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Abstract

In this paper we describe a method for hy-
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tend the nearest neighbor algorithm, in which some
kind of similarity (or distance) metric is used for
prediction. Hence, prediction complexity of such al-

bridizing a genetic algorithm and a feature
partitioning (FP) classification algorithm.
Learning in FP is accomplished by storing the
objects separately in each feature dimension
as partitions of the set of values. A partition
is expanded through generalization, which is
limited by a generalization limit. Prediction
in FP is done through a voting among the
class predictions of each feature. The effect
of the prediction of a feature in the voting
is proportional with the weight of that fea-
ture. Feature partitioning method is imple-
mented in the CFP (Classification by Feature
Partitioning) algorithm. We use the genetic
algorithm and a training data set to learn
real-valued weights and generalization lim-
its associated with each feature in that do-
main. The experimental results indicate that
the genetic algorithm can be used to learn
the domain dependent parameters of a fea-
ture partitioning classifier, and the resulting
hybrid system can be used to create compact
representations with very good predictive ac-
curacy.

1 INTRODUCTION

In recent years, there has been a great deal of progress
in the development of automated classification tech-
niques. Several different representation techniques
have been used to describe concepts for supervised
learning tasks. Among others, these include deci-
sion trees in Quinlan (1986), instance-based represen-
tation in Aha and Kibler (1991) and hyperrectangles
in Salzberg (1991). The representation of the con-
cepts learned by the exemplar-based learning tech-
niques stores only specific examples that are represen-
tatives of other several similar instances.

Previous implementations of this approach usually ex-

gorithms is proportional to the number of instances
(or objects) stored. Kelly and Davis have applied
a hybrid genetic algorithm for the K Nearest Neigh-
bors (KNN) classification algorithm (Kelly & Davis
1991). Their algorithm, called the GA-WKNN (for
Genetic Algorithm with Weighted K Nearest Neigh-
bor), combines the optimization capabilities of a ge-
netic algorithm with the classification capabilities of
the weighted KNN algorithm (WKNN). The goal of
the GA-WKNN algorithm is to learn a feature weight
vector which improves the common k nearest neighbor
algorithm.

Feature partitioning (FP) is another form of exemplar-
based learning. The FP technique makes several signif-
icant improvements over other exemplar-based learn-
ing algorithms, where the examples are stored in mem-
ory without any change in the representation. For
example, IBL (Instance Based Learning) algorithms
learn a set of instances (a representative subset of
all training examples), EACH (Exemplar-Aided Con-
structor of Hyperrectangles) learns a set of hyperrect-
angles of the examples. On the other hand, the FP
method stores the instances as factored out by their
feature values. The program that implements the fea-
ture partitioning technique in this paper is called CFP,
for Classification by Feature Partitioning. In CFP an
example is described in terms of a set of features (es-
sentially property/value pair). The CFP partitions the
set of possible values for a feature into a disjoint sets
corresponding to concepts. Therefore, the concept de-
scription learned by the CFP is a collection of feature
partitions. In other words, the CFP learns a projec-
tion of the concept on each feature dimension.

Since the CFP learns projections of the concepts, it
does not use any similarity (or distance) metric for
prediction. Each feature contributes to the predic-
tion process by its local knowledge. Final prediction
is based on a voting among the predictions of the fea-
tures. The strength of the contribution of a feature



in the voting process is determined by the weight of
that feature. Assigning variable weights to the features
modifies the importance of each feature to reflect its
relevance for classification. The feature weights are
domain dependent parameters of the CFP algorithm,
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and their selection is an optimization problem.
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Because the feature partitions are disjoint sets of val-
ues, the CFP algorithm pays attention not to over
generalize the partitions. In the CFP algorithm this
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is done by limiting the generalization of partitions.
When generalizing a partition to cover a point, the
distance between the new point and the existing par-
tition must be less than a given generalization limit set
for that feature. The generalization limits are domain
dependent, and their selection is also an optimization

problem.

In this paper, a hybrid system, called GA-CFP, will
be described which combines a genetic algorithm with
the CFP algorithm. The genetic algorithm is used to

determine the domain dependent feature weights and
generalization limits. It is a difficult problem to find
an optimum setting of these parameters. In this paper
we show how to use a real-valued genetic algorithm to
find setting of feature weights and generalization limits

that are good in the sense that they out perform the
cases where the feature weights are identical and the
generalization limits are set to two extremes.

The precise details of the CFP algorithm are described
in the next section, and the process of partitioning of
a feature dimension is illustrated through an example.
Section 3 describes the use of genetic algorithm in the
GA-CFP algorithm. Section 4 presents and empirical
evaluation of the GA-CFP algorithm, and a compar-
ison with other techniques on six different data sets.
The final section will summarize the conclusions.

2 THE CFP ALGORITHM

The CFP program learns the projection of the con-
cepts over each feature dimension. In other words, the
CFP learns partitions of the set of possible values for
each feature. An example is defined as a vector of fea-
tures values plus a label that represents the class of
the example. Partition is the basic unit of representa-
tion in the CFP algorithm. For each partition, lower
and upper bounds of the feature values, the associ-
ated class and the number of instances it represents
are maintained.

Initially, a partition is a point (lower and upper limits
are equal) on the line representing the feature dimen-
sion. For instance, suppose that the first example e; of
class C is given during the training phase (Fig. 1.a).
If the value of e; for feature f is x1, then the set of
possible values for feature f will be partitioned into
three partitions: < [—o0, 1], undetermined,0 >, <
[z1,21],C1,1 >, < [x1,00], undetermined, 0 >; where
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Figure 1: Partitioning of a feature dimension f.

the first element indicates the range of the partition,
the second its class, and the third, called the represen-
tativeness, the number of examples represented by the
partition.

A partition can be extended through generalization
with other neighboring points in the same feature di-
mension. Assume that the second example es is close
to ey in feature f and also of the same class. In that
case the CFP algorithm will generalize the partition
for z; into an extended partition: < [z1, 23], C1,2 >,
which now represents two examples (see Fig. 1.b).
Generalization of a range partition is illustrated in
Fig. 1.d.

Since partitions are disjoint the CFP algorithm pays
attention to avoid over generalization. In order to gen-



update-feature-partitioning(f, ey ):
begin
if class of partition(f, e;) = eciass
increment representativeness of partition(f, ey )

prediction(e):
begin
foreach feature f
¢ = class of partition(f, er)

else {different class}
if partition(f, ey) is a point partition
insert-new-partition(f, es)
else {partition(f,eys) is a range partition}
if class of partition(f, ey) is not undetermined
subdivide-partition(partition(f,ey), ef)
else to generalize}
if the nearest partition to left or right in Dy
distance has the class e.jgss
generalize(partition,ey )
else {there are no partitions in Dy distance
with the same class as e}
insert-new-partition(f, ey )

end

Figure 2: Updating a feature partition.

eralize a partition in feature f to cover a point, the
distance between them must be less than a given gen-
eralization limit (Dy). Otherwise, the new example is
stored as another point partition in the feature dimen-
sion f.

If the feature value of a training example falls in a par-
tition with the same class, then simply the represen-
tativeness value is incremented by one (see Fig. 1.c).

If the new training example falls in a partition with a
different class than that of the example, the CFP al-
gorithm specializes the existing partition by dividing
it into two range partitions and inserting a point par-
tition (corresponding to the new example) in between
them (see Fig. 1.e, f). When a partition is divided into
two partitions, it is important to distribute the repre-
sentativeness of the old partition to the newly formed
partitions The CFP distributes the representativeness
of the old partition among the new ones in proportion
to their sizes.

The training process in CFP algorithm consists of up-
dating the feature partitionings for each example and
for each feature of these examples. Fig. 2 summarizes
the process of updating the partitions of a feature f
by the e; value of an example for that feature.

The prediction process of the CFP is based on a vot-
ing taken among the predictions made by each feature
separately (Fig. 3). For a given instance e, the pre-
diction based on a feature f is determined by using
the value of e; as a index on the partitions of f. If
ey falls properly within a partition with a known class
then the prediction is the class of that partition. If e;
falls in a point partition then among all the partitions
at this point the one with the highest representative-

vote, = vote, + wy
return class ¢ with highest vote,.
end

Figure 3: Prediction in the CFP.

ness value is chosen. If e; falls in a partition with no
known class value, then no prediction is made for that
feature. The predicted class of a given instance is the
one which receives the highest amount of votes among
all predictions. In GA-CFP a genetic algorithm is used
to learn the feature weights for a given domain.

The prediction process in exemplar-based learning al-
gorithms which use some form of the nearest neigh-
bor algorithm (such as EACH and IBL) involves com-
puting the Euclidean distance (or similarity) of the
instance to each stored exemplar in each dimension.
Therefore, if there are n exemplars stored in the mem-
ory, and k features are used, then the complexity of
the prediction is O(kn). On the other hand, since the
partitions are naturally sorted for each feature dimen-
sion, the prediction process in the CFP algorithm is
only O(klogn). This feature of the CFP algorithm
significantly reduces the prediction complexity.

Another important feature of the CFP algorithm is its
low memory requirement. Since, the CFP learns each
feature partitions independently, number of the parti-
tions for each feature may be different. If appropriate
Dy generalization limits are chosen, the CFP may sig-
nificantly reduce memory requirement. The selection
of Dy values is domain dependent, and is an optimiza-
tion problem. The details of the CFP algorithm are
given in Sirin (1993). In GA-CFP a genetic algorithm
is used to learn the values of the generalization limits
for a given domain.

The issue of unknown attribute values is an unfor-
tunate fact of real-world data sets, that data often
contain missing attribute values. Most common ap-
proaches are compared in Quinlan (1993), leading to
a general conclusion that some approaches are clearly
inferior but no one approach is uniformly superior to
others. Since CFP treats each attribute value sepa-
rately, in the case of an unknown attribute value, it
simply leaves the partitioning of that feature intact.

3 THE GA-CFP ALGORITHM

The GA-CFP algorithm combines the optimization ca-
pabilities of a genetic algorithm with the classification
capabilities of CFP. The goal of the algorithm is to



CFP(training-set, test-set):
begin
/* train */

Table 1: Comparison of GA-CFP with regular CFP in
terms of accuracy (%)

foreach e in training-set

foreach feature f Database CFP CFP GA-CFP

update-feature-partitioning( f, e;) — D8f8:00 Dy 9:2 r7naaf: 55T
* * . . .

éoriZiE—céunt =0 Echocardiogram ~ 63.5 71.6 83.8
foreach e in test-set Glass 44.4 86.0 92.1
P=prediction(e) Hungarian 68.7 75.5 91.5
if P = e.4,s then Cleveland 77.6 70.3 87.5
Waveform 53.4 62.0 88.0

increment correct-count
return correct-count / | test-set |
end

Figure 4: The CFP fitness function of the Genetic
Algorithm.

system’s performance on noisy and incomplete data
sets, and most importantly, allowed comparisons be-
tween GA-CFP and other systems.

Each run of the genetic algorithm maintained a pop-
ulation of size 100. Crossover probability is 0.6 and

learn the weights and the generalization limits for each
feature, both of which are real-valued. The genetic al-
gorithm we used is GAuUcsD 1.4. We used the standard
operators of genetic algorithms, namely, reproduction,
crossover and mutation. The chromosomes are treated
as rings and crossover is done by exchanging the sec-
tions between two crossover points.

Chromosomes are vectors of real-valued weights and
generalization limits for each feature. Each chromo-
some is a vector of decimal numbers between 0 and 1
inclusive. A vector value is associated with the weight
and the generalization limit for each feature. Thus the
length of the vector is twice the number of the features.
The initial population of chromosomes in each run of
the GA-CFP algorithm was randomly generated. The
fitness function used to evaluate the chromosomes is
the accuracy of the CFP algorithm with the weights
and generalization limits encoded in the chromosome
(see Fig. 4). In order to compute the fitness value of
a chromosome, the CFP algorithm is trained with the
examples in the training set using the feature weights
and generalization limits, and then tested with the ex-
amples in the test set. The fitness value computed as
the ratio of the correctly predicted test examples to
the size of the test set.

4 EMPIRICAL STUDIES WITH
GA-CFP

The GA-CFP algorithm has been tested using real
and artificial data from six different problem do-
mains: (1) classifying iris flowers, (2) predicting sur-
vival for heart attack victims, (3) Hungarian database
from Hungarian Institute of Cardiology, (4) Cleveland
database from Cleveland Clinic Foundation, (5) Clas-
sifying waveforms, and (6) Classifying glass types. The
use of real data in these tests provide a measure of the

mutation probability is 0.008. The maximum number
of fitness function evaluations in each GA run changed
between 2000 and 8000 depending on the size on the
chromosomes. Each data set is described briefly and
experimental results are presented below.

Iris Flowers: Iris flowers data set from Fisher (1936)
consists of four integer-valued features and a partic-
ular species of iris. There are three different species
(classes): wirginica, setosa, and versicolor. The data
set contains 150 instances.

FEchocardiogram: Fchocardiogram data set contains 74
records from people who had recently suffered acute
myocardial infarctions (heart attacks). This data set
contains small number of examples, but it provides an
opportunity to compare CFP to other systems. In ad-
dition, this data is real, noisy and incomplete. The
goal of physicians using these measurements is to pre-
dict a patient’s chances of survival. This data set con-
tains six measurements and the outcome (patient sur-
vived or not at the end of the one year period after the
heart attack).

Medical Diagnosis: The CFP was tested on widely
used two medical databases, namely the Cleveland
and Hungarian databases. The Cleveland and Hungar-
ian data sets contain heart disease diagnoses collected
from the Cleveland Clinic Foundation and Hungarian
Institute of Cardiology, respectively. Diagnosis are de-
scribed by 13 numeric-valued features (e.g. age, fast-
ing blood sugar level etc.). The objective here is to
determine whether a patient has a heart disease. The
Cleveland data set consists of 303 instances and the
Hungarian data set consists of 294 instances.

Waveform: The waveform data set is artificial and con-
sists of 21 numeric-valued features, which have values
between 0 and 6. There are three different types of
waveforms and they are equally distributed. The ob-
jective here is to determine the type of waveform. Each



feature includes noise (with mean 0 and variance I).

Glass: This data set consists of attributes of glass sam-
ples taken from the scan of an accident.! Each of the
214 examples is a member of one of six classes. There
are nine features.

Table 2: Comparison of GA-CFP with IBL in terms
of accuracy (%)

Database IB1 1IB2 1IB3 GA-CFP

Hungarian 58.7 55.9 80.5 91.4
Cleveland 757 71.4 78.0 94.3

In order to see the effect of a genetic algorithm in learn-
ing the feature weights and generalization parameters
of the CFP, we compared the GA-CFP with the regu-
lar CFP algorithm. The comparison of GA-CFP algo-
rithm with regular CFP algorithm, where the feature
weights are identical and the generalization limits are
set to two extremes is shown in Table 1. In the first
extreme, for all feature D;’s are set to zero disabling
any generalization. In the second extreme, for all fea-
ture D¢’s are set to maximum value (maz; — miny),
resulting in the maximum possible generalization.

The methodology used in the testing of GA-CFP al-
gorithm was the leaving-one-out cross-validation tech-
nique. A robust estimate of accuracy on unseen ex-
amples can be obtained by this technique. Cross-
validation involves removing mutually exclusive test
sets of examples from the data set. For each test set,
the remaining examples serve as a training set, and
classification accuracy is measured as the average accu-
racy on all the test sets. The leaving-one-out method
involves removing exactly one example from the data
and training on the remaining examples. The tech-
nique is repeated for every example in the data set
and accuracy is measured across all examples.

It is clear from Table 1 that the genetic algorithm has
learned weight and generalization limits for which the
accuracy obtained is much better than the two extreme
cases. It 1s also interesting to note that allowing max-
imum generalization results in a better accuracy than
the case where no generalization is allowed, except for
the Cleveland data set.

We have also compared the GA-CFP algorithm
with instance-based learning algorithms, decision tree
learning system C4.5, and GA-WKNN. In these com-
parisons the GA-CFP system is run and tested in the
same way as the reported methods of the compared
system. The classification accuracy of the GA-CFP
algorithm is the fitness value of the best chromosome
obtained in the final population.

The results of the comparison of the GA-CFP with
the reported results of the instance based learning al-
gorithms IB1, IB2, and IB3 (Aha, Kibler & Albert,
1991) are given in Table 2. All results reported were
averaged over b0 trials. The training and test sets were
always disjoint. The instances were drawn randomly
from the data sets.

We have compared GA-CFP with decision tree learn-

1Collected by B. German of the Home Office Forensic
Service at Aldermaston, Reading, Berkshire in the UK.

Waveform 75.2 69.6 73.8 86.5

Table 3: Comparison of GA-CFP with C4.5 in terms
of accuracy (%)

Database C4.5 GA-CFP
Iris 95.3 98.0
Echocardiogram  77.0 83.8
Glass 70.1 92.1
Hungarian 83.3 91.5
Cleveland 80.5 87.5
Waveform 88.0 88.0

ing algorithm C4.5 (Quinlan 1993), as well (Table 3).
In these comparisons we applied the leaving-one-out
cross-validation accuracy estimation technique to both
algorithms. We used the decision trees that are gener-
ated after pruning, since these trees performed better
than the trees before pruning in general.

In comparing GA-CFP with the reported results of
the GA-WKNN, we used cross-validation accuracy es-
timation technique. Each data set was divided into
five disjoint partitions. The only constraint on oth-
erwise random partitioning was that classes be repre-
sented equally in each partition. We generated five
training/test sets for each data set. Four-fifth of the
data were used for training and the remaining fifth was
used for testing. The results are shown in Table 4.

Although the results of the GA-CFP algorithm are
better than other classification systems, the use of ge-
netic algorithm is costly. This is because the com-
putation of the fitness function requires the execution
of the CFP algorithm several times due to the cross-
validation methods we used. However, an important
characteristic of the feature weight and generalization
limits parameters of the CFP algorithm is that these
parameters are domain dependent. Therefore, the ge-
netic algorithm can be used only with a portion of all
the data available. We have trained the GA-CFP sys-
tem with only 1/10, 1/5, 1/4, 1/3, 1/2, 2/3, and 3/4

Table 4: Comparison of GA-WKNN and GA-CFP in
terms of accuracy (%)

Database GA-WKNN GA-CFP
Iris 94.0 97.3
Glass 62.2 71.7
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Figure 5: Learning curve of domain dependent param-
eters.

of the Iris data set. Then, we measured the accuracy
of the CFP algorithm on the complete set of data with
the parameters learned by the genetic algorithm (see
Fig. 5). We used the cross-validation method in these
experiments; that is, 0.92 is the average of 10 runs
in each of which a disjoint set of 1/10 of the data is
used in training and the remaining 9/10 in the test.
In determining the fitness value of a chromosome, to
avoid the dependency on the order of the examples in
the data set, leaving-one-out cross-validation method
is used. For example, in the run with 1/10 of data,
the fitness value of a chromosome is the average of 15
runs of the CFP with the parameters it encodes; in
each run 14 examples were used in training and the
remaining one in the test.

It is clear from these experiments that the genetic al-
gorithm can determine a very good set of domain de-
pendent parameters of CFP, even when trained with a
small portion of the data set. Obviously, the larger of
the portion of the data is used, the better parameters
are found.

5 CONCLUSION

We have presented an algorithm that hybridizes the
classification power of the feature partitioning CFP
algorithm with the search and optimization power of
the genetic algorithm. The resulting algorithm GA-
CFP requires more computational capabilities than
the CFP algorithm, but achieves improved classifica-
tion performance in reasonable time. Experimental
results indicate that the GA-CFP algorithm outper-
forms other classification techniques such as IBL, C4.5
and GA-WKNN.

We have also noticed that the genetic algorithm can be
trained with only a small portion of the data to learn

the domain dependent parameters of the CFP algo-
rithm with satisfactory prediction accuracy. We antic-
ipate that extension to the research will improve the
algorithm’s performance. In further work we plan to
incorporate other genetic algorithm techniques such as
eliticism, and other techniques for learning real-valued
weight vectors.
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