Complexity of the CFP, a Method for
Classification Based on Feature Partitioning

H. Altay Guvenir and Tzzet Sirin

Computer Engineering and Information Science Department Bilkent University,
Ankara 06533 TURKEY

Abstract. This paper presents a new methodology for learning from ex-
amples, called Classification by Feature Partitioning (CFP). Learning in
CFP is accomplished by storing the objects separately in each feature di-
mension as disjoint partitions of values. A partition is expanded through
generalization or specialized by subdividing it into sub-partitions. It is
shown that the CFP algorithm has a Iow sample and training complexity.

1 Introduction

Several representation techniques have been used to describe concepts for su-
pervised learning tasks. Exemplar-based learning techniques store only specific
examples that are representatives of other several similar instances. Previous im-
plementations of this approach usually extended the nearest neighbor algorithm,
which use some kind of similarity metric for classification. The classification com-
plexity of such algorithms is proportional to the number of objects stored.

This paper presents another form of exemplar-based learning, called Classt-
fication by Feature Partitioning (CFP). The CFP makes several significant im-
provements over other exemplar-based learning algorithms, where the examples
are stored in memory without any change in the representation. For example,
IBL algorithms learn a set of instances, which is a representative subset of all
training examples [1]. On the other hand, the CFP partitions each feature into
segments corresponding to concepts. Therefore, a concept description learned by
the CFP is a collection of feature partitions.

The CFP algorithm can be seen to produce a special kind of decision trees
(e.g., ID3, [3]). Unlike ID3, the CFP probes each feature exactly once. An im-
portant difference between decision tree approach and the CFP is that the clas-
sification performance of the CFP does not depend critically on any small part
of the model. In contrast, decision trees are much more susceptible to small al-
terations. Similar to CFP and ID3, the probabilistic learning system called PLS1,
also creates orthogonal hyperrectangles by inserting boundaries parallel to in-
stance space axes [4]. The PLS1 system starts from the most general description
and applies only specializations.

The CFP algorithm is briefly described in the next section. Section 3 presents
the sample complezity and the training complexity analysis of the CFP algorithm
with respect to Probably Approzimately Correct (PAC) learning theory [6]. The

final section discusses the applicability of the CFP and concludes with a general
evaluation of the algorithm.

2 The CFP Algorithm

The CFP algorithm learns the projection of the concepts over each feature di-
mension. An example is given as a vector of feature values plus a label that
represents its class. A partition is the basic unit of representation in the CFP
algorithm. For each partition, lower and upper bounds of the feature values,
the associated class, and the representativeness value (the number of instances
it represents) are maintained. Initially, a partition is a point (lower and upper
limits are equal) on the line representing the feature dimension. For instance,
suppose that the first example e; of class C is given during the training phase.
If the value of e; for feature f is z1, then the set of possible values for feature f
will be partitioned into three partitions: < [—oo,z1],U,0 >, < [z1,21],C1,1 >,
< [x1,00],U,0 >; where U stands for undetermined partition. A partition can
be extended towards a neighboring point of the same class in an undetermined
partition. Assume that the second example e; with class Cy is close to e; in
feature f. In that case the CFP will generalize the partition at #; on f into an
extended partition: < [z1, ®3], C1,2 >.

Since partitions are disjoint the CFP algorithm pays attention to avoid over
generalization. In order to generalize a partition in feature f to cover a new
example, the distance between them must be less than a given generalization
limit (Dy). Otherwise, the new example is stored as another point partition in
the feature dimension f. If the feature value of a training example falls in a
partition with the same class, then simply the representativeness value of the
partition is incremented by one. However, if the new training example falls in
a partition with a different class than that of the example, the CFP algorithm
specializes the existing partition by dividing it into two range partitions and
inserting a point partition (corresponding to the new example) in between them.

The training process of the CFP has two steps: (1) learning the feature
weights, (2) learning feature partitions. In order to learn appropriate feature
weights, for each training example, the prediction of each feature is compared
with the actual class of the example. If the prediction of a feature is correct the
weight of that feature is incremented by A (global feature weight adjustment
rate) percent; otherwise, it is decremented by the same amount (all weights are
initially set to 1).

Classification in the CFP is based on a voting taken among the predictions
made by each feature separately. For a given instance e, the prediction based
on a feature f is determined by the value of e;. If e falls properly within a
partition with a known class then the prediction is the class of that partition. If
es falls in a point partition then among all the partitions at this point the one
with the highest representation count is chosen. If ey falls in a partition with
undetermined class value, then no prediction for that feature is made. The effect
of the prediction of a feature in the voting is proportional with the weight of

24 \\\\\\\\X\\\\\\\\\ i\ N
\ ;‘;2 «« \+\
/‘/‘/ \
«/w 255

/ U [l undetermined
Z

A +
224 -

7

NN
%
et
N
o
X
253

RN
\\\N
\\
AN
o
AN,
S

%
2%
%2
X
X
%
Y

X X f

Fig.1. An example concept description in a domain with two features.

that feature. The predicted class of a given instance is the one which receives
the highest amount of votes among all feature predictions.

In order to illustrate the form of the concept descriptions, let us consider a
domain with two features, f; and f». Assume that during the training phase,
positive (+) instances with f; values in [z11, 212] and fs values in [z33, Z24], and
negative (—) instances with f; values in [213, 214] and fo values in [z91, z9o] are
given. The resulting concept description is shown in Fig. 1. The corresponding
concept description for the class (+) can be written as:

class +: (s11 < fi & fi<z12 & fo<z21) or (311 < f1 & f1 < 312 & f2 > z22) o1
(z23 < fo & fo< w24 & f1 < m13) or (323 < f2o & fo < wou & f1 > 14)

The CFP does not assign any classification to an instance, if it could not
determine the appropriate class value. This may result from having seen no
instances for a given set of values or having a tie between two or more possible
contradicting classifications. If the features have different weights, the ties are
broken in favor of the class predicted by the features with the highest weights
during the voting process.

The CFP algorithm has been implemented and empirically evaluated in sev-
eral standard domains and its performance has been compared with similar al-
gorithms. In most of these domains the CFP algorithm attained higher accuracy
than the other algorithms. The details of the CFP algorithm and the empirical
comparisons can be found in [5].

3 Complexity of the CFP

This section presents an analysis of the CFP algorithm with respect to PAC-
learning theory [6]. The intent of the PAC (Probably Approximately Correct)
model is that successful learning of an unknown target concept should entail
obtaining, with high probability, that it is a good approximation of the concept.

Since the classification in the CFP is based on a voting taken among the
individual classifications of each attribute, it can learn a concept if each attribute,

independently from other attributes, can be used in the classification. We will
define what we mean by “learn” in a way that preserves the spirit of the Valiant
(1984) definition of learnability, but modifies it for the voting based classification
used in the CFP. We first determine the minimum number of training instances
required to learn a given concept. Using this sample complexity we derive the
training complexity of the CFP algorithm. In the following analysis we assume
that all feature values are normalized to the interval [0,1].

Definition1. Let X be a subset of " with a fixed probability distribution and
d 1s positive integer less than or equal to n. A subset S of X is an < ¢,v,d >
—net < for X if, for all # in X, with probability greater than v, there exist an
sin S such that [s; — ;] < € at least for d values of f (1 < f <n).

Lemma2. Let ¢, 6, and v be fired positive numbers less than one and d
1s positive wnteger less than or equal to n. A random sample S containing
m > ([1/e]/y) x (nln2 4 1n([1/£]/é)) instances, drawn according to any fized
probability distribution from [0, 1", will form an < ¢,7v,d >-net with confidence
greater than 1 — 6.

Proof. We prove this lemma by partitioning the unit interval for each feature
dimension, into k equal length sub-intervals, each with length less than ¢, such
that all pairs of points® in the sub-interval are within ¢ distance of each other.
The idea of the proof is to guarantee that, with high confidence, at least for d
dimensions out of n, each of k sub-intervals contains at least one point of m
instances, with sufficient probability.

Let k = [1/€], Sis be the set of sub-intervals with probability greater or
equal to v/k and Ss; be the set of remaining sub-intervals of a dimension f.
The probability that an arbitrary point in [0, 1] will not lie in a selected sub-
interval of Siy is (1—7/k). The probability that none of the m sample points will
lie in a selected sub-interval of Sy is (1 —+/k)™. Therefore, the probability that
any sub-interval of S is excluded by all m instances is at most p = k(1 —)™

The probability that, for more than n—d dimensions, any sub-interval of S;’s
are excluded by all m instances is at most } 1 _ ., C(n,i)p'.? To make sure this
probability is small, we force it to be less than §, that is, i _ ;1 C(n,9)p' < é.

Recall the binomial theorem: (a+b)" = Y 1, C(n,4)a’d"~*. With a = p and
b=1,>",C(n,i)p' = (p+ 1)". Since n is a positive integer, (p+ 1)* — 1 =
Soi1 C(n,9)p' and it is greater than Y77 .., C(n,i)p’, our requirement can
be written as (p + 1)® — 1 < 6. On the other hand, (1 — v/k)™ < e~™/* and,
since the value of p is greater than zero and less than one, 2"p > (p + 1)" — 1.
If we solve the requirement 27ke=™/% < § for m, and substitute [1/¢] for k, it
yields m > [1/€]/y x (nin2 + In([1/€]/6)) .

Consequently, with confidence greater than 1 — 6, each sub-interval in S; ¢ of
d or more dimensions, contains some sample point of an instance of S. O

1 a point here represents the value of an instance for a feature for that dimension
2 C(n,r) represents the number of combinations of r objects out of n.

Theorem 3. Let €, 6, and v be fized positive numbers less than one and S a
sample set with n features. If |'”2l1'| of features of the elements of S form an
< g,7, f#] >-net then, the CFP algorithm with equal feature weights and
generalization limit Dy > 2¢ for all features, will learn a concept C' for S with
confidence 1 — 6.

Proof. Since, the CFP algorithm does not use distance metric for classification,
the idea of the proof is to ensure that the CFP can construct € length parti-
tions with high confidence, at least one of the m sample instances lies in each
sub-intervals of [2+!] features with sufficient probability. The CFP algorithm
employs a majority voting scheme in the classification. Hence, only d = [#] of
the features must agree on the classification. Following the proof of the lemma,
if S form an < ¢,v,d >-net, then it is guaranteed that each sub-interval contains
at least one instance of S with high confidence. The CFP algorithm will gener-
alize two points into one partition, if the distance between them is less than or
equal to Dy. Therefore, if Dy > 2¢ then the points will be generalized into one
partition, corresponding to a projection of the concept on that feature. O

Theorem4. Lete, 6, and v be fized positive numbers less than one. If a random
sample set S with n features forms an < €, 7, |_”2l1'| >-net with confidence greater
than 1 — 6, then CFP with Dy > 2¢ constructs at most n[1/c]| partitions.

Proof. Since S'is an < €, 7, |_”2l1'| >-net with with confidence greater than 1—4,
each feature line is divided in to € length sub-intervals and each one contains
at least one sample point and the CFP algorithm constructs at most one (due
to Dy > 2¢) partition for each sub-interval. Thus, for n features, the CFP
constructs at most n[1/e] partitions. O

Theorem 5. Given ¢, 6, and v fized positive numbers less than one. If random
sample S s an < g,7, |_”2l1'| >-net with confidence greater than 1 — 8, then
classification complexity of the CFP with Dy > 2¢ is O(nlog([1/€])) and the
training complexity is for m sample instances is O(mnlog([1/¢])).

Proof. Proof of the theorem 2 shows, that the CFP constructs at most [1/¢]
partitions for each feature. In CFP algorithm the classification is composed of
a search and a voting. The complexity of the search operation is O(log([1/¢]))
for each feature. Since the complexity of voting is O(n), the classification com-
plexity of the CFP algorithm is O(nlog([1/¢])) for n features. Consequently,
with m training instances; the training complexity of the CFP algorithm is

O(mnlog([1/e])). O

The classification process in exemplar-based learning algorithms which use
some form of the nearest neighbor algorithm involves computing the Euclidean
distance (or similarity) of the instance to each stored exemplar in each dimension.
Therefore, if there are M exemplars stored in the memory, and n features are
used, then the complexity of the classification is O(nM). On the other hand, since
the partitions are naturally sorted for each feature dimension, the classification
process in the CFP algorithm is only O(nlog M), which significantly reduces the
classification complexity.

4 Conclusion

The CFP algorithm is applicable to concepts, where each feature, independent
of the others, can be used to classify the concept. This approach is a variant of
algorithms that learn by projecting into one feature dimension at a time. The
novelty of CFP is that it retains a feature-by-feature representation and uses
voting to categorize. Algorithms that learn by projecting into one dimension at
a time are limited in their ability to find complex concepts.

The analysis of the CFP shows that it requires small number of examples
and a small amount of memory to learn a given concept, compared to many
other similar algorithms. Another outcome of the analysis is that, the CFP has
also a low training complexity.

The real-world data sets usually contain missing attribute values. Most of
the learning systems usually overcome this problem by either filling in missing
attribute values, or looking at the probability distribution of values of attributes.
In contrast, the CFP solves this problem very naturally. Since the CFP treats
each attribute value separately, in the case of an unknown attribute value, it
simply leaves the partitioning of that feature intact.

The CFP uses feature weights to cope with irrelevant attributes. Introduc-
ing feature weights protects the algorithm’s performance, when attributes have
different relevances. In the CFP the feature weights are dynamically adjusted
according to the global A adjustment rate, which is an important parameter for
the predictive accuracy of the algorithm. Another important component of the
CFP is D; generalization limit for each attribute, which controls the generaliza-
tion process. A and D; are domain dependent parameters to the CFP, and their
selection affects the performance of the algorithm. Determining the best values
for these parameters is an optimization problem for a given domain. A version
of CFP, called GA-CFP, has been implemented to learn these parameters using
genetic algorithms [2].

References

1. D. W. Aha, D. Kibler and M. K. Albert, Instance-Based Learning Algorithms.
Machine Learning 6 37-66, 1991.

2. H. A. Giivenir and 1. Sirin, A Genetic Algorithm for Classification by Feature
Partitioning, Proceedings of the ICGA’93, Illinois, 1993.

3. J. R. Quinlan, Inductions of Decision Trees. Machine Learning 1, 81-106, 1986.

4. L. Rendell and H. Cho, Empirical Learning as a function of Concept Character,
Machine Learning 5 267-298, 1990.

5. 1 Sirin and H. A. Giivenir, An Algorithm for Classification by Feature Partitioning.
Technical Report CIS-9301, Bilkent University, Dept. of Computer Engineering and
Information Science, Ankara, 1993.

6. L.G. Valiant, A Theory of the Learnable. Communications of the ACM, 27 (11)
1134-1142, 1984.

This article was processed using the IATpX macro package with LLNCS style

