

Aspect-Oriented Multi-Client Chat Application

Duygu Ceylan, Gizem Gürcüoğlu, Sare G. Sevil

Department of Computer Engineering, Bilkent University

Ankara, Turkey 06800

{dceylan, gizem, sareg} @cs.bilkent.edu.tr

Abstract

As the demand for network applications increases and

the necessity of developing more sophisticated systems

arises, distributed computing such as Client-Server

applications receives more attention. Due to the

distributed nature of these applications, many concerns

like synchronization, security, and performance issues

become crucial and the ability to modularize these

concerns becomes more valuable. This paper focuses on

using Aspect-Oriented Software Development

approaches for separating such concerns. An example

case, namely a chat application, constitutes the basis of

this study and several concerns specific to this

application are illustrated. Considered and handled

concerns are types of concerns that occur both in

development and production phases of the application.

Implementations using different environments are also

discussed.

Keywords

aspect-oriented software architecture design, multi-

client chat application, design patterns.

1. Introduction

From publishing and sharing of information through

software, to the execution of complex processes within

several computers, distributed systems are widely used

among all kinds of applications in software development.

These systems are mainly composed of multiple

processes that generally work in parallel in some

predefined structural design. Among these structural

designs, client-server architecture models are some of the

most commonly applied software architecture models

where their application range varies from simple

business applications to standardized internet protocols

including HTTP, DNS and SMTP [3].

In client-server applications, processes are classified

into client and server systems. These systems

communicate over a network connection through which

client systems make connections and request for

operations while server systems wait for requests from

clients and serve them accordingly.

Throughout the years, providers such as Microsoft,

Yahoo and Google, and many open-source software

developers have adapted client-server model to a popular

user application: the multi-client chat. These chat

applications generally appear in the form of chatrooms

where synchronous, and sometimes asynchronous,

conferencing takes place; or they can be in the form of

instant messengers where users communicate by

exchanging textual, visual or audio data over a

connection. While in chatrooms all users are allowed to

communicate with each other, in IMs only users who

accept to communicate with each other are allowed to

exchange messages.

In this paper we go through the design and

implementation process of an instant messaging chat

application program. We analyze the components of a

standard chat application and the concerns that might be

encountered during development and production stages

of the application. In order to facilitate the handling of

concerns we propose the application of aspect oriented

approaches and discuss why these aspects are more

convenient for usage.

The paper is organized as follows: in section II the

initial object oriented design of the application is

explained. Section III describes the problems that might

be encountered with this design. In section IV a new

design with aspects, applied in AspectJ, is presented.

Section V discusses the implications of aspect usage.

Section VI describes possible implementation differences

with JBoss usage in implementing aspects. In section VII

related work is discussed and section VIII concludes the

paper.

2. Multi-Client Chat Application: Object-

Oriented Design

2.1 Description of the Application

The multi-client chat application focused in this paper

is a server-client chat application where multiple clients

communicate with each other by sending text messages

over a connection provided by a single server. For this

reason, it would be convenient to analyze this system in

two main components: server and client.

Each client component found in the system represents

a user who wants to communicate. A client is identified

by his/her username. All users have their own friend lists

which are simply lists of other clients (i.e. contacts)

using the chat application. Each user is allowed to

communicate only with his/her own contacts.

Each contact can be in one of two possible states,

“Online” or “Offline”, depending whether they are

currently connected to the server or not. When an offline

contact connects to the server, his/her status changes

from offline to online. Similarly, when an online contact

disconnects from the server, his/her status becomes

offline.

Users are allowed to have private conversations

(private chats) with their online friends. During a private

conversation, the contact being talked to might

disconnect from the server without notifying the client. If

the client continues to send messages when this happens,

an automatic notification is send to the client informing

him/her of the situation. Finally, a client can add a new

contact as his/her friend and remove an existing friend.

The main function of the server component is to wait

for connection requests from the clients and authenticate

these requests by checking the usernames and passwords

provided in requests. The server thus stores a list of valid

username-password pairs which are used in the

authentication process. In our current implementation,

when a username which is not found in the list is

provided by a connection request, the server accepts this

request as a new client and adds the username-password

pair to the existing list. In addition to authentication

information, the server also keeps data related to the

friend lists of the clients. For each client, a list of friends

is kept as well as a list of other clients that has this client

as friend. Upon confirming a connection request from a

client, the server sends usernames of the friends of the

client and their connection status. Finally, the server

processes the requests from a client such as adding or

removing a friend by updating lists accordingly and it

provides necessary communication base for private

conversations with friends. Use case diagrams shown in

Figures 1 and 2 summarize these components and their

features.

CLIENTCLIENT

connect to

server

add-remove

friend

private

conversation

Figure 1. Use case diagram: Client

wait for

connection

requests

confirm sign

in

process

requests

from clients

SERVERSERVER

Figure 2. Use case diagram: Server

2.2 Object-Oriented Design

When a closer look is taken at the design of the multi-

client chat application system, we can see that it is

possible to represent the system with two main classes,

corresponding to the two main components of the

system, and some other helper classes.

In our design we have chosen to implement the client

component as the Client class that has associations with

user interface classes MainWindow and PrivateWindow.

The MainWindow can be defined as the class responsible

for the main user interface window of a client. This class

is used in displaying the list of contacts, providing

necessary interface for adding and removing contacts and

for signing in and out of the chat application. Figure 3

shows an example of a main window for an online client.

The PrivateWindow is the class responsible for the

user interface for a private conversation between two

clients. An example of a private window is shown in

Figure 4.

Figure 3. Main Window for signed in Client

Figure 4. Private Chat Window of Client Gizem with

Client Duygu

In addition to the user interface classes, Client also has

an association with the class ContactList which contains

a list of the friends of a given Client. Contacts in the

ContactList are represented as Contact objects that

consists of a username and connection status. Client

objects also include a MessageFormatter object which is

responsible for formatting the messages sent by the

Client in the correct way. These relationships are

summarized in the class diagram shown in Figure 5.

For the server component, the main class is the Server

class. As a socket connection is received, the Server

creates a new thread, namely a ServerThread object, to

send and receive messages from the corresponding

socket. ServerThread class is also responsible for parsing

the messages coming from clients. In order to be able to

hold information related to clients such as username,

password and friend list, Server class creates

ServerClient objects which are a simpler version of

Client objects containing only relevant information and

excluding everything else. Finally, the status of

ServerClient objects is implemented through a

ConnectionStatus interface. Currently, there are two

concrete implementations of this interface which are

OnlineConnectionState and OfflineConnectionState

respectively. Operations for sending messages to the

clients are defined in the ConnectionStatus interface and

implemented differently according to the status of the

client. The relations of the server component are

summarized in the class diagram shown in Figure 6.

Client

isOnline:Boolean

username:String

password:String

connectToServer():

addContact():

removeContact():

sendMsg():

connectionAccepted():

contactStatusChanged():

privateMsgReceived():

1

itsMainWindow

MainWindow

owner:Client

signIn():

signOut():

updateContactList():

startPrivateChat():

addContact():

removeContact():

1

itsMainWindow

1

itsPrivateWindow

PrivateWindow

owner:Client

sendMsg():

updateDisplay():

1

itsPrivateWindow

1
itsMessageFormatter

MessageFormatter

owner:Client

formatMsg():

parseMsg():

1
itsMessageFormatter

ContactList

addContact():

removeContact():

1

itsContactList

1

itsContactList

*

contacts

Contact

username:String

status:Boolean

*

contacts

Figure 5. Class Diagram of the Client component.

2.3 Implementation of Design Patterns

In order to enhance the object-oriented design

described in the previous subsection and ease some

operations of the application, two design patterns have

been implemented. The first design pattern that has been

considered is the Observer pattern. In the system it is

important to notify clients when another client that

appears within their contact lists changes his/her status

(online/offline). For this purpose, subscription-

notification structure is used. In this structure, each client

has a list of other clients that contain this client as friend.

We call this list as the observer list. When client A adds

client B as a friend, A is automatically attached to the

observer list of B. Similarly, when client A removes

client B from its friend list, it is automatically detached

from the observer list.

Server

confirmSignIn():

addNewClient():

addFriend():

removeFriend():

notifyClient():

*clients

ServerClient

username:String

password:String

friendList:String[]

sendMsg():void

*clients

ConnectionState

«Interface»

getStatus():

sendMsg():

1

status

1

status

OnlineConnectionState

getStatus():

sendMsg():

OfflineConnectionState

getStatus():

sendMsg():

*

threads

ServerThread

socket:Socket

clientName:String

parseMsg():

*

threads

Figure 6. Class Diagram of the Server component.

Thus, when B changes status, a notification message is

sent to the clients contained in the observer list of client

B such as client A. Upon receiving a notification, other

clients update their contact list views. This way, the need

for checking whether each client contains B as a friend

or not is eliminated. The structure of this pattern can be

shown as in Figure 7.

Server

addFriend():

removeFriend():

notifyClient():

Client

contactStatusChanged(): sendMsgsendMsg

ServerClient

attach():

detach():

notify():

Figure 7. Class Diagram: Observer Pattern

implementation.

The other design pattern included in the architecture is

the State pattern. In our system clients may be in one of

many states and the server needs to check the status of a

client when a need of sending a message to that client

arises. Currently our system supports two different states

for its clients: online or offline. But in the future, other

Client states may be added to the system such as Busy

and/or Away where in each state, the client may perform

different actions for sending messages. For example for

the Away state, the client can send automatic replies to

incoming private chat messages. But defining new states

may result in the need of heavy code maintenance. In

order to ease these operations, State pattern is used to

implement the connection state of the client. A

ConnectionState interface is defined which currently

contains methods like getStatus() and sendMsg(). The

concrete implementation of this interface is defined in

OnlineConnectionState and OfflineConnectionState

classes. For example, in the OfflineConnectionState

class, sendMsg() function simply returns without sending

any messages. This structure also eases the operation of

adding new methods related to the connection state of the

client in the future. This structure is shown in Figure 8.

ServerClient

status:ConnectionState

sendMsg():void

ConnectionState

«Interface»

getStatus():

sendMsg():

OnlineConnectionState

getStatus():

sendMsg():

OfflineConnectionState

getStatus():

sendMsg():

Figure 8 - Class Diagram: State Pattern implementation.

3. Aspect Oriented Programming

An important milestone for software development is to

be able to define the object-oriented architecture of the

system being developed. After this milestone is

accomplished, concerns that seem to be scattered over

several modules are identified as crosscutting concerns.

Modularizing these concerns not only improves the

functionality of the system but also eases the

maintenance of the software. For this respect, after

completing the object-oriented design of our chat

application, we defined the possible crosscutting

concerns that may arise during the implementation

phase. We adopted the aspect-oriented approach to

modularize these crosscutting concerns and developed

corresponding aspects. These aspects can be categorized

in two main groups which are production and

development aspects respectively. Production aspects are

those that add functionality to our system where as

development aspects tend to ease the development phase

of the system. The aspects have been implemented in

AspectJ framework and code segments showing

implementation details are included. Each of these

aspects will be now considered in detail.

3.1 Production Aspects

Production aspects add functionality to a software

application by facilitating the implementation of some

features resulting in crosscutting concerns. In our system,

there were some such features which we decided to

implement with aspects. These features can be named as

providing notifications and handling exceptions related

to message sending. We have defined production aspects

for both of these features which will be described in

further detail.

3.1.1 +otification Aspect:

One of the most important features of a chat

application is to play several notification sounds to

provide a friendlier user interface. Alerts can be used

when a client signs in or receives a private message for

example. However, the places where alerts are added can

be increased. This means that code becomes scattered

when an object oriented approach is used. Moreover each

time a new notification sound is defined, both the Client

code where the new notification will be added, and the

class responsible for playing the sound should be

changed. In order to overcome these obstacles, we have

defined a notification aspect that collects all operations

related to alert sounds in one place.

Currently, the notification aspect creates alerts when a

client signs in and receives a private message. Therefore

two pointcuts and related advices have been defined as

shown in Code Fragment 1.

pointcut signedIn() : execution(void
 Client.connectionAccepted(..));

void around() : signedIn()
{
 new AudioWavPlayer(signedInAlertFile)
 .start();
 proceed();
}

Code Fragment 1: signedIn pointcut captures the

execution of the connectionAccepted method of the

Client class and the around advice plays an alert.

pointcut receivedMsg() : call(void
 Client.privateMessageReceived(..));

void around() : receivedMsg()
{
 New AudioWavPlayer(receivedMsgAlertFile)
 .start();
 proceed();
}

Code Fragment 2: receivedMsg pointcut captures the

calls to the privateMessageReceived method of the Client

class and the around advice plays an alert.

An additional AudioWavPlayer class has been defined

to a play a wav file in a separate thread. In the

notification aspect, when either of signedIn and

receivedMsg pointcuts is reached, the play method of the

AudioWavPlayer is called with the corresponding wav

file name.

3.1.2 Message Send Failure Handling:

As chatting among clients is the main process of a

multi-client chat application, it needs to be done

properly. In our systems, private chat windows have

been defined to control the chatting operation between

two users. When users send messages to each other,

necessary methods of the Client, ServerClient and Server

classes are called and messages are sent from one user to

another in pre-defined formats over a proper network

connection. But what if one of the users looses this

connection and is abruptly out of the chat? Obviously,

due to the usage of the observer pattern, all contact lists

containing the client that lost connection are updated but

it is necessary for the clients that were chatting with the

client during the status change to be explicitly notified.

Although this notification operation can be

implemented using standard OO techniques, an

implementation at the object level will increase the

number of dependencies among classes and thus will

result in scattered concerns. Also, at maintenance phases

it would be possible to change this notification structure

by reacting each time a message could not be sent due to

networking problems. So this problem can be seen as a

crosscutting concern and thus we have used aspects to

enhance our application.

To do this, we defined a point cut that catches all calls

made to the sendPrivateMsg method of the server class.

When this pointcut is captured, the corresponding advice

sends a warning message to the client whose message

could not been sent. This scenario is implemented in

Code Fragment 3.

pointcut msgSendFailedNotification(Server s,

String name, String receiver, String msg) :
 call(* Server.sendPrivateMsg(..)) &&
 target(s) &&
 args(uname, receiver, msg);

after(Server s, String uname, String

receiver, String msg) throwing():
msgSendFailedNotification(s, username,
 receiver, msg)
{
 System.out.println("exception aspect");
 DataOutputStream dout = s.getDout(uname);
 try
 {
 dout.writeUTF(header + receiver + separator
 + notification);
 }
 catch(IOException ex)
 {}
}

Code Fragment 3: msgSendFailed,otification

pointcut captures the sendPrivateMsg method call in the

Server class. The advice sends a warning message to the

client when the operation returns throws an exception.

Once we have identified calls to our target method, we

need to identify the times when this method throws an

exception for not being able to send the message

properly through the network. This is done by using the

after throwing aspect. Using the after

throwing aspect we can perform necessary actions

right after an exception has been thrown by the server.

Of course necessary arguments and target objects need to

be identified in the aspect in order to force the system to

send an automated message to the client sending the

message.

3.2 Development Aspects

Developments aspects have the characteristics of

facilitating debugging, testing, defining enforcement

policies, and performance tuning work. In our project,

we had similar needs like profiling system requirements

in terms of increase in the number of clients connected to

the server and enforcing policies during the

implementation phase. For each of these needs, we have

defined two corresponding development aspects which

are described below.

3.2.1 Profiling System Requirements:

In server-client applications, one of the most crucial

issues is how the server behaves when the number of

clients connected to the server is above a certain number.

Although, we could test our system only with a limited

number of clients, in the future it could be used in more

sophisticated environments. In such a case, we thought it

would be beneficial to have some statistical information

such as when a client logs in to the system, how long

s/he remains logged in, and when s/he logs out. This

information can be used to determine the times of a day

when the number of clients increase abruptly so that

special care is taken if needed. Moreover, the type of

information logged can be extended as new features are

added to the system. For example, if a file transferring

feature is added, the size of the files being transferred

can be logged to determine how the server behaves if a

large file is being transferred.

The requirements explained above however cannot be

included among the functionalities of the system. They

are rather used for development purposes. In addition,

these requirements are scattered among the code. To

begin with, in order to log information in a file, a file

must be created and opened when the server starts and

closed when the server stops. Secondly, code must be

added to places where the information to be collected is

found. For example, to collect information about when a

client logs in and out of the system, code must be added

to both log in and log out functions. Moreover, if the

type of information collected is varied in the future,

related code must be added to corresponding places as

well. Finally, the option for turning collecting statistical

information on and off should always exist. All these

issues make the concern of profiling system requirements

a good candidate to be implemented with aspects. When

an aspect oriented implementation is chosen, the code

will not be scattered but collected in the aspect body.

Additionally, it will be easy to add and remove this

concern to the system by only adding and removing the

aspect itself.

As a result, a profiling aspect is added to the system.

This aspect creates a log file each time the server is run.

In order to create the file appropriately, the aspect

defines pointcuts to catch when the server is started and

stopped. Then, advices are defined corresponding to

these pointcuts to open and close a file. The following

code fragments show the described pointcuts and

advices:

pointcut startServer() : execution(*
 Server.listen(..));

before() : startServer()
{
 try
 {
 Calendar cal = Calendar.getInstance();
 SimpleDateFormat sdf = new

SimpleDateFormat("yyyyMMdd_hhmm");
 File f = new File("bin\\log" +

sdf.format(cal.getTime()) + ".txt");
 wr = new BufferedWriter(new

FileWriter(f));
 signInTimes = new

Hashtable<String,String>();
 }
 catch(IOException ex)
 {}
}

Code Fragment 4: startServer pointcut captures the

execution of the listen method of the Server class and the

before advice creates and opens a log file.

pointcut stopServer() : execution(*
 Server.stopServer(..));

after(): stopServer()
{
 try
 {
 wr.close();
 }
 catch(IOException ex)
 {}
}

Code Fragment 5: stopServer pointcut captures the

execution of the stopServer method of the Server class

and the after advice closes the log file.

Currently, the system collects information about the

log in and out times of clients. Therefore, two additional

pointcut-advice pairs are defined which correspond to

places where a client signs in and out. These operations

are implemented by the Code Fragments 6 and 7.

pointcut signIn(String username, Socket

socket) :
 args(username, socket) && execution(*
 Server.clientConnected(..));

after(String username, Socket socket)

returning() : signIn(username, socket)
{
 Calendar cal = Calendar.getInstance();
 SimpleDateFormat sdf = new
 SimpleDateFormat("hh:mm");
signInTimes.put(username,sdf.format(

 cal.getTime()));
}

Code Fragment 6: signIn pointcut catches the

clientConnected method execution in and the advice logs

the current time as the sign in time of the client.

pointcut signOut(String username, Socket
socket) :

 args(username, socket) &&

execution(* Server.removeConnection(..));

after(String username, Socket socket)

returning() : signOut(username, socket)
{
 Calendar cal = Calendar.getInstance();
 SimpleDateFormat sdf = new
 SimpleDateFormat("hh:mm");
 try
 {
 wr.write(username + "\t\tsigned in at " +
 signInTimes.get(username) + ", signed
 out at " + sdf.format(cal.getTime()) +
 "\n");
 }
 catch(IOException ex)
 {}
}

Code Fragment 7: signOut pointcut captures the

execution of the removeConnection method and the after

advice writes the previously logged time and the current

sign out time to the log file.

The aspect works as follows. After the startServer

pointcut is reached a new file whose name includes the

current date and time is created. Each time signIn

pointcut is reached, the log in time of the newly

connected client is stored in a buffer. When the signOut

pointcut is reached, the buffered log in time of the client

and the log out time are written to the file. Finally, when

the server is closed, the file is also closed. Figure 9

shows a view of a sample log file created.

Figure 9. Sample Log File

3.2.2 Access Controlling for Client Class Aspect:

In our implementation of the multi-client chat

application our Client class was a very extensive class

that had some attributes and methods that by default

were meant to be used by classes other than the Server

class. But, as explained in the previous section, the

Server class is required to store some of the information

provided by the Client class.

In order to handle this access problem we had, we

decided to add a separate class, ServerClient, that only

stored Server related attributes and methods. But for a

developer, two classes representing the same component

might be confusing and it is possible for a developer to

confuse these two classes in the development stage. Thus

the access to the Client class from the Server class needs

to be restricted.

As object oriented approaches have no concepts to

handle this issue, we have used aspects. Due to the level

of abstraction provided by aspects we are able to catch

any illegal access to the Client class made by the Server

at compile time and declare it as an error. In order to do

this, we have used the declare error aspect as shown in

Code Fragment 8.

declare error : call(Client.new(..))&&
 within(Server)
: "Client cannot be created in Server.";

Code Fragment 8: Calls of the Client constructor by

a Server object are captured and considered as an error.

This way, whenever a Client object or any of its static

methods is trying to be used by the Server class, a

compile time error is produced.

4. Alternative Implementations: Jboss

In our current implementation, we have used AspectJ,

one of the most popular frameworks of AOP, for

applying aspect-oriented structures to our design.

However we could also use some other popular

framework like JBoss. However, due to the differences

between the structures of AspectJ and JBoss,

implementation using JBoss would be quite different.

First of all, the pointcut, and aspect declarations in the

two frameworks differ from each other. JBoss supports

pointcuts defined by XML or Java annotations where as

AspectJ also supports language based pointcuts.

Secondly, in order to define an aspect using JBoss, one

has to encapsulate the aspect in its own Java class that

implements the Interceptor interface of the JBoss API.

All methods and constructors intercepted this way are

turned into a generic invoke call. As the interceptors are

attached to pointcuts, the methods intercepted are

invoked at appropriate places. As an illustration, if we

had used JBoss to define the pointcut and advice pair

listed in Code Fragment 2, the pointcut definition and the

corresponding interceptor would be as in Code Fragment

9.

Furthermore, compiling and deploying aspects in

JBoss is more complicated than AspectJ. The

compilation process includes compile and run steps

separately and the deployment process involves

adjustments related to XML files. However, AspectJ’s

compiler ajc does not require a second pass [4] and it has

an easy to use plugin with Eclipse IDE tool that we have

used [5].

public class AlertingInterceptor implements
Interceptor

{
public String getName() { return

AlertingInterceptor; }
public InvocationResponse invoke

(Invocation invocation)
throws Throwable

 {
new AudioWavPlayer
(receivedMessageAlertFile).start();

 return invocation.invokeNext();
 }

}

<bind pointcut=“public void Client->
privateMessageReceived(String name,
String msg)”>

<interceptor class=“AlertingInterceptor”/>
</bind>

Code Fragment 9: Pointcut definition and interceptor

attachment in JBoss

When we considered the above differences, AspectJ

appeared as a more suitable solution for our case. It

provided the necessary components to define both

dynamic and static crosscutting through an interface we

were more familiar with. Due to its popularity, we could

collect more technical support for AspectJ than any other

framework. JBoss had advantages over AspectJ when

working with the JBoss Application Server but we did

not need this feature anyway.

5. Related Work

Because Aspect Oriented Programming (AOP) is an

immerging technology, it is being started to be used in

several different areas of software development.

Obviously one of these areas is development of

distributed applications. Developing distributed

applications involves many different concerns like

synchronization, security, fault tolerance etc. Several

approaches have been presented for using AOP to deploy

these concerns. One such approach is illustrated in [1]

where advantages and disadvantages of using AOP in a

distributed environment are discussed through a case

study. The case study focuses on a framework for

investigating and exchanging of algorithms in distributed

systems called ALGON. The study concludes that using

AOP has many advantages when dealing with complex

systems but it should be used with caution. AOP

provides good solutions especially for monitoring

performance and fault tolerance.

Another approach for using AOP in distributed

systems, especially in client-server applications, is

illustrated in [2]. This work focuses on security concerns

in network-enabled server-client architecture. Security

problems may arise when a malicious user has complete

access to system resources over a networked computer

base. The paper presents a solution by starting with an

existing chat application and developing aspects on top

of that application with PROSE, a dynamic AOP

platform.

Our approach is similar to that of [2], in the manner

that we too are developing aspects on top of an existing

chat application. However, we tried to develop aspects

corresponding to different concerns instead of focusing

on only one issue.

6. Conclusion

In this paper, we tried to investigate our work of

building a multi-client chat application with AOP

approach. The experience we have gained proves the fact

that aspect-oriented programming enhances the object

oriented design by modularizing crosscutting concerns.

Although object-oriented approach helps to modularize

system functionalities into different objects, there still

remain some concepts that result in scattering. This was

also the case in our situation. After designing our system

with an object-oriented approach and improving this

architecture with design patterns, there were still some

concerns that were scattered in several different places of

the code and could be scattered more as the system

functionalities increased. Handling exceptions related to

sending messages and playing notification sounds were

among such example concerns. AOP helped us to

implement these concepts as separate aspects without

changing the original code.

Besides modularizing crosscutting concerns, AOP also

helped us to improve the development phase of our

system. As an illustration, through the use of

development aspects, we could easily define some

enforcement policies to check the correct usage of

classes. Furthermore, performance profiling is an

important concern for distributed applications and AOP

allows this concern to be implemented easily via

defining logging and tracing aspects. For example, we

implemented a simple aspect for collecting information

about the times when clients connected to and

disconnected from the server in order to determine when

the server becomes highly populated. Similar

information can easily be logged to improve the

performance of the system.

On the whole, the importance of aspect-oriented

approach for client-server applications became solid in

our experiences. Even though we have focused only on a

simple case of client-server applications, there were

several concerns that had a high possibility of resulting

in scattered code. These concerns could be expanded if

more functionality was aimed. For example, the type of

information logged to analyze the performance of the

system could be varied as features like file transferring,

video conference, and multi-user conversations were

added. In addition, the alerts provided could be increased

by notifying users when they add or remove friends, send

a message to an offline friend, or have been added as a

friend. Moreover, if the application were analyzed in a

wider perspective, more concerns would be considered

as crosscutting. As an illustration, several concerns like

security and error handling become crucial for client-

server applications, like any other distributed application.

To be more specific, both of these concerns affect both

the server and the client components of the system.

Implementation of these concerns from an aspect-

oriented perspective could be interesting. These

mentioned points can be considered as feature work and

implementation of these points can lead to more

interesting points about using AOP in distributed

applications.

Acknowledgements

We would like to thank Assist. Prof. Dr. Bedir

Tekinerdogan for his comments and suggestions. This

work has been carried out in the Aspect-Oriented

Software Development class given by Mr. Tekinerdogan.

References

[1] S. Subotic, J. Bishop, and S. Gruner, “Aspect-Oriented
 Programming for a Distributed Framework”, in the Proceedings of

 SACJ, 2006.

[2] P. Falcarin, R. Scandariato, and M. Baldi, “Remote Trust with
Aspect-Oriented Programming”, in the Proceedings of the 20th

International Conference on Advanced Information ,etworking

and Applications, 2006.
[3] http://www.damnhandy.com/jboss-aop-vs-aspectj-5-pt-2/

[4] http://www.eclipse.org/aspectj/

[5] Ramnivas Laddad, AspectJ in Action: Practical Aspect-Oriented
Programming, Manning Publications Co., Greenwich, CT, 2003

