EMPIRICAL EVALUATION OF THE CFP
ALGORITHM

IZZET SIRIN and H. ALTAY GUVENIR
Computer Engineering and Information Science Department
Bilkent University, Ankara 06533 TURKEY
E-mail: {sirin, guvenir}@firat.bcc.bilkent.edu.tr

ABSTRACT

This paper presents a new methodology for concept learning from ex-
amples, called Classification by Feature Partitioning (CFP), which is
an inductive, incremental and supervised learning method. Learning
in CFP is accomplished by storing the objects separately in each fea-
ture dimension as disjoint partitions of values. A partition is expanded
through generalization or specialized by dividing it into subpartitions.
An empirical evaluation of the CFP on real-world data sets is presented.

1. Introduction

This paper presents a form of exemplar-based learning, called Classification by
Feature Partitioning (CFP). In exemplar-based learning examples are stored in mem-
ory verbatim. The CFP technique makes several significant improvements over other
exemplar-based learning algorithms. For example, IBL! algorithms learn a set of in-
stances which is a representative subset of all training examples. Another algorithm
called EACH? learns a set of hyperrectangles of the examples. On the other hand,
the CFP method stores the instances as factored out by their feature values. The
CFP partitions each feature into segments corresponding to concepts. Therefore,
the concept description learned by the CFP is a collection of feature partitions.

Each feature contributes the classification process by its local knowledge. Final
classification is based on a voting among the predictions of the features. The CFP
algorithm significantly reduces the classification complexity, over other exemplar-
based techniques. The strength of the contribution of a feature in the voting process
is determined by the weight of that feature.

Most real-world data sets contain missing attribute values. Previous learning
systems usually overcome this problem by either filling in missing attribute values,
or looking at the probability distribution of values of attributes. Most common
approaches are compared in Quinlan (1993), leading to a general conclusion that no
one approach is uniformly superior to others. In contrast, CFP solves this problem
very naturally. Since CFP treats each attribute value separately, in the case of an
unknown attribute value, it simply leaves the partitioning of that feature intact.

In the next section the CFP algorithm is described (precise details are given Sirin
(1993)). The voting process of the CFP is illustrated through an example. Section
3 presents an empirical evaluation of the CFP algorithm on various real-world data
sets. The final section discusses the applicability of the CFP algorithm.

train(Training Set):
begin
foreach e in Training Set
foreach feature f
if class of partition(f,es) = €ciass
then wy = (1 + A)wy
else wy = (1 - A)wy
update-feature-partitioning(f, ey)

end
Figure 1: Training algorithm of the CFP

2. The CFP Algorithm

An example is defined as a vector of feature values plus a label that represents
its class. The CFP algorithm learns partitions of the set of possible values for
each feature. For each partition, lower and upper bounds of the feature values, its
associated class and the number of instances it represents are maintained.

Initially, a partition is a point (lower and upper limits are equal) on the line repre-
senting the feature dimension. Suppose that the first example e; of class (] is given
during the training phase. If the value of e; for feature f is x;, then the set of possi-
ble values for feature f will be partitioned into three partitions: < [—o0,z4],U,0 >,
< [z1,21],C1,1 > and < [z, 00],U,0 >; where the elements indicate the range of
the partition, its class*, and the representativeness valuet, respectively. A partition
can be extended through generalization with other neighboring points in the same
feature dimension. If the second example e, is close to e; in feature f and also of
the same class, the CFP algorithm will generalize the partition for x; into a range
partition: < [z1, 3], C1,2 >, which represents two examples.

The training process of the CFP algorithm has two steps: learning feature weights
and learning feature partitions (Fig. 1). For each training example, the prediction
of each feature is compared with the actual class of the example. If the prediction
of a feature is correct, the weight of that feature is incremented by A (global feature
weight adjustment rate) percent; otherwise, it is decremented by the same amount.

The second step in the training process is to update the partitioning of each
feature-space using the given training example. If the feature value of a training
example falls in a partition with the same class, then simply its representativeness
value is incremented. If the new feature value falls in a range partition with a dif-
ferent class than that of the example, the CFP algorithm specializes the existing
partition by dividing it into two subpartitions and inserting a point partition (cor-
responding to the new feature value) in between them. On the other hand, if the
example falls in an undetermined partition, the CFP algorithm tries to generalize
a near partition with the feature value. If one of the nearest partitions to the left
and the right of the new example is in Dy distance and of the same class as the
example, then it is generalized to cover the new feature value. Otherwise, a new

*U represents undetermined class
trepresentativeness value indicates the number of examples represented by a partition.

Xﬂ

Figure 2: Classification process of the CFP

point partition that corresponds to the new feature value, is inserted.

The classification process of the CFP is based on a voting taken among the
predictions made by each feature separately. For a given instance e, the prediction
based on a feature f is determined by the value of e;. If e falls properly within a
partition with a determined class then the prediction is the class of that partition.
If e falls into the border of more than one partitions, then among all the partitions
at this point the one with the highest representativeness value is chosen. If ey falls
in a partition with no known class value, then no prediction for that feature is made.
The effect of the prediction of a feature in the voting is proportional with the weight
of that feature. All feature weights are initialized to one, before the training process
begins. The predicted class of a given instance is the one which receives the highest
amount of votes among all predictions. Figure 2 shows an example of classification
process of the CFP. Consider a test example e of class (| with feature values z,
x9, T3, and x4. The prediction of the first feature is C';. The second feature does
not predict any class value (undetermined). The prediction of the third feature is
(5. The forth feature value z4 of e falls into the border of two partitions. In this
case the representativeness values are used to determine the class value. Since the
partition of class C'; has a greater representativeness value than that of C; partition,
the prediction of the forth feature is C3. Final prediction of the CFP depends on
the values of the feature weights (wy’s). If wy > (w3 + w4) then CFP will classify e
as a member of C; otherwise the prediction would be (.

The sample complexity and training complexity analysis of the CFP algorithm
with respect to PAC-learning theory (Probably Approximately Correct learning)
shows that, it requires small number of examples and a small amount of memory
to learn a given concept, compared to many other similar algorithms.®> Another
outcome of this analysis is that, the CFP has a low learning complexity.

3. Empirical Evaluation

The performance of the CFP algorithm has been tested with various widely used
real-world data sets. The use of real data in these tests provide a measure of the
system’s accuracy on noisy and incomplete data sets, and most importantly, allowed
comparisons between CFP and other systems. All results in Table 1 were averaged

Table 1: Achieved accuracy (%) by CFP with various data sets

Database = CFP Database @ CFP
Cleveland 84.5 Mushroom 98.5
Hungarian 82.3 Thyroid Disease 90.8
Ionosphere 87.6 Voting 95.5
Iris 96.7 Wine 91.6

over 50 trials, unless indicated otherwise. The training and test sets were always
disjoint. The instances were drawn randomly from the data sets. 80 % of the
instances are used in training and the remaining are used in testing.

lonosphere database: The radar data was collected by a system in Goose Bay,
Labrador. The targets were free electrons in the ionosphere. Good radar returns are
those showing evidence of some type of structure in the ionosphere. Bad returns are
those that do not; their signals pass through the ionosphere. This data set contains
351 instances. 200 of the instances are used in training, the rest are used in testing.
FEach instance consist of 34 continuous-valued features. It is a binary (good or bad)
classification problem.

Wine: The data are the results of a chemical analysis of wines grown in the same
region in Italy, but derived from three different cultures. The analysis determined
the quantities of 13 constituents found in each of the three types. Data set contains
178 instances and all attributes are continuous valued. The leave-one-out technique
is used in the experiment.

Thyroid Disease: Five continuous-valued laboratory tests are used to predict a
patient’s thyroid type. The diagnosis was based on a complete medical record.
There are 215 patient records in the data set each of which has one of the three
classes (normal, hyperthyroid, or hypothyroid).

Mushroom: This data set includes descriptions of hypothetical samples corre-
sponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family.
Each species is identified as edible, or poisonous. The database contains 8124 in-
stances with 22 nominal-valued features. 1000 instances are used in training the
remaining 7124 are used in testing.

Congressional Voting: It contains the voting records of the members of the United
States House of Representatives during the second session of 1984. It is described
by 16 boolean attributes and has 288 missing values among 435 instances. 350 of
the voting records are used in training and remaining 85 are used in testing. The
goal is to predict is the political party of a member given their voting record. The
reported accuracies by IB1 and C4 on this data set, are 91.8 and 95.5, respectively?.

Iris Flowers: Iris flowers data set consists of four integer-valued features and a
particular species of iris out of three classes. The data set contains 150 instances.
EACH? achieved 95.3 accuracy on this data using leave-one-out technique.

Medical Diagnosis: The Cleveland and Hungarian data sets contain heart disease
diagnoses collected from the Cleveland Clinic Foundation and Hungarian Institute
of Cardiology, respectively. Diagnoses are described by 13 numeric-valued features.

The objective is to determine whether a patient has a heart disease. The Cleveland
data consists of 303 instances and the Hungarian data consists of 294 instances.
Achieved accuracies by IB3 and C4 on Hungarian data, are 80.5 and 78.2 respec-
tively. For Cleveland data, accuracies of IB3 and C4 are 78.0 and 75.5, respectively?.

The feature weight adjustment rate and the generalization limits are domain
dependent parameters of the CFP. In these experiments their values are determined
(settings are given in Sirin (1993)) by trial and error, separately for each application
domain. However, we noticed that the performance was not sensitive to the small
changes in A and Dy settings.

4. Conclusion

The CFP algorithm is applicable to concepts, where each feature, independent of
other features, can classify the concept. Usually, real-world data sets presents this
behavior. Empirical results of the CFP on real-world data sets justify this claim.

This approach is a variant of algorithms that learn by projecting into one feature
dimension at a time. The novelty of CFP is that it retains a feature-by-feature
representation and uses voting to categorize. Algorithms that learn by projecting
into one dimension at a time are limited in their ability to represent complex con-
cepts. For domains, where concepts are nested or projection of the concepts are
overlapping, performance of the CFP degrades.

One of the improvements of the CFP over other exemplar-based algorithms is its
low classification complexity. Another important improvement is natural handling
of unknown attribute values. Since the value of each attribute is handled separately,
attributes with unknown values are simply ignored by the CFP.

The CFP uses feature weights to cope with irrelevant attributes. Determining
the best values for the domain dependent parameters of the CFP is an optimization
problem for a given domain. GA-CFP is a version of CFP that uses genetic algorithm
to find a good setting of these parameters.?

References

1. D. W. Aha, D. Kibler and M. K. Albert. Instance-Based Learning Algorithms.
Machine Learning 6 37-66, 1991.

2. H. A. Giivenir and I. Sirin. A Genetic Algorithm for Classification by Feature
Partitioning. In The Proceedings of ICGA’93, (Illinois, 1993), pp. 543-548.

3. H. A. Givenir and I. Sirin. The Complexity of CFP: A Method for Classi-
fication Based on Feature Partitioning. (to appear) In Lecture Notes on Artificial
Intelligence, Proceedings of the AT*IA’93, (Torino, 1993).

4. J. R. Quinlan, C4.5: Programs for Machine Learning. California: Morgan
Kaufmann, 1993.

5. S. Salzberg, A Nearest Hyperrectangle Learning Method. Machine Learning,
6 251-276, 1991.

6. 1. Sirin and H. A. Giivenir , An Algorithm for Classification by Feature
Partitioning. Technical Report CIS-TR-9301, Bilkent University, Turkey, 1993.

