitor design pattern [4], which permits optional com-
binations of features, into the design and code. Visitor
requires us to replace all AST check0 methods with
accept (Visitor) methods, and to define a separate
Visitor class for each type of check. The modifications
to the check feature needed to support this capability
are invasive, affecting every module in the design and
code, and complicating all the artifacts and their inter-
relationships. The presence of arbitrary checks further
complicates the persistence capability, since the infor-
mation to be made persistent depends on the particular
combination of syntax and/or style checkers. Finally,
these modifications significantly impede the future evo-
lution of the artifacts. They introduce a higher degree
of coupling between the AST classes and the visitor
classes, as evident in Figure 2, and the presence of vis-
itors in the design will necessitate extensive changes to
accommodate modifications to the AST hierarchy [4].

The Postmortem
This example demonstrates, in a microcosm, many

5 Subclassing is a non-invasive mechanism for change, but it is
not a reasonable option here. It produces combinatorial explo-
sions of classes and still requires invasive changes to any client
that creates instances of the original classes.

problems that plague software engineers and suggests
why we still fall short of our goals.

Impact of change: The goal of low impact of change
requires additive, rather than anvasa’ve, change. Yet con-

ceptually simple changes, like those in the expression
SEE, often have widespread and invasive effects, both
within the modified artifact and on related pieces of
other artifacts. This is primarily because units of change
often do not match the units of abstraction and encap-

sulation within the artifacts. Thus, additive changes
in one artifact, like requirements, may not translate to
additive changes in other artifacts, like design and code.

Modern extensibility features, such as subclassing and
design patterns, help but are not sufficient [16] because
they require significant pre-planning. It is not feasible
to pre-enable artifacts for all possible extensions, even
if it were possible to anticipate them.

Reuse: Despite wide recognition of its benefits, reuse is
limited and occurs mostly on code, not requirements or
designs. Part of the impediment to large-scale reuse is
that larger artifacts entail more design and implementa-
tion decisions, which can result in tangling of concerns
and coupling of features, reducing reusability. Given
large and complex artifacts, plus the weak set of adap-
tation and customization capabilities available in most
formalisms, developers face a significant amount of in-
vasive work to adapt a component for a given context.

Traceability: Different artifacts are written for dif-
ferent purposes and include different levels of abstrac-
tion. Thus, they are specified in different formalisms
and are often decomposed and structured differently. A
case in point is the requirements scattering and tangling
problem illustrated earlier. No clear correspondence of
abstraction or structure across artifacts exists, in gen-
eral, to aid traceability. Instead, developers must cre-
ate connections among related artifacts explicitly (e.g.,
[9]). These connections are complex, can be invalidated
readily, and, most importantly, they do not reduce scat-
tering or tangling. They can help developers assess the
impact of a given change, but they cannot localize it
or reduce its impact. Developers must therefore make
invasive, time-consuming changes to multiple artifacts
to propagate the effects of a given change. When time
constraints are tight, they often choose to make changes
only to code, letting other artifacts become obsolete.

We believe that a major cause of these impact of change,
reusability, and traceability problems is the Yyranny of
the dominant decomposition.” Existing modularization
mechanisms typically support only a small set of decom-
positions, and usually only a single “dominant” one at
a time. This dominant decomposition satisfies some im-
portant needs, but usually at the expense of others. For
example, a decomposition may be chosen to limit the

109

impact of some changes, but traceability may thereby
be sacrificed (or, indeed, the ability to limit the im-
pact of other changes); or, in a data decomposition de-
signed to match application-domain concepts, code for
a feature may be scattered across multiple application
modules and tangled with code for other features. To
make matters worse, different formalisms typically sup-
port different dominant decompositions, reducing trace-
ability across artifacts. Many different kinds of concern
are important in a software system, and designating one
of them as dominant in each context, at the expense
of the others, contibutes significantly to the problems
identified above.

Breaking the Tyranny
To achieve the full potential of separation of concerns,
we need to break the tyranny of the dominant decom-
position. In the example and related discussion, several
kinds of concerns were identified:

l feature: these include display, basic check, evaluate,
persistence, and style check. Features may also be
required or optional

l unit of change: additions made due to user requests
l customization: the additions or changes needed to

customize a component for a particular purpose
l data or object: the classes involved in the system.

If the system could be modularized according to con-
cerns of all these kinds, simultaneously, the problems de-
scribed above would be greatly ameliorated. Traceabil-
ity would be improved by encapsulating features sepa-
rately, with clear correspondence between the represen-
tation of a particular feature in different artifacts (i.e.,
co-structuring). Impact of change would be reduced by
the ability to encapsulate each unit of change separately.
Reuse would be enhanced by the improved traceability,

Figure 2: The Java Implementation Classes, Post-Evolution.

and by separating customization details from the base
component, provided composition is rich enough to ap-
ply them effectively.

These are just a few of the dimensions of concern along
which separation may be desirable. Others include: to
match conceptual abstractions; to conform to a given
modeling paradigm (object-oriented, functional, etc.)
or to take advantage of special-purpose formalisms; to
separate “optional” from “required” pieces; to separate
variants for different host systems, classes of users, etc.;
to permit distribution or parallel processing; to facilitate
concurrent or cooperative development; etc. The po5

sibilities are limitless, and ‘vary with context. What is
more, different dimensions of concern are seldom orthog-
onal: they overlap, and can affect one another. A truly
flexible approach to modularization must allow any and
all that are needed to apply simultaneously, and must
be able to handle overlap and interactions a:mong them.

3 MULTI-DIMENSIONAL SEPARATION OF
CONCERNS

This section introduces a model of decomposition and
composition that we believe satisfies these needs. The
model is used in conjunction with developers’ arti-
fact formalism(s) of choice, giving developers additional
power without requiring changes to the formalisms.

We begin with a model of conventional software, to set
the context and introduce some terminology, then de-
scribe our model and show how it addresses many of the
issues raised earlier.

A Model of Conventional Software
A particular software system is written to address some
problem or provide some service within a problem do-
main. To do this, it must model or implement a variety

110

of concepts of importance in that domain. These con-
cepts include objects (e.g., “expression” in the exam-
ple), functionality (e.g., “evaluation”), and properties
(e.g., “persistence”). Concepts derived directly from the
domain as well as internal software concepts (e.g., data
structures) are both important.

The software system itself consists of a set of artifacts,
such as requirements specifications, designs, and code.
Each artifact consists of descriptive material in some
formalism, whose purpose is to model needed concepts
in a manner appropriate for that artifact. The for-
malisms differ for different projects, different phases,
and different artifacts, and perhaps even within an arti-
fact. Different artifacts often share the same concepts,
with each concept potentially being described in a dif-
ferent way, and with different details, in the different
artifacts. For example, the word expression in the
requirements and the class Expression in the design
and code all describe the concept “expression” in their
rather different ways and at different levels of detail.

It is convenient to think of the descriptive material in
each artifact as being made up of units. What con-
stitutes a unit depends on the formalism, and perhaps
on the context. For example, in object-oriented design
formalisms or programming languages, classes are one
kind of unit. If one looks below the class level, indi-
vidual methods may also be considered units. This il-
lustrates the important point that formalisms typically
consist of at least some basic elements, which we call
primitive units, and some grouping construct(s), which
we call compound units or modules.
* ,i’
We treat primitive units as indivisible; our model works
with them, but never looks inside them. A single con-
cept is typically modeled by a collection of many units
(primitive or compound). Perhaps surprisingly, a sin-
gle unit often participates in modeling more than one
concept. For example, the evalO method within the
Plus class participates in modeling both the “plus ex-
pression” concept and the “evaluation” concept.

The purpose of modules is to accomplish separation of
concerns [19]. Even software systems of moderate size
contain so many primitive units that they cannot all be
held in one’s mind at once. When performing some de-
velopment task, a developer must be able to focus on
those units that are pertinent to that task and ignore
all others. To accomplish this, software engineers iden-
tify concerns of importance, and seek to localize units
representing concepts that pertain to each concern into
q.module. Ideally, one only need look inside a module
if’one is interested in a given concern. For example, a
class is a module containing units (describing methods
and instance variables) that model a particular kind of
object; all internal details of such objects, such as their

representation, are described within the class.

Many kinds of concerns are important during the soft-
ware lifecycle. These dimensions of concern help to
organize the space of concepts and units. Common
dimensions of concern are data or object (leading to
data abstraction) and function (leading to functional
decomposition). Others include feature (both func-
tional, such as “evaluation,” and cross-cutting, such as
“persistence”), role, and configuration. As illustrated
by these examples, some dimensions of concern derive
from the domain, often aligning with important domain
concepts, while others come from system requirements,
from the development process, and from internal details
of the system itself. In short, there are any number
of dimensions of concern that might be of importance
for different purposes (e.g., comprehension, traceability,
reusability, evolvability, etc.), for different systems, and
at different phases of the lifecycle.

Modern artifact formalisms typically allow decompo-
sition (i.e., grouping of units) into modules according
to only a single dimension of concern, which we term
the dominant dimension. The formalism often dictates
specifically what the dominant dimension must be. For
example, object-oriented formalisms support decompo-
sition based on the object (or data) dimension, ..while
procedural and functional programming languages per-
mit decomposition based on function. Even formalisms
that do not impose a specific dominant dimension typ
ically do not support simultaneous decomposition ac-
cording to multiple dimensions, so the developer ulti-
mately chooses a dominant dimension. In either case,
the modular structure of the artifact achieves separation
of concerns only along this dominant dimension.

Thus, in our model, a conventional software system is
a set of artifacts that model domain concepts in ap-
propriate formalisms. Artifacts contain modules, which
contain units. The modular structure reflects decompo-
sition based on one dominant dimension of concern.

Multi-Dimensional Decomposition: Hyperslices
As discussed in Section 2, decomposition according to
concerns along a single, dominant dimension is valuable,
but usually inadequate. Units pertaining to concerns in
other dimensions end up “scattered” across many mod-
ules and “tangled” with one another. Separation ac-
cording to these concerns is, therefore, not achieved.
To alleviate this problem, we introduce hyperslices as
an additional, flexible means of decomposition.

A hypedice is a set of conventional modules, written in
any formalism. Hyperslices are intended to encapsulate
concerns in dimensions other than the dominant one.
The modules within it contain all, and only, those units
that pertain to, or address, a given concern. Hyperslices
can overlap, in that a given unit may occur, possibly in

111

different forms, in multiple hyperslices. This supports
simultaneous decomposition according to multiple di-
mensions of concern. A system is written as a collection
of hyperslices, thereby separating all the concerns of im-
portance in that system, along as many dimensions as
are needed. The hyperslices are composed to form the
complete system (discussed below).

The choice of the term “hyperslice” is intended to re-
flect relationships to both “program slicing” [25] and
“hyperplane.” Hyperslices are similar to program slices
in’ that both involve cuts through a system that do not
align with the standard modules. They differ, however,
in that program slices are at the code level only, gener-
ally consist specifically of statements that affect partic-
ular variables, and are extracted from existing programs
by analysis, rather than being used to build systems by
composition. ’ Hyperslices are hyperplanes in that they
encapsulate concerns that cut across multiple dimen-
sions in a space defined by the dimensions of concern.

To demonstrate the utility of hyperslices, we consider
the initial version of the expression SEE described in
Section 2. We identified two separate dimensions of con-
cern applicable to the initial design: object (different
kinds of expressions) and feature (display, evaluation,
and basic checking). Since we used object-oriented for-
malisms for the design and code, the object dimension
was the dominant one, and separation of concerns along
that dimension was effective. Separation by feature
could not be accomplished, however, leading to scatter-
ing and tangling of feature-specific units. We therefore
introduce five hyperslices, one to encapsulate each of
these concerns (features), as shown in Figure 3. One
hyperslice encapsulates the basic (“kernel”) expression
AST capabilities (node creation, accessor, and modifier
methods), modularized using UML classes in the de-
sign and Java classes and interfaces in the code. The
other hyperslices encapsulate, respectively, the display,
evaluation, and syntax and semantic checking features.
Note that these hyperslices also contain many of the
same class modules as found in the kernel hyperslice
(i.e., their concerns overlap), but the modules in these
hyperslices contain only those units that pertain to the
particular concern they encapsulate. Thus, e.g., the dis-
play hyperslice defines display (1 methods and instance
variables (units) in AST node classes (modules), while
the evaluation hyperslice defines evalO methods and
instance variables.

Note that hyperslices have been introduced without re-
quiring the definition of new artifact formalisms. We ;<
deliberately do not modify the artifact formalisms them-
selves, preferring instead to allow developers to use their
familiar formalisms throughout the lifecycle. The mod-
ules within Ca hyperslice are standard modules in the
desired formalism, except that they contain only those

units pertinent to the hyperslice’s concern. That means
that these modules might not satisfy all of the complete-
ness constraints that the formalism normally requires.
For example, the implementation code in the display hy-
perslice might refer to accessor methods that it does not
define, on the expectation that the kernel hyperslice will
provide them. This is not legal in Java, which requires
modules to define any methods they use. It is fine in
our model, however, because hyperslices are eventually
composed together to form a “complete” hyperslice that
must satisfy all of the formalism’s constraints.

The definition of hyperslice above is sufficiently broad
that it is possible, for any concern, to form a hyper-
slice consisting of exactly those units pertaining to that
concern. For example, hyperslices can correspond to
features, to units of change, or to specific customize
tions or components. If this approach is followed for all
concerns of interest in a system, there is lik.ely to be a
good deal of overlap: the same unit, or diffkrent units
describing the same concept, might be involved in mul-
tiple concerns. We saw this in the expression example-
each of the hyperslices includes expression concepts in
the form of class modules, but it defines those concepts
in a way that is appropriate to its task. Overlap is ac-
ceptable; indeed, it is responsible for much of the power
of this approach. Composition must be able to resolve
the overlap, as discussed later.

This great flexibility raises the question of how develop-
ers should choose hyperslices for decomposmg a given
system, and whether the freedom is likely to lead to
error and abuse. Simple uses, such as for :major fea,
tures or units of change, provide great benefit with little
difficulty. Formulation of guidelines for more complex
use of hyperslices is an issue for future research. Even
with outstanding guidelines, however, use of hyperslices,
like any other modularization mechanism, requires good
judgement. If key structural decisions turn out to be in-
correct because of design error or dramatic changes to
requirements, system restructuring may be ne’cessary, as
with conventional technology. The support for simulta-
neous separation of concerns along multiple dimensions,
however, opens the possibility of introducing new di-
mensions and ignoring obsolete ones, without disman-
tling the system. This, too, needs further research.

Composing Hyperslices Using Hypermodules
Hyperslices provide a flexible means of decomposing ar-
tifacts. To be useful, however, it must be possible to
compose them to produce complete and consistent arti-
facts in unchanged artifact formalisms of choice.

A hypermodde is a set of hyperslices, together with a
composition rule that specifies how the hyperslices must
be composed to form a single, new hyperslice that syn-
thesizes and integrates their units. Because of this com-

112

Figure 3: Defining the SEE with Hyperslices.

position property, a hypermodule is appropriate wher-
ever a hyperslice may be used. Hypermodules can thus
be nested. An entire artifact can be modeled as a hy-
permodule; the artifact consists of all the modules in
the composed hyperslice and must satisfy whatever con-
sistency and completeness constraints are required by
the artifact formalism. The system as a whole-all of
its artifacts-can also be modeled as a hypermodule,
whose composition rule describes the relationships be-
tween the artifacts. The simplification of these relation-
ships, made possible by hyperslices, and their reification
in the composition rule, is a key advantage of this model.

Figure 4 shows a hypermodule consisting of the hyper-
slices from Figure 3. The composition rule must indi-
cate which units in the hyperslices describe the same
concepts, and how those units must be integrated. In
this case, it asserts that classes in different hyperslices
with the same name model the same concept and should
be “merged” into a new, composed class with the same
name and combined details. When the composition rule
is applied, the resulting hyperslice contains exactly the
modules shown in Figure 1. Notice that the syntax and
semantic checking hyperslices can be grouped optionally
into a “check” hypermodule that is nested within the
SEE hypermodule. The result of (optionally) compos-
ing the syntax and semantic checking hyperslices within
the “check” hypermodule is a check hyperslice, which
can then be composed with the other SEE hyperslices.
The ability to nest hypermodules in this manner pro-
motes abstraction and encapsulation.

Details ,of composition vary greatly depending on the
formalism in which units are written, and on which of
the formalism’s constructs are treated as units and mod-
ules. These are details that are specified as part of an
instantiation of this model (described in detail in Sec-
tion 4), which represents a mapping between a partic-
ular formalism and the concepts embodied within the

model. They are also dependent on the details of the
particular units involved, and can vary from straight-
forward to highly complex. Nonetheless, some general
properties are worth discussing.

Composition is based on commonality of concepts across
units: different units describing the same concept (usu-
ally, though not necessarily, differently) are composed
into a single unit describing that concept more fully.
This process involves three steps: matching units in dif-
ferent hyperslices that describe the same concept, ret-
onciliation of differences in these descriptions, and inte-
gration of the units to produce a unified whole. Clearly,
composition cannot be a fully automatic process. It is
the task of the composition rule in the hypermodule to
specify the details of composition.

One approach to composition rules, suggested by our
work on subject-oriented programming [7, 171, is for
the rule to be a combination of a concise, general rule,
and detailed, specific rules that specify exceptions to the.
general rule or handle cases that it cannot handle. The
general rule essentially names an automatic approach to
apply as a starting point or default, such as matching by
unit name (i.e., the name denotes the concept). General
rules can be applied to an entire composition, or selec-
tively to portions of it; different automatic approaches
can thus be applied to different areas of a composition.
Only in cases where no automatic rule suffices are de-
tailed rules needed, in which the developer says explic-
itly exactly what to do. Detailed rules can handle such
issues as matching units with different names that do
describe the same concept, not matching units with the
same names that do not describe the same concept, and
reconciling different module structures, such as match-
ing units nested at different depths in different hyper-
slices that nonetheless describe the same concept. The
degree of mismatch in module structure and abstrac-
tion level that can be handled effectively is an issue for

113

future research, as is determining how much mismatch
occurs in practice in composed hyperslices.

An alternative is to split the composition rule across the
hyperslices, allowing each hyperslice itself to specify how
it is to be composed. If the rule in a hyperslice can refer
to other hyperslices, this increases coupling and reduces
reusability of hyperslices; if it cannot, this limits the
flexibility with which overlap can be handled. Putting
the composition rule a level higher, in the hypermodule,
allows both flexible overlap and enhanced reuse.

In this model, therefore, developers write each artifact
as a hypermodule. For each concern of importance that
cannot be encapsulated effectively using the artifact for-
malism, they write a hyperslice that consists of modules
in the artifact formalism. They also write a composi-
tion rule that specifies how these hyperslices are to be
composed into a set of legal modules that make up the
artifact. They also write an enclosing hypermodule that
contains all the artifacts and whose composition rule
specifies the relationships between them.

Using the Model
We have already begun to see how this artifact model
can help to address some of the software lifecycle prob-
lems identified in Section 2. We now explore its impact
on these problems in more detail, by revisiting the ex-
pression SEE example. We apply the same software
development and evolution process, but this time, we
use the proposed artifact model. We then evaluate how
well the resulting artifacts address the problems pre-
sented earlier.

Revised First Go-Round
As described in Section 3, Figure 3 shows a somewhat
different decomposition of the design and code artifacts

than that produced during the initial design and coding
process (depicted in Figure 1). The model has allowed
us to separate the major non-object concerns identified
during requirements-gathering: the “kernel,” which en-
capsulates basic functionality pertaining to expressions,
and display, evaluation, and checking features. Each of
these concerns is encapsulated in a hyperslice. Since we
chose to decompose the check feature further, we rep-
resent it as a nested hypermodule, which includes two
subhyperslices, one each for the syntax and semantic
checkers.

This decomposition has some significant benefits.
First, hyperslices permit decomposition along multi-
ple dimensions-in this case, object and feature-even
within object-oriented formalisms that generally sup-
port only the object dimension. Second, thse improved
separation of concerns eliminates the scattering and tan-
gling problems we saw earlier, by keeping units pertain-
ing to separate requirements and features separate. A
key benefit is that we have achieved encapsulation of
coherent concerns UCTOSS the lifecycle. This improves
traceability and can significantly simplify the interrela-
tionships among different artifacts that are traditionally
so difficult to maintain. This approach als’o improves
reusability considerably. For example, the entire ex-
pression AST concept, from requirements all the way to
code, has been defined in a context-indepen.dent man-
ner and can be reused readily, since the context-specific
pieces are encapsulated in other hyperslices.

The use of composition to assemble hyperslices into the
final SEE provides some substantial benefits as well.
Observe that because composition of hyperslices is al-
ways optional, we have managed, just by separating the
concerns, to ensure that we will later be ab1.e to “mix-

114

and-match” syntax and style checking. We can also cre-
ate versions of the SEE that contain different combina-
tions of checking, evaluation, and display features-an
ability we did not have in the original SEE. Notice also
that we have a choice over how we define our hypermod-
ules. We could, for example, define three hypermodules:
one each that includes all hyperslices pertaining to a
particular a~G;fact. This allows us to compose the full
requirements specification, design, and code artifacts.
But we could also choose to define one hypermodule
per concern-e.g., an “expression” hypermodule, which
contains the requirements, design, and code hyperslices
that encapsulate the “kernel,” a “display” hypermod-
ule that encapsulates all artifact hyperslices pertaining
to display, etc. Both kinds of composition are valid
and are useful for different purposes; the former per-
mits the creation of the final artifacts, while the latter
facilitates reuse of concerns and permits certain forms
of inter-artifact completeness and consistency checking.
As noted earlier, developers may need to decompose OT
compose differently for different reasons. This model
permits them to do just that.

SEE Evolution: Saving the Environment
Clients eventually requested support for optional per-
sistence of expressions and for multiple forms of style
checking and the ability to “mix-and-match” types of
checks. Persistence is a new concern; it represents both
ir new feature and a unit of change. As such, its ad-
dition is not supported well by object-oriented separa-
tion of concerns, as we saw in Section 2. This time,
we choose to model persistence as an independent con-
cern (hyperslice), which both encapsulates it and pro-
vides us the opportunity to use ASTs with or without
persistence. Adding style checkers is trivial-the check-
ing hyperslice already separates syntax and semantic
checking, so we need only define the style checkers as
hyperslices and compose any set of them together with
the syntax and/or semantic check hyperslices. Notice
that these new capabilities do not require any modifi-
cations to existing hyperslices or artifacts-they can be
encapsulated as separate concerns and composed with
the existing artifacts.

PostmoTdem Revisited
We now revisit the set of software engineering problems
discussed in Section 2.

&pact of change: Much of the reason for high impact -
of ‘change is the mismatch between the units of change
and the units of abstraction and encapsulation within
artifacts. With our model, however, units of change can
be separated and encapsulated like any other concern.
This can, in many common cases, significantly reduce
or eliminate the impact of change.

Reuse: As noted above, this model may significantly

improve reuse of all artifacts, It permits the separa-
tion of generally useful capabilities from special-purpose
ones, and it provides composition as a very powerful,
non-invasive customization and adaptation mechanism.
Thus, it is simpler to create reusable components and
to pick up and tailor a component to a particular need.

Traceability: The ability to identify, encapsulate,
and co-structure similar concerns across different arti-
facts greatly facilitates traceability and propagation of
change across the lifecycle.

While the appropriate use of the model can directly re-
sult in the benefits we have described (and many we
have not), it is not a panacea for bad design, bad code,
or poor modularization. Further, overseparation of con-
cerns is as bad as underseparation-it leads to large
numbers of hyperslices with complex interrelationships,
and may actually reduce comprehension and increase
complexity. Nonetheless, we believe the model is a valu-
able tool with potentially high benefit, if used properly.

4 INSTANTIATION
To use this artifact model, one must instantiate it for
particular artifact development formalisms. Instanti-
ation entails determining which notational constructs
map to units and modules, deciding how to represent
hyperslices, and providing support for composition of
hyperslices. The mapping to units is especially impor-
tant, as it significantly affects how well the hypermod-
ules will achieve various software engineering goals and
properties. This section briefly describes some of the
issues involved. A fuller discussion appears in [18].

Mapping to Units and Modules
Units: Choosing “units” from the set of artifact for-
malism constructs requires an instantiator to decide the
level of granularity at which it is appropriate, in the
given formalism, to separate and integrate concepts.
We illustrate this by example, using the Java language.
Java defines both declarator constructs (e.g., packages,
interfaces, classes, methods) and statements. Some sub-
set of these constructs must be treated as units. A deci-
sion in favor of fine granularity might include all declare
tors and statements as units. This potentially provides
the flexibility to compose any pieces of Java source, but
it has all of the concomitant problems of determining
how to match and reconcile different statements and ‘of
trying to analyze the properties of the result. Using a
coarser level of granularity might result in treating only
a subset of declarators (e.g., classes and their members)
as units, which simplifies composition and understand-
ing of the composed result, at the cost of generality.

The selection of units has significant ramifications for
some important software engineering properties of ar-
tifacts [18], including effects on evolution and modular
development. If the set of units includes entities that

115

are typically “hidden,” such as method implementation
code, composition rules and their results become sen-
sitive to “hidden” changes. Modular development re-
lies on important properties of individual modules be-
ing preserved by composition. If composition can occur
at too fine-grained a level, such properties might not
be preserved, and must be re-examined afresh in the
context of each composition.

Data and functionality are fundamental and ubiquitous
concepts in software. They are frequently the concepts
that are described by artifacts, and the concepts that
span hyperslices and artifacts. Formalisms generally
have constructs for declaring or defining them. For ex-
ample, UML has boxes representing classes, and entries
within class boxes representing instance variable and
method declarations. Java has classes, interfaces, in-
stance variable declarations and methods. We believe
that constructs related to data and functionality are ex-
cellent candidates for units, and hypothesize that they
might, in general, be the best choices.

Modules: The selection of formalism constructs to
map to modules is somewhat simpler than the choice
of units. Essentially, it requires examining the partic-
ular modularization constructs the formalism provides
in light of the set of units chosen. For example, sup
pose we choose Java methods, instance variable decla-
rations, classes, and interfaces as units. Instance vari-
able declarations and methods are grouped together into
classes and interfaces, which in turn are grouped to-
gether into packages. We would therefore choose to map
Java classes, interfaces, and packages to modules in our
model. An obvious choice for UML is to map classes
and package diagrams to modules.

Representation of Hyperslices
Hyperslices are sets of modules. They need not oc-
cur explicitly in any given artifact formalisms, though
some formalisms may provide a construct to which it
is, convenient to map hyperslices. For example, C++‘s
namespace construct, which represents arbitrary collec-
tions of program units, Java’s package construct, which
represents collections of classes and interfaces, and UM-
L’s package diagram, which represents collections of
packages and classes, may be used to model hyperslices.
For formalisms that do not have such constructs, it is
necessary either to enhance them or to provide a sepa-
rate hyperslice-specification mechanism, such as named
lists of modules.

Support for Composition
To provide support for composing hyperslices, it is nec-
essary to define a means for specifying composition
rules-a language, an interactive tool, or both-and to
build a compositor that is able to apply the rules to hy-
perslices. Composition by hand is conceptually possible,

116

but totally unrealistic for actual development.

Providing this support is a large job. That is a pow-
erful reason to make mapping decisions based on for-
malism, not on content, to avoid the need for project-
specific compositors. Compositors specialized to under-
stand particular semantic dimensions may be useful in
some circumstances, however, as demonstrated by re-
cent work on aspect-oriented programming]:lO].

5 RELATED WORK
We discuss two categories of related work: approaches
that can (loosely, perhaps) be considered instantiations
of our model for particular types of artifacts, and dif-
ferent approaches to similar problems.

Subject-0Gented programming [7, 171 partially realizes
our model for object-oriented code artifacts, The units
are classes, methods and instance variables. Systems
are built as compositions of subjects-hyperslices-each
of which is a class hierarchy modeling its domain from
a particular point of view. We have built composition
support for C++ and CORBA IDL, prototype support
for Smalltalk, and are currently building support for
Java. Composition rules, specified textually for C++
and through an interactive user interface for the other
systems, provide considerable matching and reconcilia-
tion flexibility, and the support is a framework allowing
addition of new matchers and reconcilers. We have sev-
eral small, running examples that demonstrate the value
of decomposition into subjects. We are also currently
exploring the manifestation of subjects and composition
rules in UML, to allow co-structuring of subject-oriented
designs and code.

Aspect-Oriented Programming (AOP) [lo] expands on
the concepts of subject-oriented programming by identi-
fying and illustrating several useful, non-hnctional con-
cerns to be separated, such as concurrency properties,
distribution properties, persistence and other “emergent
entities” [ll]. Initial work used different aspect lan-
guages (e.g., WI) t o re P resent different aspects. This is
appealing, since a programming language is not neces-
sarily the best formalism for expressing non-functional
requirements, but it results in a need for special-purpose
compositors (called zueavers). More recent work is
aimed at providing a general-purpose weaver for hyper-
slices written in Java [ll].

AOP distinguishes the notion of “core classes,” which
encapsulate a system’s functional requirem.ents, from
“aspects,” which encapsulate non-functional, cross-
cutting requirements. Aspects are written with respect
to core classes and are essentially orthogonal to one
another. Relative to our model, each aspect is a hy-
perslice, and a set of aspects together with the core
classes approximate a hypermodule. The core classes
are distinguished; all aspects refer to them, and there-

fore share the same view of the overall class structure.
The hypermodule does not have a central composition
rule. Instead, each aspect contains its part of the rule,
specifying how that aspect is to be woven into the base
classes. This makes the approach subject to the disad-
vantages discussed in Section 3, particularly that han-
dling of overlapping concerns (i.e., interaction among
aspects) is perforce done in a standard, default manner
by the weaver.

Holland discusses the building of systems using compo-
sitions of codracts [8]. Each contract specifies a set of
participant objects and their interactions, expressed as
obhgations. Its primary intent is to encapsulate these
particular interactions and obligations so that they are
clearly separated from other interactions involving the
same objects. A single object can participate in multiple
contracts, in which case it must satisfy all their obliga-
tions. Holland describes a variety of combination rules
for contracts. A contract corresponds to a hyperslice in
our model, cutting across classes that describe objects.
The combination rules provide some alternative means
of combining specifications in different contracts that
apply to the same participant.

Similarly, role models (e.g., in OORAM/OORAS [l])
are essentially hyperslices. Each model describes par-
ticular roles played by objects, and how those roles in-
teract. Role models must be composed, usually manu-
ally, to produce object definitions that satisfy all needed
roles. VanHilst and Notkin propose an approach to im-
plementing roles with templates [24]. Each template de-
fines a role, and instantiation expressions create classes
that satisfy all required roles. Collections of related
templates, such as those defining similar or interacting
roles for objects, constitute hyperslices in our model,
and instantiation expressions are composition rules.

Adaptive programming is another approach to providing
modules other than classes within object-oriented sys-
tems. A class graph describes some classes and their
relationships, from a particular point of view. Class
graphs do not contain code; instead, code is written
in separate propagation patterns. Propagation pat-
terns can be used with any collection of concrete classes
that conform to the class graph against which they were
defined. Adaptive programs are transformed into stan-
dard object-oriented programs by the Demeter tools [6].
With respect to this generated program, each propaga-
tion pattern is a hyperslice, since it contains method
code that cuts across classes. The composition is per-
formed by the Demeter tool, with matching being based
on specifications of class graph conformance. Propaga
tion patterns do not overlap, however-each defines its
own method-so reconciliation is not an issue. In a
recent paper [13], collaboration-based decomposition is
discussed, of which contracts are an example. Collabo-

rations are hyperslices, cutting across classes.

Catalysis [3] facilitates building reusable design frame-
works in UML. It incorporates a simple notion of com-
position based on the union of design models. It there-
fore represents an instantiation of our model for UML.
Catalysis’ matching and reconciliation rules are fairly
simple, which limits the dimensions along which design
models can be decomposed and composed, but makes
reasoning about properties of the composed design in
terms of its component design models more tractable.

The Viewpoints project [15] is an approach to require-
ments engineering. Modules, called viewpoints, en-
capsulate developers’ views of both the requirements-
building process and the pieces of the requirements arti-
fact being developed. Different viewpoints may describe
the same requirements artifacts in different notations,
and they may create conflicting definitions for given re-
quirements. The Viewpoints system defines mechanisms
(based on theorem proving) for identifying and helping
developers cope with inconsistency.

The Viewpoints approach shares a number of points in
common with ours but also has corresponding differ-
ences. Both approaches are predicated on the belief that
not all concerns can be modularized orthogonally, and
that it must be possible to view systems as potentially
overlapping pieces. Another similarity is a concern with
resolving semantic differences between different aspects
or elements of a system (views or hyperslices). View-
points emphasizes the detection and characterization of
inconsistencies while deferring their resolution (reconcil-
iation) to the encompassing requirements process. We
have focused on the activity of composing concerns after
they have been separated, including identifying and, es-
pecially, reconciling inconsistencies according to a com-
position rule. Finally, we are primarily concerned with
how artifacts are constructed, while the Viewpoints ap-
proach is primarily concerned with how they are viewed.

Some of the problems addressed by our approach can be
tackled differently. Attempts have been made to address
the problem of traceability with environment support
for capturing and maintaining the relationships among
artifacts (e.g., [9]). The disparate structures of the ar-
tifacts make this a particularly tough problem.

The problem of limiting the impact of change has been
addressed by various architectures and mechanisms, like
implicit invocation [14], mediators [22], event-based in-
tegration [20], and design patterns [4]. These are all
valuable, but they suffer from the drawback that the
kinds of changes they permit-the open points”must
be anticipated. Retrofitting any of these mechanisms
where not originally planned requires invasive change.

A great deal of work has been done to promote

117

reuse, and other researchers and developers have rec-
ognized the importance of large-component reuse (e.g.,
[2]). Effective reuse requires powerful adaptation and
customization mechanisms, but current customization
technology is usually restricted to interface adaptation
using some sort of adapter or transformation layer, or
to substituting alternative mod,ules at predetermined
points, such as in object-oriented frameworks. Inter-
esting recent work builds on adaptive programming to
support “adaptive plug-and-play components” [13].

6 CONCLUSIONS AND FUTURE WORK
A number of important problems in software engineer-
ing have resisted general solution, including problems
related to software understanding, maintenance, evolu-
tion, and reuse. We believe that these problems share
a common cause: failure of modern artifact formalisms
to satisfy the separation of concerns requirement ade-
quately. Numerous reasons exist to separate and inte-
grate software artifacts, and these reasons may result
in different artifact structures. Moreover, many con-
cerns may be relevant simultaneously, and the entire set
of concerns may evolve over time. Despite this obser-
vation, artifact formalisms include weak decomposition
and composition mechanisms that permit only a small,
“dominant” set of concerns to be separated. This leads
directly to our inability to achieve many of the goals of
software engineering as a discipline.

Our model of multi-dimensional software decomposition
helps to overcome these limitations. It permits encapsu-
lation of particular concerns in a software system, both
within and across artifacts, and it allows kinds of sepa-
ration of concerns that may not be separable in artifact
formalisms, such as units of change, features, and over-
lapping concerns. This improves traceability across the
lifecycle. The model also provides a powerful composi-
tion mechanism that facilitates integration, adaptation,
and “plug-and-play.” In so doing, it promotes reuse, im-
proves comprehension, and eases maintenance and evo-
lution. Thus, the approach addresses some fundamental
limitations in software engineering. For these reasons,
we believe that support for multi-dimensional decom-
position and composition represents a key to advances
along a broad front of software engineering challenges.

This work is clearly at an early stage, largely unproven
yet. Still, a considerable body of experience and related
research now exists to support the claim that multi-
dimensional separation of concerns is one of the key soft-
ware engineering issues today. The model presented is
just a starting point. It must be refined, stretched and
modified, and it must be instantiated for a variety of for-
malisms to explore issues that arise for different method-
ologies and at different phases of the software lifecy-
cle. These instantiations must be used for real devel-
opment, to evaluate them and create new development

118

methods that exploit their strengths; to explore issues
in intra- and inter-artifact matching and reconciliation;
and to explore the impact of multi-dimensional separa-
tion of concerns on areas like development m.ethodology,
software process, analysis, testing, reverse engineering,
reengineering, and software architecture.

ACKNOWLEDGEMENTS
Joyce Vann, Mark Wegman, and the reviewers pro-
vided valuable feedback on earlier versions of this paper.
Siobhbn Clarke produced the SEE design in. UML.

REFERENCES

PI

PI

[31

[41

[51

@I

VI

PI

PI

PO1

WI

P21

E. P. Andersen and T. Reenskaug. System design by
composing structures of interacting objects. In 0. L.
Madsen, editor, ECOOP ‘92: European Conference on
Object-Oriented Programming, pages 133-3.52, Utrecht,
June/July 1992. Springer-Verlag. Lecture Notes in
Computer Science, no. 615.

B. W. Boehm and W. L. Scherlis. Megaprogramming.
In Proceedings of the DARPA Software Teclanology Con-
ference 1992, pages 63-82, April 1992.

D. D’Souza and A. C. Wills. Objects, Components,
and Frameworks with UML: The Catalys,is Approach.
Addison-Wesley, 1998.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

J. Gosling, B. Joy, and G. L. Steele. The Jowa Language
Specification. Addison-Wesley, 1996.

D. R. Group. Online material on adaptive program-

rp: j,
demeter/java, and APPCs.

www.ccs.neu.edu/research/demeter,/, 1998.

W. Harrison and H. Ossher. Subject-oriented program-
ming (a critique of pure objects). In Proce’edings of the
Conference on Object- Oriented Programming: Systems,
Languages, and Applications, pages 411-428, Washing-
ton, D.C., September 1993. ACM.

I. M. Holland. Specifying reusable components us-
ing contracts. In 0. L. Madsen, editor, SCOOP ‘92:
European Conference on Object-Oriented Parogramming,
pages 28’7-308, Utrecht, June/July 1992. Springer-
Verlag. Lecture Notes in Computer Science, no. 615.

R. Kadia. Issues Encountered in Building a Flexible
Software Development Environment:, Lessons from the
Arcadia Project. In Proceedings of the Fifth ACM SIG-
SOFT Symposium on Software Development Envbron-
ments (SDES), pages 169-180, December 3.992.

G. Kiczales. Aspect-oriented programming. In Pro-
ceedings of the European Conference on Object-Oriented
Programming, 1997. Invited presentation.

G. Kiczales and C. V. Lopes. Aspect-oriented program-
ming tutorial notes, July 1998. (From ECGOP ‘98.).

C. V. Lopes and G. Kiczales. D: A language frame-
work for distributed programming. Technical Report
SPL97-010, P9710047, Xerox Palo Alto Research Cen-
ter, February 1997.

[13] M. Mezini and K. Lieberherr. Adaptive plug-and-play
components for evolutionary software development. In
Proceedings OOPSLA ‘98, 1998.

[I41 D. Notkin, D. Garlan, W. G. Griswold, and K. Sulli-
van. Adding Implicit Invocagtion to Languages: Three
Approaches. In S. Nishio and A. Yonesawa, editors, Ob-
ject Technologies for Advanced Software: Proceedings of
the First JSSST International Symposium, Janazawa,
Japan, pages 489-510. Springer-Verlag, November 1993.

[15] B. Nuseibeh, J. Kramer, and A. Finkelstein. A frame-
work for expressing the relationships between multiple
views in requirements specifications. Transactions on
Software Engineering, 20(10):760-773, Ott 1994.

[16] H. Ossher, W. Harrison, F. Budinsky, and I. Simmonds.
Subject-oriented programming: Supporting decentral-
ized development of objects. In Proceedings of the 7th
IBM Conference on Object-Oriented Technology, Santa
Clara, CA, July 1994. IBM.

[17] H. Ossher, M. Kaplan, A. Katz, W. Harrison, and
V. Kruskal. Specifying subject-oriented composition.
TAPOS, 2(3):179-202, 1996.

[18] H. Ossher and P. Tarr. Operation-level composition: A
case in (join) point. In Proceedings of the Third Work-
shop on Aspect-Oriented Programming, 1998.

[19] D. L. Parnas. On the criteria to be used in decomposing
systems into modules. Communications of the ACM,
15(12):1053-1058, December 1972.

[20] S. P. Reiss. Connecting tools using message passing
in the Field environment. IEEE Software, 7(4):57-66,
July 1990.

[21] J. Rumbaugh, I. Jacobson, and G. Booth. Unified
Modeling Language Reference Manual. Addison-Wesley,

,‘, 1998. To appear.

[22] K. J. Sullivan. Mediators: Easing the Design and Evo-
lution of Integrated Systems. PhD thesis, University of
Washington, Aug 1994.

[23] C. Il.. Turner, A. Fuggetta, L. Lavazza, and A. L. Wolf.
; ; Feature engineering. In Proceedings of the 9th Interna-

tional Workshop on Software Specification and Design,
pages 162-164, April 1998.

[24] M. VanHilst and D. Notkin. Using roles components
to implement collaboration-based designs. In Proceed-
ings of the Conference on Object-Oriented Program-
ming: Systems, Languages, and Applications, pages
359-369, San Jose, California, October 1996. ACM.

[25] M. Weiser. Program Slicing. IEEE Transactions on
!. Software Engineering, SE-10(4):352-357, July 1984.

119

