An Algorithm for Classification by Feature
Partitioning

Tzzet Sirin H. Altay Guvenir

Computer Engineering and Information Science Department
Bilkent University, Ankara 06533 TURKEY
E-mail: {sirin,guvenir}@trbilun.BITNET

Abstract

This paper presents a new methodology for learning from examples, called
Classification by Feature Partitioning (CFP), which is an inductive, incre-
mental and supervised learning method. Learning in CFP is accomplished by
storing the objects separately in each feature dimension as disjoint partitions
of values. A partition, which is initially a point in the feature dimension, is ex-
panded through generalization. The CFP algorithm specializes a partition by
subdividing it into sub-partitions. It is shown that the CFP algorithm has low
sample complexity and training complexity. CFP is also empirically evaluated
in three different domains, and the results are compared with Instance-based
learning, Nested Generalized Fremplars and Decision Tree techniques.

1 Introduction

Several different representation techniques have been used to describe concepts for
supervised learning tasks. Among others, these include decision trees in Quinlan
(1986), instance-based representation in Aha and Kibler (1991) and hyperrectangles
in Salzberg (1991). The representation of the concepts learned by the exemplar-
based learning techniques stores only specific examples that are representatives of
other several similar instances. Exemplar-based learning was originally proposed as
a model of human learning by Medin and Schaffer [5].

Previous implementations of this approach usually extend the nearest neighbor
algorithm, in which some kind of similarity (or distance) metricis used for prediction.
Hence, prediction complexity of such algorithms is proportional to the number of
instances (or objects) stored.

This paper presents another form of exemplar-based learning, called Feature
Partitioning (FP). The FP technique makes several significant improvements over
other exemplar-based learning algorithms, where the examples are stored in memory
without any change in the representation. For example, IBL algorithms learn a set of
instances (a representative subset of all training examples), EACH (Exemplar-Aided
Constructor of Hyperrectangles) learns a set of hyperrectangles of the examples.
On the other hand, the FP method stores the instances as factored out by their
feature values. The program that implements the feature partitioning technique
in this paper is called CFP, for Classification by Feature Partitioning. The CFP
partitions each feature into segments corresponding to concepts. Therefore, the
concept description learned by the CFP is a collection of feature partitions. In
other words, the CFP learns a projection of the concept on each feature dimension.

Since the CFP learns projections of the concepts, it does not use any similarity
(or distance) metric for prediction. Each feature contributes the prediction process
by its local knowledge. Final prediction is based on a voting among the predictions
of the features. Since a feature partition can be represented by a sorted list of
line segments, the prediction by a feature is simply a search on that sorted list.
Therefore, the CFP algorithm significantly reduces the prediction complexity, over
other exemplar-based techniques. The strength of the contribution of a feature in
the voting process is determined by the weight of that feature. Assigning variable
weights to the features modifies the importance of each feature to reflect its relevance
for classification. This scheme allows smooth performance degradation when data set
contains irrelevant features. Therefore, the CFP algorithm is tolerant to noisy data.
The weights (relevancies) of the features are also learned by the CFP algorithm.

The issue of unknown attribute values is an unfortunate fact of real-world data
sets, that data often contain missing attribute values. Most of the learning systems,

usually overcome this problem by either filling in missing attribute values (with
most probable value or a value determined by exploiting interrelationships among
the values of different attributes), or looking at the probability distribution of values
of attributes. Most common approaches are compared in Quinlan (1993), leading to
a general conclusion that some approaches are clearly inferior but no one approach
is uniformly superior to others. In contrast, CFP solves this problem very naturally.
Since CFP treats each attribute value separately, in the case of an unknown attribute
value, 1t simply leaves the partitioning of that feature intact.

The precise details of the CFP algorithm are described in the next section, and
the process of partitioning of a feature dimension is illustrated through an example.
Section 3 presents an analysis of the CFP algorithm with respect to PAC-learning
theory, and it is shown that the CFP has a low sample and training complexity.
In Section 4 the CFP algorithm is compared with other related works. Section 5
presents and empirical evaluation of the CFP algorithm, and a comparison with
other techniques on five different data sets. The paper concludes with a a general
discussion of the applicability of the CFP and a general evaluation of the algorithm.

2 The CFP Algorithm

The CFP program learns the projection of the concepts over each feature dimension.
In other words, the CFP learns partitions of the set of possible values for each feature.
An example is defined as a vector of features values plus a label that represents
the class of the example. Partition is the basic unit of representation in the CFP
algorithm. For each partition, lower and upper bounds of the feature values, the
associated class and the number of instances it represents are maintained.

Initially, a partition is a point (lower and upper limits are equal) on the line
representing the feature dimension. For instance, suppose that the first example
ey of class C is given during the training phase (Fig. 1.a). If the value of e; for
feature f is 1, that is e y = 21 then the set of possible values for feature f will be
partitioned into three partitions: < [—oo, x1], undetermined,0 >, < [z1,24],C1,1 >,
< [z, 00], undetermined,0 >; where the first element indicates the range of the
partition, the second its class, and the third, called the representativeness value, the
number of examples represented by the partition.

A partition can be extended through generalization with other neighboring points
in the same feature dimension. Assume that the second example ey is close to
e1 in feature f and also of the same class. In that case the CFP algorithm will
generalize the partition for z; into an extended partition: < [z1,x3],Cy,2 >, which
now represents two examples (see Fig. 1.b). Generalization of a range partition is

'C(1)
C
a) : f
% wmc:{e =x,e =C}
: 2 2, f 2 2,class 1
Ix, - x,1 € Df
2
by — =
X X
1 2
' 63:{63,f= X3’ 3,51; 1}
™
o — ' ———f
X X X
7 3 2
i e4:{e4,f:)51 ’64,c1a§ C/}
Ix, -x,1 <D,
C1(4) 27 7y f
d — [+——=f
X, X X,
N 65:{65}‘:X5’e5,clas:x 2}
C(n) C,(1) C,(m)
e) — H F——a f
X X X
1 5 4
. 66:{66,]? X5 €6 class C3}
C,(1)
C(n) GC,(1) C,(m)
—] H F—oxf
X X X
1 5 4

Figure 1: Partitioning of a feature dimension.

illustrated in Fig. 1.d.

Since partitions are disjoint the CFP algorithm pays attention to avoid over
generalization. In order to generalize a partition in feature f to cover a point,
the distance between them must be less than a given generalization limit (Dy).
Otherwise, the new example is stored as another point partition in the feature
dimension f.

If the feature value of a training example falls in a partition with the same class,
then simply the representativeness value (number representing the examples in the
partition) is incremented by one (see Fig. 1.c).

If the new training example falls in a partition with a different class than that
of the example, the CFP algorithm specializes the existing partition by dividing
it into two range partitions and inserting a point partition (corresponding to the
new example) in between them (see Fig. l.e, f). When a partition is divided into
two partitions, it is important to distribute the representativeness value of the old
partition to the newly formed partitions. The CFP distributes the representativeness
of the old partition among the new ones in proportion to their sizes. For instance,
the representativeness value of the newly formed partitions in Fig. 1.e will be

Ts — X1
n=4 ,
Tq4 — I
Tq4 — Ts
m =4 }
Tq — X1

In terms of production rules, the partitioning in Figure 1.f can be represented

as:
if e > xy and ey < 5
then euuss = C4

if ef = s
then eq40s = Ch

if e > x5 and ey < x4
then euuss = C4

The CFP algorithm pays attention to the disjointness of the partitions. However,
partitions may have common boundaries in this case, the CFP algorithm uses the
representativeness values of the partitions to determine class value. For example,
in Fig. 1.f at e; = x5, three classes (;, Cy and C5 are possible, but since the total
representativeness of the class € is 4 and the that of the other classes is 1, the
prediction for the feature f is .

train(Training Set):
begin
foreach e in Training Set
foreach feature f
if class of partition(f, ef) = €ciass
then wy = (14 A)wy
else wy = (1 — A)wy
foreach feature f
update-feature-partitioning(f, ey)

end

Figure 2: Training algorithm of the CFP.

prediction(e):
begin
foreach feature f
¢ = class of partition(f,ey)
vote, = vole. + wy
return class ¢ with highest vote..
end

Figure 3: Prediction process of the CFP.

The training process in CFP algorithm has two steps: learning of feature weights
and feature partitions (Fig. 2). For each training example, the prediction of each
feature is compared with the actual class of the example. If the prediction of a
feature is correct,then the weight of that feature is incremented by A (global feature
weight adjustment rate) percent; otherwise, it is decremented by the same amount.

The prediction in the CFP is based on a voting taken among the predictions
made by each feature separately (Fig. 3). For a given instance e, the prediction
based on a feature f is determined by the value of e;. If e falls properly within a
partition with a known class then the prediction is the class of that partition. If ey
falls in a point partition then among all the partitions at this point the one with the
highest representativeness value is chosen. If ey falls in a partition with no known
class value, then no prediction for that feature is made. The effect of the prediction
of a feature in the voting is proportional with the weight of that feature. All feature
weights are initialized to one before the training process begins. The predicted class
of a given instance is the one which receives the highest amount of votes among all
feature predictions.

update-feature-partitioning(f, es):
begin

if class of partition(f,ef) = €ciass
increment representativeness value of partition(f, ey)
else {different class}
if partition(f, es) is a point partition
insert-new-partition(f, ey)
else {partition(f, es) is a range partition}
if class of partition(f,es) is not undetermined
subdivide-partition(partition(f, ey), ey)
else {try to generalize}
if the nearest partition to left or right in D distance has the class €55
generalize(partition,ey)
else {there are no partitions in Dy distance with the same class as e}
insert-new-partition(f, ey)

end

Figure 4: Updating a feature partition.

The second step in the training process is to update the partitioning of each
feature using the given training example (Fig. 4). If the feature value of a training
example falls in a partition with the same class, then simply its representativeness
value is incremented. If the new feature value falls in a partition with a different
class than that of the example and this partition is a point partition, then a new
point partition (corresponding to the new feature value) is inserted next to the old
one. Otherwise, if the class of the partition is not undetermined, then the CFP
algorithm specializes the existing partition by dividing it into two range partitions
and inserting a point partition (corresponding to the new feature value) in between
them. On the other hand, if the example falls in an undetermined partition, the
CFP algorithm tries to generalize a near partition with the feature value. If one of
the nearest partitions to the left and the right of the new example is in Dy distance
and of the same class as the example, then it is generalized to cover the new feature
value. Otherwise, a new point partition that corresponds to the new feature value,
is inserted.

In order to see the form of the resulting concept descriptions learned by the
CFP algorithm, let us consider a domain with two features, f; and f;. Assume that
during the training phase, positive (+) instances with f; values in [y, z12] and
f2 values in [x93, x94], and negative (-) instances with f; values in [zy3, z14] and f;
values in [z41, 293] are given. The resulting concept description is shown in Fig. 5.

N

[Tie
—1 Undetermined

1ol
_K

X X X X

11 12 13 14

Figure 5: An example concept description in a domain with two features.

For test instances which fall into the region [—oo, z11][z23, T24], for example,
feature f; has no prediction, while feature f, predicts as class (+). Therefore,
any instance falling in this region will be classified as (+). On the other hand, for
instances falling into the region [—00, x11][—00, T21], for example, the CFP algorithm
does not commit itself to any prediction.

The description of the class + shown in Fig. 5 can be written in 3-DNF as:

class +:
(21 <A & fi<zo & fa <xgy) 01
(z11 < L & fi Sz12 & fo > xg0) o1
(23 < fa & fo < woq & f1 < xy3) OF
(23 < fa & fo < @os & f1 > 714)

Or, more compactly;

class +:
(11 < fi S 212) & (f2 < w21 Or 292 < fo)] or
(223 < fa < 294) & (fr < 213 Or 214 < f1)]

Similarly, the description for the negative examples can be written as:

7

class —:

(13 < fi Sa14) & (f2 <oz or w94 < fo)] or
(91 < fo < 222) & (fi <11 01 212 < f1)]

The CFP does not assign any classification to an instance, if it could not de-
termine the appropriate class value for that instance. This may result from having
seen no instances for a given set of values or having a tie between two or more pos-
sible contradicting classifications. In case of different weight values for the features,
the ties are broken in favor of the class predicted by the features with the highest
weights during the voting process (with equal feature weights, it corresponds to the
majority voting scheme).

3 Theoretical Evaluation of the CFP

This section presents an analysis of the CFP algorithm with respect to PAC-learning
theory [9]. The intent of the PAC (Probably Approximately Correct) model is that
successful learning of an unknown target concept should entail obtaining, with high
probability, that it is a good approximation of the concept. The two criticisms most
often leveled at the PAC model by Al researchers interested in empirical machine
learning are (1) the worst-case emphasis in the model makes it unusable in practice
and (2) the notions of target concepts and noise-free training data are too restrictive
in practice [3].

The analysis of the CFP shows that, it is applicable to a large class of concepts,
and requires small number of examples and a small amount of memory to learn a
given concept, compared to many other similar algorithms. Another outcome of
the analysis is that, the CFP has a lower learning complexity than other similar
techniques.

Since the classification in the CFP is based on a voting taken among the in-
dividual classifications of each attribute, it can learn a concept if each attribute,
independently from other attributes, can be used in the classification. We will de-
fine what we mean by “learn” in a way that preserves the spirit of the Valiant (1984)
definition of learn-ability, but modifies it for the voting based classification used in
the CFP. To do this we first determine the minimum number of training instances
to learn a given concept. Using this sample complexity we derive the training com-
plexity of the CFP algorithm. In the following analysis we assume that all feature
values are normalized to the interval [0,1].

Definition. Let X be a subset of ®" with a fixed probability distribution and
d is positive integer less than or equal to n. A subset S of X is an < ¢e,v,d > —net

for X if, for all z in X, with probability greater than v, there exist an s in S such
that |s; — x| < e at least for d values of j (1 < j < n).

Lemma 1. Let ¢, 6, and v be fixed positive numbers less than one and
d is positive integer less than or equal to n. A random sample S containing
m > ([1/e]/y) x (nln2 + In([1/€]/8)) instances, drawn according to any fixed
probability distribution from [0,1]", will form an < &,v,d >-net with confidence
greater than 1 — 6.

Proof. We prove this lemma by partitioning the unit interval for each feature
dimension, into k£ equal length sub-intervals, each with length less than ¢, such that
all pairs of points! in the sub-interval are within ¢ distance of each other. The idea
of the proof is to guarantee that, with high confidence, at least for d dimensions

out of n, each of k sub-intervals contains at least one point of m instances, with
sufficient probability.

Let k£ = [1/e], Sis be the set of sub-intervals with probability greater or equal to
v/k and Sz¢ be the set of remaining sub-intervals of a dimension f. The probability
that an arbitrary point in [0, 1] will not lie in a selected sub-interval of S is (1—v/k).
The probability that none of the m sample points will lie in a selected sub-interval of
Sifis (1—~/k)™. Therefore, the probability that any sub-interval of S;; is excluded
by all m instances is at most p = k(1 — 2)™.

The probability that, for more than n — d dimensions, any sub-interval of S;’s
are excluded by all m instances is at most 37 ., C(n,7)p".? To make sure this
probability is small, we force it to be less than 6, that is,

Z C(n,i)p' < é.

t=n—d+1

Recall the binomial theorem: (a + b)" = 3" C(n,i)a'b"~". With a = p and b = 1,
S, C(n,i)p' = (p+1)". Since n is a positive integer, (p+1)" —1 =", C(n,1)p'
and it is greater than - _,., C'(n,)p', our requirement can be written as

(p+1)"—1<6.

On the other hand, (1 —~/k)™ < e~™/* and, since the value of p is greater than zero
and less than one, 2"p > (p + 1)* — 1. If we solve the requirement 2"ke=™/* < §,
for m, and substitute [1/¢] for k, it yields

m > [1/e]/y x (n In 2+ In([1/e]/$)).

1a point here represents the value of an instance for a feature for that dimension
2C(n,r) represents the number of combinations of n things taken r at a time.

9

Consequently, with confidence greater than 1 — 4, each sub-interval in Sy of d
or more dimensions, contains some sample point of an instance of 5. O

Theorem 1. Given ¢, 6, and ~ fixed positive numbers less than one and a

sample set S with n features. If for [2tLl] of features of the elements of S form

2
an < &,7,["] >-net then, the CFP algorithm with equal feature weights and

generalization limit Dy > 2¢ for all features, will learn a concept C for S with

confidence 1 — 6.

Proof. Since, the CFP algorithm does not use distance metric for classification,
the idea of the proof is to ensure that the CFP can construct € length partitions with
high confidence, at least one of the m sample instances lies in each sub-intervals of
[242] features with sufficient probability. The CFP algorithm employs a majority
voting scheme in the classification. Hence, only d = [“+1] of the features must agree
on the classification. If we follow the proof of the lemma 1,if S form an < &,~,d >-
net, then it guarantees that each sub-interval contains at least one instance of S with
high confidence. The CFP algorithm will generalize two points into one partition, if
the distance between them is less than or equal to Dy. Therefore, if Dy > 2¢ then
the points will be generalized into one partition, corresponding to a projection of
the concept on that feature. O

Theorem 2. Given ¢, 6, and 7 fixed positive numbers less than one. If random
sample S with n features forms an < ¢, 7,]_”Qi-\ >-net with confidence greater than
1 — 6, then CFP with D > 2e constructs at most n[1/e] partitions.

Proof. Since Sis an < ¢,7, [%1] >-net with with confidence greater than 1—,
each feature line is divided in to ¢ length sub-intervals and each one contains at least
one sample point and the CFP algorithm constructs at most one (due to D > 2¢)
partition for each sub-interval. Thus, for n features, the CFP constructs at most
n[1/e] partitions. O

Theorem 3. Given ¢, 6, and 7 fixed positive numbers less than one. If random
sample S is an < ¢,7,]_”Qi-\ >-net with confidence greater than 1 — ¢, then clas-
sification complexity of the CFP with D > 2e is O(nlog([1/¢])) and the training
complexity is for m sample instances is O(mnlog([1/c])) .

Proof. Proof of the theorem 2 shows, that the CFP constructs at most [1/¢]
partitions for each feature. In CFP algorithm the classification is composed of a
search and a voting. The complexity of the search operation is O(log([1/e])) for
each feature. Since the complexity of voting is O(n), the classification complexity of
the CFP algorithm is O(nlog([1/¢])) for n features. Consequently, with m training
instances, the training complexity of the CFP algorithm is O(mnlog([1/e])). O

The classification process in exemplar-based learning algorithms which use some
form of the nearest neighbor algorithm (such as EACH and IBL) involves computing

the Euclidean distance (or similarity) of the instance to each stored exemplar in each

10

dimension. Therefore, if there are M exemplars stored in the memory, and n features
are used, then the complexity of the classification is O(nM). On the other hand,
since the partitions are naturally sorted for each feature dimension, the classification
process in the CFP algorithm is only O(nlog M). This feature of the CFP algorithm
significantly reduces the classification complexity.

Another important feature of the CFP algorithm is its low memory requirement.
Since, the CFP learns each feature partitions independently, number of the partitions
for each feature may be different. If appropriate Dy generalization limits are chosen
the CFP may significantly reduce memory requirement. The selection of Dy values
is domain dependent, and is an optimization problem and can be treated as an
optimization problem.

4 Related Work

This section briefly reviews some of the related approaches, and compares them with
the CFP algorithm.

Instance-Based Learning: The primary output of IBL algorithms is a concept
description, which is a function that maps instances to concepts. Instance-based
learning technique [1], has been implemented in three different algorithms, namely
IB1, IB2, and IB3. IB1 stores all the training instances, IB2 stores only the instances
for which the prediction was wrong. Both IB1 and IB2 do not remove any instance
from concept description after it had been stored. I1B3 employs a significance test (i.e.
acceptable or significantly poor) to determine which instances are good classifiers
and which ones are believed to be noisy. IB3 accepts an instance if its classification
accuracy is significantly greater than the observed frequency of its class, and removes
the instance from concept description if its accuracy is significantly less. Confidence
intervals are used to determine whether an instance is acceptable, mediocre, or noisy.

An instance-based concept description includes a set of stored instances and
some information concerning their past performance during the training process (e.g.
number of correct and incorrect classification predictions). The final set of instances
can change after each training process. However, IBL algorithms do not construct
intensional concept descriptions (or do not make generalization). Instead, concept
descriptions are determined by how IBL algorithm’s similarity and classification
functions use the current set of saved instances. The similarity and classification
functions determine how the set of saved instances in the concept description are
used to predict values for the category attribute. Therefore, IBL concept descriptions
contain these two functions a long with the set of instances.

IBL algorithms assume that similar instances have similar classifications. This

11

leads to their local bias for classifying novel instances according to their most similar
neighbor’s classification. They also assume that, without prior knowledge, attributes
will have equal relevance for classification decisions (e.g. by having equal weight in
similarity function). This assumption may lead significant performance degradation
if the data set contains many irrelevant features.

Nested Generalized Exemplars: In nested generalized exemplars (NGE) theory
learning is accomplished by storing objects in Euclidean n-space, E", as hyperrect-
angles [8]. NGE is also a variation of exemplar-based learning. In the simplest
form of the exemplar-based learning, every example is stored in memory, with no
change in representation (or without generalization), as in IB1 algorithm presented
above. NGE adds generalization on top of the simple exemplar-based learning. Tt
adopts the position that exemplars, once stored, should be generalized. The learner
compares a new example to those it has seen before and finds the most similar,
according to a similarity metric, which is inversely related to the distance metric
(Euclidean distance in n-space). The term exemplar (or hyperrectangle) is used to
denote an example stored in memory. Over time, exemplars may be modified (due
to generalization) from their original forms. This similar to the generalizations of
partitions in the CFP algorithm.

Once a theory moves from a symbolic space to a Euclidean space, it becomes
possible to nest generalization one inside the other. Its generalizations, which take
the form of hyperrectangles in £, can be nested to an arbitrary depth, where inner
rectangles act as exceptions to the outer ones. The CFP algorithm avoids over-
generalizations, therefore the partitions are not nested, and there are no exceptions.

EACH (Exemplar-Aided Constructor of Hyperrectangles) is a particular imple-
mentation of the NGE technique [8]. EACH uses numeric slots for feature values
of exemplar. The generalizations in EACH take the form of hyperrectangles in Eu-
clidean n-space, where the space is defined by the feature values for each example.

Therefore, generalization process simply replaces the slot values with more general
values (i.e., replacing range of values [a, b] with another range [c, d], where ¢ < a
and d > b).

Decision Tree: The decision tree is a well-known representation for classification
tasks. This representation has been used in a variety of systems, among them the
most famous are ID3 [6] and its extension C4.5 [7] of Quinlan.

A decision tree can be used to classify a case by starting at the root of the tree
and moving through it until a leaf is encountered. At each non-leaf decision node,
the outcome of the case for the test at the node is determined and attention shifts
to the root of the subtree corresponding to this outcome. When this process finally
leads to a leaf, the class of the case is predicted to be that record at the leaf.

A decision tree is global for each attributes, in other words each non-leaf decision

12

node may specify some test on any one of the attributes. In some sense there is some
similarity between decision tree representation and feature partitions. In one view,
the CFP algorithm can be seen to produce decision trees (each tree can only specifies
some test on only one attribute) for each attribute and final prediction of a case is
combination of the predictions of the each local trees. As far as the prediction
complexity is concerned, decision tree prediction has a low complexity as the CFP
algorithm.

An important difference between decision tree approach and other approaches
mentioned above, including CFP, is that the classification performance of these
systems does not depend critically on any small part of the model. In contrast,
decision trees are much more susceptible to small alterations.

5 Empirical Evaluation of the CFP

The CFP algorithm has been tested using real and artificial data from five different
problem domains: (1) classifying iris flowers, (2) predicting a recurrence of can-
cer, (3) Hungarian database from Hungarian Institute of Cardiology, (4) Cleveland
database from Cleveland Clinic Foundation, and (5) Classifying waveforms. The use
of real data in these tests provide a measure of the system’s accuracy on noisy and
incomplete data sets, and most importantly, allowed comparisons between CFP and
other systems. Below, each data set is described briefly and experimental results
are presented.

Iris Flowers: Iris flowers data set from Fisher [2] consists of four integer-valued
features and a particular species of iris. There are three different species (classes):
virginica, setosa, and versicolor. The data set contains 150 instances. The accuracy
of the CFP in Table 1 was obtained for A = 0.015, and D; limits were 0.6, 0.1, 0.4,
0.1, respectively.

Breast Cancer: Breast Cancer data set contains 273 patient records. All the
patients underwent surgery to remove tumors, all of them were followed up five
years later. The objective here is to predict whether or not breast cancer would
recur during that five year period. The data set contains nine variables that were
measured, including both numeric and binary values. The prediction is binary :
either the patient did suffer a recurrence of cancer or not. The accuracy of the CFP
in Table 1 was obtained for A = 0.07, and D; limits were 4, 0, 6, 0.5, 0.1, 0.5, 0.5,
0.5, 4, respectively.

Medical Diagnosis: The CFP was tested on widely used two medical databases,
namely the Cleveland and Hungarian databases. The Cleveland and Hungarian data
sets contain heart disease diagnoses collected from the Cleveland Clinic Foundation

13

Table 1: Comparison of CFP with EACH and C4.5 in terms of accuracy (%)

Database EACH C4.5 CFP
Iris 95.3 95.3 96.7
Breast Cancer 77.6 70.1 77.5

Table 2: Comparison of CFP with IBL and C4 algorithms in terms of accuracy (%)

Database Training Set Size Test Set Size IB1 IB2 IB3 C4 CFP
Hungarian 250 44 58.7 55.9 80.5 78.2 82.3
Cleveland 250 53 7h.7 T71.4 T8.0 755 84.0
Waveform 300 500 75.2 69.6 73.8 70.7 76.0

and Hungarian Institute of Cardiology, respectively. A diagnosis is described by
13 numeric-valued features (e.g. age, fasting blood sugar level etc.). The objective
here is to determine whether a patient has a heart disease. The Cleveland data
set consists of 303 instances and the Hungarian data set consists of 294 instances.
The accuracy of the CFP for the Hungarian database in Table 2 was obtained for
A = 0.02, and D; limits were 1.3, 0, 0.2, 19.1, 36.1, 0, 0.6, 22.9, 0, 0.6, 0.03, 0.1,
0.9, respectively. The accuracy for the Cleveland database in Table 2 was obtained
for A = 0.025, and D; limits were 7, 0.3, 0.4, 9, 11, 0.3, 0.4, 7, 0.3, 0.4, 0.4, 0.4, 0.4,
respectively.

Classifying Waveforms: The waveform data set is artificial and consists of 21
numeric-valued features, which have values between 0 and 6. there are three dif-
ferent types of waveforms and they are equally distributed. The objective here is
to determine the type of waveform. Each feature includes noise (with mean 0 and
variance 1). Out of 800 instances in the data set, 300 were used in the training. The
CFP achieved 76.0% accuracy on waveform database with A = 0.02. Generalization
distance limits for the waveform database were 0.2, 0.3, 0.6, 0.5, 0.8, 0.9, 1.0, 0.9,
0.6, 0.6, 0.7, 0.6, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.5, 0.5, 0.4, respectively.

The reported results of the EACH [8] and measured results of the C4.5 and CFP
algorithms are shown in Table 1. To allow for proper comparisons, the experimental
design used was the same as that used by Salzberg (1991). For Breast Cancer
data set, for each trial, the examples were divided into a training set and test set.
70 % of the examples were randomly chosen for training set. Four different trials
were run, and the final results are an average of those trials. For Iris data set the
leaving-one-out cross-validation accuracy estimation technique has been used. A
robust estimate of accuracy on unseen examples can be obtained by this technique.
Cross-validation involves removing mutually exclusive test sets of examples from
the data set. For each test set, the remaining examples serve as a training set, and

14

classification accuracy is measured as the average accuracy on all the test sets. The
leaving-one-out method involves removing exactly one example from the data and
training on the remaining examples. The technique is repeated for every example
in the data set and accuracy is measured across all examples.

The performance of the CFP algorithm is also compared with the reported ac-
curacy of the instance-based learning algorithms [1]. All results reported in Table 2
were averaged over 50 trials. The training and test sets were always disjoint. The
instances were drawn randomly from the data sets.

In these experiments we noticed that the performance was not sensitive to the
small changes in the Dy settings. For binary-valued attributes distance parameter
was set to zero for no generalization. The feature weight adjustment rate and the
generalization limits are domain dependent. In these experiments their values are
determined by trial and error, separately for each application domain.

6 Conclusion

We have presented a new methodology of learning based on feature partitioning,
called CFP. It is an inductive, incremental and supervised learning method. The
CFP learns a partitioning of values for each feature of the application domain. The
CFP algorithm is applicable to concepts, where each feature, independent of other
features, can classify the concept. For domains, where most of the attributes are
discrete, the performance of the CFP depends on observed frequency of the concepts.

This approach is a variant of algorithms that learn by projecting into one feature
dimension at a time. For example, ID3 learns in that greedy manner while building
a conjunction. The novelty of CFP is that it retains a feature-by-feature represen-
tation and uses voting to categorize. Algorithms that learn by projecting into one
dimension at a time are limited in their ability to find complex concepts.

The CFP makes significant modifications to the exemplar-based learning algo-
rithms. The analysis of the CFP shows that, it is applicable to a large class of
concepts, and requires small number of examples and a small amount of memory to
learn a given concept, compared to many other similar algorithms. Another outcome
of the analysis is that, the CFP has also a low training complexity.

Another important improvement is the natural handling of unknown attribute
values. Most of the systems use ad hoc methods for handling unknown attribute
values. Since the value of each attribute is handled separately, attributes with
unknown values are simply ignored by the CFP.

The CFP will clearly fail in some cases. For example, if the projection of con-
cepts on an axis are overlapping each other, the CFP constructs many partitions

15

of different classes next to each other. In that case, the accuracy of classification
depends on the observed frequency of the concepts in the database.

The CFP uses feature weights to cope with irrelevant attributes. Introducing
feature weights protects the algorithm’s performance, when application domain has
irrelevant or not equally relevant attributes. The concept of feature weights have
also been used successfully in other similar systems [4, 8]. In the CFP the feature
weights are dynamically adjusted according to the global A adjustment rate, which
i1s an important parameter for the predictive accuracy of the algorithm. Another
important component of the CFP is generalization limit for each attribute, which
controls the generalization process. The A adjustment rate and the generalization
limits are domain dependent parameters to the CFP, and their selection affects the
performance of the algorithm. Determining the best values for these parameters is
an optimization problem for a given domain.

References

[1] D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms.
Machine Learning, 6:37-66, 1991.

[2] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals

of Fugenics, T7:179-188, 1936.

[3] D. Haussler. Quantifying inductive bias: Al learning algorithms and Valiant’s
learning framework. Artificial Intelligence, 36:177-221, 1988.

[4] J. D. Kelly and L. Davis. A hybrid genetic algorithm for classification. In The
proceedings of the Twelfth International Joint Conference on Artificial Intelli-
gence, pages 645-650, 1991.

[5] D. L. Medin and M. M. Schaffer. Context theory of classification learning. Psy-
chological Review, 85:207-238, 1978.

[6] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.

[7] J. R. Quinlan. C4/.5: Programs for Machine Learning. Morgan Kaufmann,
California, 1993.

[8] S. Salzberg. A nearest hyperrectangle learning method. Machine Learning,
6:251-276, 1991.

[9] L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, November 1984.

16

