
Developing JAUS Compliant Communication
Infrastructures for Command & Control of Unmanned

Systems through MDSD
İskender YAKIN

Faruk BELET
Ferhat KUTLU

Bilkent University, Computer Engineering Department, Ankara, Turkey
yakin,belet,fkutlu@cs.bilkent.edu.tr

Abstract— JAUS (Joint Architecture for Unmanned Systems) has enabled the development of Command & Control
Systems (of unmanned vehicles) consisting of plug & play components. This property of JAUS has emerged from the
ability that every component in the system can be addressed with a unique address called JAUS address and
services provided by components can be registered with this address. Even if JAUS provides a flexible and
extendable infrastructure for developing and unmanned systems, as the number of components increases in systems
it becomes difficult to define the communication requirements among components without any design aid. In this
project we aim to develop a graphical design tool for JAUS compliant systems through MDSD with the use of EMF
(Eclipse Modeling Framework) and GMF (Graphical Modeling Framework) frameworks in Eclipse Ganymede 3.4.

Index Terms— JAUS, System, Subsystem, Node, Component and Instance, Abstract Syntax, Concrete Syntax.

1. INTRODUCTION

Unmanned systems reduce exposure of personnel to harmful
environments, perform tasks not possible for humans, and
provide cost effective solutions to repetitive tasks. As a result,
a large number of unmanned system products are being
introduced to the market. Furthermore, many of these systems
are characterized as task dependent and non-interoperable. A
standard open architecture is required to support the rapid and
cost-effective development of unmanned systems. The Joint
Architecture for Unmanned Systems (JAUS) is the architecture
defined for use in the research, development and acquisition of
Unmanned Systems. JAUS provides a description of the
structure of JAUS based systems. It describes a component
based system structure.

JAUS provides the necessary definitions to develop
architecture to support the following objectives:

 Support all classes of unmanned systems
 Rapid technology insertion
 Interoperable operator control unit
 Interchangeable/interoperable payloads
 Interoperable unmanned systems

In order to achieve these objectives the interoperability among
JAUS components plays a key role. Interoperability is the
ability of two or more subsystems to exchange information and
to use the information that has been exchanged [IEEE 90]. In
order to achieve interoperability all components of a system
must conform to predefined rules such as standardized
addressing (JAUS Address) and messaging.

Even if JAUS provides a flexible and extendable infrastructure
for developing unmanned systems, as the number of
components increases in systems, it becomes difficult to define
the communication parameters among components without any
design aid. In this project we aim to develop a graphical design
tool for JAUS compliant systems through MDSD with the use
of EMF (Eclipse Modeling Framework) and GMF (Graphical
Modeling Framework) frameworks in Eclipse Ganymede 3.4.

In Section 2, the domain analysis will be given by focusing on
the domain description/context and domain lexicon. In Section
3 and Section 4, definition of metamodel based on MOF and
using UML profiling, along with abstract syntax, concrete
syntax, static semantics and example models will be described.
In Section 5 and Section 7 Model to Model and Model to Text
transformations will be given. Lessons learned about this work
will be given in Section 7.

2. JAUS DOMAIN

2.1. Domain Description and Context
The purpose of JAUS is to support the acquisition of
Unmanned Systems by providing a mechanism for reducing
system life-cycle costs. This is accomplished by providing a
framework for technology reuse/insertion. JAUS defines a set
of reusable “components” and their interfaces. These reusable
components not only reduce the maintenance costs of a system,
but also dramatically reduce the development costs of any
follow-on system(s). Reuse allows a component developed for
one Unmanned System to be readily ported to another
Unmanned System or to be easily replaced when technological
advances.

Technology insertion is achievable when the architecture is
designed to be both modular and scalable. Components that

are deemed necessary for the mission of the Unmanned System
may be inserted simply by bundling.

JAUS defines components for all classifications of Unmanned
Systems from remote control toward autonomous, regardless of
application. As a particular system evolves, the architecture is
already in place to support more advanced capabilities. In
JAUS language, a number of terms are used to delineate
position within the overall hierarchy of the system and must
therefore, be well understood. These terms describe the
different levels of the architecture and define the required
internal hierarchical sub-grouping:

 System: A system is a logical grouping of subsystems.
The system definition provides a functional grouping for
the full robotic or unmanned capability. This grouping
includes all human interface subsystems and unmanned
subsystems common with robotic and unmanned
applications.

 Subsystem: A subsystem performs one or more unmanned
system functions as a single localized entity within the
framework of the System. A subsystem shall provide one
or more communication command and control capabilities.
A mobile subsystem shall execute mobility commands as a
single unit and retain a defined center of gravity relative to
all articulations and payloads.

 Node: A JAUS Node defines a distinct processing
capability within a subsystem. A node retains a set of
coherent functions and shall provide a node manager
component to manage the flows and controls of JAUS
message traffic.

 Component: A component provides a unique functional
capability for the unmanned system. JAUS messages are
defined with respect to these capabilities so that context in
command and control is provided. A JAUS component
resides wholly within a JAUS Node.

 Instance: Duplication and redundancy of JAUS
Components are provided by Component Instances. All
Components are uniquely addressable using Subsystem,
Node, Component and Instance Identifiers.

 Message: A JAUS message is comprised of the message
header and associated data fields.

SYSTEM

Subsystem Subsystem Subsystem

Node Node Node Node

Comp1, Inst1 Comp2, Inst1 Comp2, Inst2 CompN, Inst1

Figure 1: JAUS System Topology

A graphical representation of how each element fits into the
JAUS system topology is shown in Figure 1.

2.2. DSL Grammar
Since the JAUS communication infrastructure consists of
hierarchical elements it is easy to define this infrastructure by a
grammar in BNF. The following grammar in Figure 2 describes
communication infrastructure.

 Figure 2: JAUS Communication infrastructure grammar.

3. DEFINITION OF METAMODEL BASED ON MOF

3.1. Abstract Syntax
Metamodel of our system in M2 level is illustrated in Figure 2.
In the metamodel all system entities which are system,
subsystem, node, component and instance are derived from a
class called SystemEntity. In this model System is the highest
level object in the system and it contains subsystems. As the
level of containment decreases subsystems contain nodes,
nodes contain components and at the lowest level instances are
contained by components. Only instances communicate with
each other and so only instances have unique JAUS addresses.
Every instance has source and target connections meaning that
every connection originating from an instance is added to
source connections of that node and the same connection is
added to the target connections of the other node which is
targeted by that connection.

<System> ::= <SystemEntity> <SubsystemList>

<SubsystemList>::=<Subsystem> | <Subsystem>
 <SubsystemList>

<Subsystem> ::= <SystemEntity> <NodeList>

<NodeList > ::= <Node > | <Node> <NodeList>

<Node>::=<SystemEntity><IPAdsress><ComponentList>

<IPAddress>::= <Number>.<Number>. <Number> .
 <Number>

<ComponentList>::=<Component>|<Component>
 <ComponentList>

<Component> ::= <SystemEntity> <InstanceList>

<InstanceList> ::= <Instance> | <Instance>
<InstanceList>

<Instance>::=<SystemEntity><JAUSAddress>
 <ConnectionList> <ConnectionList>

<JAUSAddress> ::= <Number> . <Number> . <Number>.
 <Number>

<ConnectionList>::=<CommLink>|<CommLink>
 <ConnectionList>
<CommLink> ::= <Instance> <Instance> <Port>

<SystemEntity> ::= <name> <ID>

Figure 3: JAUS System Metamodel

Metamodel at M2 level is formed from Eclipse EMF/GMF
metamodel at M3 level given in Figure 3 and 4. With respect to
this model at M3 level all system entities, system, subsystem,
node, component instance and are derived from Node and
communication links are derived from Edge.

3.2. Concrete Syntax
Visual definition of system entities if defined in the Graphical
Definition Model of Eclipse GMF Project as illustrated in
Figure 4.

Figure 4: Eclipse GMF Project Development Phases

The graphical definition of our system as a Graphical
Definition Model is as given in Figure 5. As can be seen in the
figure the concrete syntax of metamodel elements are defined
graphically in the Graphical Definition Model. For example,
the graphical definition of ‘Subsystem’ in the metamodel is
given under the “Figure gallery Default”. ‘Subsystem Figure’
corresponding to Subsystem is displayed in our editor as a
rectangular figure, and in the figure we display the name and
ID of this entity as can be seen in the Graphical Definition
Model.

Figure 5: Graphical Definition Model of GMF

3.3. Static Sematics
JAUS communication metamodel contains only ordinary
system checks because it has a hierarchical structure and well
isolated parts. The OCL constraints used in the concrete syntax
are as follows.

IP Address Control: Control of the IP addresses in Nodes to
sustain each Node has a unique IP Address.

context Subsystem inv:
Node.allInstances()->forAll(n1|Node.allInstances()

 ->forAll(n2|n1.IPAddress<>n2.IPAddress))

JAUSAddress Control: Control of the JAUS addresses in
Instances to sustain each Instance has a unique JAUS Address.

context Component inv:

Instance.allInstances()->forAll(j1|Instance.allInstances()

->forAll(j2|j1.JAUSAddress<>j2.JAUSAddress))

Figure 6: Example JAUS Communication Model

Port Control: Control of the ports in Communication Links to
sustain each Communication Link has a unique port.

context Instance inv:

CommunicationLink.allInstances()
 ->forAll(p1|CommunicationLink.allInstances()
 ->forAll(p2|p1.port<>p2.port))

Source-Target Inequality Control: Control of the
connections in an Instance to sustain sources and targets to be
different Instances.

context Instance inv:
CommunicationLink.allInstances()
 ->forAll(c|c.sourceEntity<>c.targetEntity)

3.4. Example Model

The following model in Figure 6 is derived from our
metamodel is at M1. It is at M1 since the auto generated code
from this model is at M0. The system defined by this model
consists of three subsystems, each of which contains a single
node and each node contains a single component with a single
instance.

The model shows that Commander only communicates with
the operator and the operator communicates with both the
observer and the interceptor

4. Definition of Metamodel using UML Profiling
4.1. Abstract Syntax

A profile in UML enables generic extension mechanism for
customizing UML models for some domains. Profiles are
defined using stereotypes, tagged values and some constraints
that are applied to specific model elements in UML
metaclasses, such as Class, Attributes and Operations.
The profile is not necessary to make UML applicable to this
domain. As a lightweight extension mechanism, Class
metaclass is extended by domain stereotypes such as System,
subsystem, node, component etc. In addition to this,
Association and Aggregation metaclasses are used to extend
existing domain specific association and aggregation between
the domain model objects (see Figure 7).

4.2. Example Model
An example model in Figure 8.

5. Model to Model Transformatıon
In this project, model to model transformation is based on two
steps. Firstly, transformation from Ecore Model to Class
Schema Model is handled. After transformation, as second step
Class Schema Model is transformed to Relational Database
Model. ATL eclipse plug-in is used to transform between these
models.
The Class metamodel (see Figure 9) consists of classes having
a name that inherit from the abstract class NamedElts. Class
“Class” is the principal class, which consist of a set of
attributes of the type “Attribute” and has super references
pointing to super-classes for modeling inheritance trees.
Primitive data types are modeled by the class “DataType”
which inherits from Classifier. “Class” also inherits from
Classifier. Classifier is utilized for declaration of “Attribute”
type. Attributes can be multi-valued, which has an important
impact on the transformation.

The Relational metamodel (see Figure 9) has classes having a
name which they inherit from the abstract class “Named”.
“Columns” is the principal class table and has a reference to

its keys. “Column” class has the references owner and keyOf
pointing to the Table it belongs to and of which it is part of the
key. It also reference to “Type”.

class JAUSProfile

«metaclass»
Class

+ isActive: Boolean

SystemEntity

- id: int
- name: String

ComponentNode

- IPAddress: String

Subsystem

System

Instance

- JausAddress: String

«metaclass»
Association

+ direction: Direction = Source -> Desti...

targetInstance targetConnections

subsystems

sourceInstance

CommunicationLink

- Port: int

«metaclass»
Aggregation

+ direction: Direction = Source -> Desti...

componentsnodes sourceConnectionsinstances

«extends»«extends»«extends»
«extends»

«extends»

«extends»

«extends»

«extends» «extends»«extends»

Figure 7: UML Profiling for JAUS System

class Class Model

«System»
JausSystem

«Subsystem»
JausSubsystem_1

«Subsystem»
JausSubsystem_2

«Node»
Node_1

«Node»
Node_2

«Node»
Node_1

«Component»
Component_1

«Component»
Component_1

«Component»
Component_2

«Instance»
Instance_3

«Instance»
Instance_2

«Instance»
Instance_1

«CommunicationLink»
Link

«subsystems»

«subsystems»

«nodes»

«nodes»

«nodes» «components»

«components»«components»

«instances»«instances»«instances»

«sourceInstance»

«targetInstance»«targetConnections» «sourceConnections»

Figure 8: Example Model

The Relational metamodel (see Figure 10) has classes having a
name which they inherit from the abstract class “Named”.
“Columns” is the principal class table and has a reference to
its keys. “Column” class has the references owner and keyOf
pointing to the Table it belongs to and of which it is part of the
key. It also reference to “Type”

Figure 9: Class Meta Model

Figure 10: Relational Meta Model

ATL enables us to define target and source metamodels. In
addition, source ecore is used to get a transformed target
output that conformes to the target metamodel. Skipping
transformation of the Ecore model to Class Schema Model
details, we will introduce the part telling how to convert a
Class Schema Model to Relational Meta model.

Next step of the conversion is to define the rule specification
for transformation between models. These are the rules to
transform a class model to a relational model:

 For each Class instance, a Table instance has to be
created.

 For each DataType instance, a Type instance has to
be created (see Figure 11).

 For each single-valued Attribute instance of the type
DataType, a Column instance has to be created.

 For each multi-valued Attribute instance of the type
DataType, a Table instance has to be created.

 For each single-valued Attribute of the type Class, a
new Column has to be created.

 For each multi-valued Attribute of the type Class, a
new Table has to be created.

In addition to these rules, for the simplification’s sake
inheritance and isAbstract are not taken into consideration.

Figure 11 Example Rule

6. MODEL TO TEXT TRANSFORMATION
As mentioned in Section 2, JAUS communication
infrastructure requires IP and JAUS addresses of JAUS
components to be specified as an interface at each component
if there is a communication link between two components.

This introduces the problem of interface maintenance
whenever a JAUS or IP address changes. In order to overcome
this problem .java files implementing these interfaces can be
generated automatically. This reduces time spent for
maintenance and also reduces the time for testing the modified
system. Since we have the communication parameters in our
model, changing the parameters at the model and generating
the code dependent on this parameters is possible through
model to text (java code) transformation.

For model to text (M2T) transformation we use Eclipse JET
(Java Emitter Templates) plugin. In order generate code first
the template for the java file should be coded. A JET template
is a text file with a file name that end with “jet”, .javajet
implies that the template generates a .java file. A JET template
includes both the static part of the code such as,

// Commander

 new UDPInterface(inetAddress, patameter, false, true)

and dynamic parameters that should be put into the code. For
this example the code segment ‘parameter’ is the data that we
are looking for in our model. When this parameter is passed
from EMF .ecore to the template we get the following auto
generated code line,

new UDPInterface(inetAddress, 1001, false, true)

As can be seen in Figure 6, 1001 corresponds to the port
number between the operator and the commander of the
system. Two code segments from the auto generated code in
“OperatorNode.java” are given below. As can be seen, these
code segments include the static code from JET template (code
not marked with red), and data as parameters from the model
given in Figure 6.

// Commander
DefaultCommunicator.getInstance().addInterface(
 new UDPInterface(inetAddress, 10001, false, true));

// Commander
ActiveRoute route = new ActiveRoute();

route.setInterfaceIndex(1);
route.setDestination(new JAUSAddress(1, 1, 255, 255));
route.setGateway(new JAUSAddress(1, 1, 32, 1));
route.setIfGateway("15.30.5.1:10001");
DefaultCommunicator.getInstance().addActiveRoute(route);

Figure 12: JAUS Communication Model Editor

Another model to text transformation example in this work is
our JAUS Communication Editor illustrated in Figure 12. By
using EMF and GMF this editor was generated from the set of
models given in Figure 4. The whole editor application
consists of around 35.000 lines of code and it is auto generated
by GMF templates.

7. LESSONS LEARNED AND CONCLUSIONS
Determining the scope of a metamodel focusing the related
concepts and whether it meets our system is actually a though
part of Model Driven Software Architecture. Software
development is inherently difficult because of the increasing
complexity and frequent change that occurs during its lifecycle.
However, high level of abstraction is required to handle all
these drawbacks in software development.

We learned how to make a high level abstraction by using
Ecore, UML profiling, and language grammar in a specific
domain which is JAUS.

We experienced that meta-model definition takes a
considerable amount of time. Implementing a given
architecture is decreases the design time but requires the
architecture to be understood in detail. 100% auto generated
code with Eclipse EMF/GMF is achieved. However, it takes a
great amount of time to define the models and mapping among
these models. GMF has some problems with creating the
Mapping Model. We noticed that using set/create transactions
in EMF is required to set a value of the attribute of to create an
instance of an entity manually. Changing requirements are
easily reflected to the models. BNF Grammar helps to
understand the system and the structure of system entities.

Model to Model transformations is a valuable experience to
convert a domain model into another model that conforms to
their metamodels. In our case, Relational Metamodel for
storage case of our system is seen as a good practice. By this
way, we haven’t spent time to plan Relational Database
Schema for the project as a separate focus. It is enough to
define transformation rules. However, some possible rules are
skipped for simplicity to achieve basic transformation.

By using model-to-text transformations code including the
communication parameters of the system can be auto
generated. This reduces time spent for maintenance and also
reduces the time for testing the modified system. Since we
have the communication parameters in our model, changing the
parameters at the model and generating the code dependent on
this parameters is possible through model to text (java code)
transformation.

ACKNOWLEDGMENT
The authors would like to thank Dr. Bedir Tekinerdoğan for
his magnificent guidance and leadership.

REFERENCES
[1] Hui Huang, Autonomy Levels for Unmanned Systems (ALFUS)

Framework, JAUS WG Meeting August 26, 2004. Pittsburgh, PA.
[2] C4ISR Handbook for Integrated Planning (CHIP), DoD Integrated C4I

Architectures Division, April 1998
[3] C4ISR Interoperability Working Group, Department of Defense. Levels

of Information Systems Interoperability (LISI). Washington, D.C., 1998
[4] NATO C3 Technical Architecture Volume 2 Architectural Descriptions

and Models Version 7.0, 15 December 2005
[5] JAUS, Domain Model, Volume 1. Version 3.2., 10 March 2005.
[6] JAUS, Reference Architecture Specification, Volume 2, Part 1,

Architecture Framework

