Image Processing on Aerial Platforms
• Imaging Systems Overview
• Imaging Sensor Processing Cycle
• Challenges on Aerial Platform based Image Processing
• Vision and Roadmap
Imaging Systems Overview
Chronological Timeline of Image Systems in MilSOFT

2005
- Algorithm Design
- Conceptual Design
- Photogrametry alg.
- Detection alg.

2010
- R&D Projects
- New Algorithms
- New Sensor Types
- Exploitation Platform

2012
- GIS Based System Design
- Data Unification
- Sensor Fusion

2014
- Mature Products
- Machine Learning

2018
- New R&D projects
- Integration to new projects
Intelligence and Surveillance Platform Overview

TACTICAL LEVEL
- EXTERNAL DATA INTEGRATION
- IMAGING SENSOR ACQUISITION
- AUXILIARY SENSOR INTEGRATION

OPERATIONAL LEVEL
- QUERY & ACCESS & ANALYZE
- PROCESSING & FUSION & DISSEMINATION
- TARGET MANAGEMENT AND INTELLIGENCE LIFECYCLE

STRATEGIC LEVEL
- CENTRALIZED INTEL DIRECTIONS & MANAGEMENT
• Different type of platforms and sensors are used for image processing

 • Unmanned Air Platforms
 • EO/IR Video Camera
 • Synthetic Aperture Radar
 • Platform Telemetry

 • Aircraft Platforms
 • Reconnaissance Pods
 • Platform Telemetry

 • City Surveillance Cameras
 • EO/IR Video

 • Satellite Platforms
 • Large Scale map data support
 • Photogrammetric capabilities
Application Layers in Image Processing

- **Application Layers**
 - **Sensor**
 - Video
 - SAR
 - Hyperspectral
 - Multispectral
 - **Data Set**
 - Hand-made
 - Commercial of the Shelf
 - Open Source
 - Provided by Customer
 - **Algorithm & Software**
 - Computer Vision
 - Machine Learning
 - Photogrametry
 - **Customer Projects**
 - R&D
 - Commercial Products
Imaging Sensor Processing Cycle
Image Processing Cycle

- Super Resolution
- Noise Reduction

- Mosaicing
- DEM Extraction
- Orthographic Correction

- Urban Area Detection
- Restricted Area Trespassing
- Change Detection

- Moving Target Indication
- Object Detection
Fusion
Detection and Tracking
Detection and Tracking

Image → Pre-Processing → Emissivity / Temperature Separation → Region Detection → Final Detections
Analysis
Challenges on Aerial Platform based Image Processing
Sensor Characteristics on Aerial Platforms

- Platform Movement
 - Multi Dimensional Movement
 - Platform Alignment
 - Sensor Alignment
 - Bumps and shakes during data acquisition
 - Wind
 - Platform Internal Components
 - Engine
 - Gimbal Units
Sensor Characteristics on Aerial Platforms

- Platform Movement
 - Multi Dimensional Movement \Rightarrow Complex Motion Model
 - Platform Alignment
 - Sensor Alignment
 - Bumps and shakes during data acquisition \Rightarrow Stabilization
 - Wind
 - Platform Internal Components
 - Engine
 - Gimbal Units
Sensor Characteristics on Aerial Platforms

• Altitude
 • High: Highest Stability, Small Targets
 • Medium: Medium Stability, Medium Size Targets
 • Low: Low level stability, Large Size Targets

• Climatic
 • Clouds
 • Changes in the lighting conditions

• View target in oblique angles with long distances
• Elevational variations due to earth geoid surface
Sensor Characteristics on Aerial Platforms

- **Altitude** => Specific algorithms for each altitude
 - High: Highest Stability, Small Targets
 - Medium: Medium Stability, Medium Size Targets
 - Low: Low level stability, Large Size Targets
- **Climation** => Filtering and light compensation
 - Clouds
 - Changes in the lighting conditions
- **View target in oblique angles with long distances**
- **Elevational variations due to earth geoid surface**
 - => Angular correction and orthographical correction
Deep Learning and Sensor Characteristics

- Altitude
- Climation
- Oblique Angles

- Learning objects in different scales
- Augment data which imitating imaging sensor acquisition characteristics due to climate changes
- Flexible target detection in terms of acquisition from different angles

- It is possible to design an algorithm which manages to tackle all the problems of multiple computer vision algorithms. But;
 - Complexity
 - Data Set
 - Processing Power
 - Theoretical Limits
Deep Learning and Sensor Characteristics

- Mostly used deep learning architecture:
 - Convolutional Neural Networks

- Training:
 - Data Augmentation is a must
 - Images from different perspectives
 - Images from different angles
 - Images taken in cloudy/rainy weather
 - Physical dirtiness on the sensor

- Inference:
 - Limited processing resources (cpu and memory)
 - Neural network quantization (performance vs. accuracy trade-off)
Challenges in Development Cycle

• Variety of data types vs data context difference
 • «Site environment» / «Development environment» difference
 • Realistic Synthetic Data Production

• Algorithms as viable products
 • Used in different hardwares
 • Used in different operating environments
 • Used with different sensor models
Challenges in Development Cycle

• Variety of data types vs data context difference
 • «Site environment» / «Development environment» difference
 • Realistic Synthetic Data Production
• Test data is crucial
• Algorithms as viable products
 • Used in different hardwares => Software Engineering
 • Used in different operating environments => Test Engineering
 • Used with different sensor models => Algorithm Development
Challenges in Site Deployment and Active Usage Scenario

• Primary Objective: Increase operator efficiency
 • How to measure efficiency?

• User Experience
 • "Human machine interface" design
 • Algorithm response time and response confidence

• «Ease of Use» is a critical factor
 • Operator technical skills not matched with the «Algorithm Developer»
 • Simple controls for parameters
 • Algorithm outputs should be visually and perceptually easily recognizable
Challenges in Site Deployment and Active Usage Scenario

• Primary Objective: Increase Operator efficiency
 • How to measure efficiency? => Domain Experience
 • A sample case (compare manual and automatic processing)
 • Scenario 1: Time to find a target in a video clip
 • Scenario 2: Automatic target detection using algorithm
 • $F_c =$ Video Frame Count
 • $T_c =$ Detected Target Count by Algorithm
 • $(F_c \times \text{Algorithm Execution Time}) + (T_c \times \text{Time to eliminate false alarms manually}) < (F_c \times \text{Operator time to process each frame})$

• User Experience
 • «Human machine interface» design
 • Algorithm response time and response confidence

• «Ease of Use» is a critical factor
 • Operator technical skills not matched with the «Algorithm Developer»
 • Simple controls for parameters
 • Algorithm outputs should be visually and perceptually easily recognizable
Challenges in Site Deployment and Active Usage Scenario

• Primary Objective: Increase Operator efficiency
 • How to measure efficiency? => Domain Experience
 • A sample case (compare manual and automatic processing)
 • Scenario 1: Time to find a target in a video clip
 • Scenario 2: Automatic target detection using algorithm
 • \(F_c \) = Video Frame Count
 • \(T_c \) = Detected Target Count by Algorithm
 • \((F_c \times \text{Algorithm Execution Time}) + (T_c \times \text{Time to eliminate false alarms manually}) < (F_c \times \text{Operator time to process each frame})\)

• User Experience => Custom made interfaces for algorithms
 • «Human machine interface» design
 • Algorithm response time and response confidence

• «Ease of Use» is a critical factor
 • Operator technical skills not matched with the «Algorithm Developer»
 • Simple controls for parameters
 • Algorithm outputs should be visually and perceptually easily recognizable
Challenges in Site Deployment and Active Usage Scenario

- **Primary Objective**: Increase Operator efficiency
 - How to measure efficiency? ➞ Domain Experience
 - A sample case (compare manual and automatic processing)
 - Scenario 1: Time to find a target in a video clip
 - Scenario 2: Automatic target detection using algorithm
 - \(F_c = \text{Video Frame Count} \)
 - \(T_c = \text{Detected Target Count by Algorithm} \)
 - \((F_c \times \text{Algorithm Execution Time}) + (T_c \times \text{Time to eliminate false alarms manually}) < (F_c \times \text{Operator time to process each frame}) \)

- **User Experience** ➞ Custom made interfaces for algorithms
 - «Human machine interface» design
 - Algorithm response time and response confidence

- «Ease of Use» is a critical factor ➞ **Hyper parameter Optimization**
 - Operator technical skills not matched with the «Algorithm Developer»
 - Simple controls for parameters
 - Algorithm outputs should be visually and perceptually easily recognizable
Vision and Roadmap
Vision and Roadmap

Application of Deep Learning Methods
- Developing algorithms with these perspective
- New algorithms for new problems

Integrated and unified execution of algorithms
- General purpose AI
- A unified input-output system for algorithms
- Ease of integration

Big data analysis
- Geographical data analysis
- Textual data analysis

Swarm Systems
- Autonomous UAV systems
- Sensor Networks
Vision and Roadmap

• Academy-Industry Cooperation

• R&D Projects
 • Swarm UAV

• Product and Architectural Innovation
 • Considering the vision in all projects
 • Productization
 • Constituting teams with experienced and talented members
Thanks…