Parallel Classification by Feature Partitioning

Hiuseyin Simitci H. Altay Guvenir

Computer Engineering and Information Science Department
Bilkent University, Ankara 06533 TURKEY
E-mail: {simitci,guvenir }@Qtrbilun.BITNET

Abstract

This work presents a parallel method for learning from examples using
parallel feature partitioning (PFP). Feature partitioning (FP) is an inductive,
incremental and supervised learning method proposed by Sirin and Giivenir
[1]. PFP assigns feature dimensions to separate nodes. Learning in PFP is
accomplished by storing the objects separately in each feature dimension as
disjoint partitions of values. Every node expands a partition, which is initially
a point in the feature dimension through generalization. The CFP algorithm
specializes a partition by subdividing it into sub-partitions.

PFP is implemented in the PCFP (Parallel Classification by Feature Par-
titioning) algorithm. PCFP is tested in six different domains, and results are
compared with CFP of Sirin and Giivenir [1].

4 artitions for

< — 001 1 feature 2
o —0

N feature node 2

(feature l> (feature 2)‘/

Figure 1: Topology of the feature nodes and the host node

1 Introduction

This work presents a parallel method for learning from examples using em parallel
feature partitioning (PFP). Feature partitioning (FP) is an inductive, incremental
and supervised learning method proposed by Sirin and Giivenir[1].

The FP technique makes several significant improvements over other exemplar-
based learning algorithms, where the examples are stored in memory without any
change in the representation. The FP method stores the instances as factored out
by their feature values. This form of representation is very appropriate for paral-
lel implementations. PFP assigns feature dimensions to separate parallel working
nodes. The program that implements the parallel feature partitioning technique
in this work is called PCFP, for Parallel Classification by Feature Partitioning. In
PCFP every node partitions its feature into segments corresponding to concepts.
Therefore, the concept description learned by the PCFP is a collection of feature
partitions on each node. In other words, the PCFP learns a projection of the concept
on each feature dimension which are also stored in separate nodes.

Each feature node contributes to the prediction process by its local knowledge.
Final prediction is based on a voting among the predictions of the feature nodes,
which is accomplished on a predetermined host node. Since prediction process is
running in all feature nodes in parallel, prediction complexity reduces by a factor
of number of features. The strength of the contribution of a feature in the voting
process is determined by the weight of that feature. Assigning variable weights
to the features modifies the importance of each feature to reflect its relevance for
classification. This scheme allows smooth performance degradation when data set
contains irrelevant features. Therefore, the PCFP algorithm is tolerant to noisy
data. In case of an unknown attribute value, PCFP leaves that feature’s partitioning

train(Training Set):
begin
foreach feature f do in parallel
foreach e in Training Set
if class of partition(f, ef) = €ciass
then wy = (14 A)wy
else wy = (1 — A)wy
update-feature-partitioning(f, e)

end
Figure 2: Training algorithm of the PCFP.
mtact.
The precise details of the CFP algorithm can be found in [1]. Next section gives
the details of PCFP. Section 3 gives empirical evaluation of PCFP and compares it

with CFP algorithm on six different data sets.

2 The PCFP Algorithm

The PCFP program learns the projection of the concepts over each feature dimen-
sion. In other words, the PCFP learns partitions of the set of possible values for
each feature. An example is defined as a vector of feature values plus a label that
represents the class of the example. Partition is the basic unit of representation
in the PCFP algorithm. For each partition, lower and upper bounds of the feature
values, the associated class and the number of instances it represents are maintained.

The virtual topology required by PCFP is a set of feature nodes each connected
to a host node (Fig. 1). The training process in PCFP algorithm has two steps:
learning of feature weights and learning of feature partitionings (Fig. 2). For each
training example, the prediction of each feature is compared with the actual class
of the example in parallel. If the prediction of feature is correct the weight of
that feature is incremented by A (global feature weight adjustment rate) percent;
otherwise, it is decremented by the same amount.

The prediction process of the PCFP is based on a voting in the host taken
among the predictions made by each feature node in parallel (Fig. 3). The effect
of the prediction of a feature in the voting is proportional with the weight of that
feature. The predicted class of a given instance is the one which receives the highest
amount of votes among all predictions.

Since the partitions are naturally sorted for each feature dimension, the predic-

prediction(e):
begin
foreach feature f do in parallel
¢ = class of partition(f, ey)
foreach feature f do on host
vote. = vote, + wy
return class ¢ with highest vote..

end
Figure 3: Prediction process of the PCFP.

tion process in the CFP algorithm is O(klogn), with n examples and k features.
The PCFP algorithm reduces this prediction complexity to O(log n) by making pre-
dictions in each feature dimension in parallel using O(k) processors.

3 Empirical Studies with PCFP

The PCFP algorithm is implemented on iPSC/2 parallel computer. iPSC/2 com-
puter has a hypercube topology with nearest neighbor connectivity. For a database
consisting of k features k£ number of node processors are allocated for PCFP.

The PCFP algorithm has been tested using real and artificial data from six differ-
ent databases: (1) classifying iris flowers, (2) randomly generated artificial database
with 6 features, (3) Glass database, (4) Hungarian database from Hungarian Ins.
of Cardiology, (5) Cleveland database from Cleveland Clinic Foundation, (6) ran-
domly generated artificial database with 15 features. The description of databases
are given in Sirin [2].

In tests the speedup is measured against sequential CFP algorithm. In the
experiments 70 percent of the database is used for training and remaining part is
used for testing. The achieved speedups for the prediction phase is shown in Table
1. In training phase slightly better speedups are obtained, because load-balancing
is slightly better in the beginning of the training.

On most of the databases above or near linear speedup is achieved (see Fig. 4).
The deviations in the number of partitions in each feature dimension violates load
balancing. Fig. 6 shows that efficiency degrades as the ratio of standard deviation
of partitions over average number of partitions increases in each feature. This is
the case in databases Cleveland and Hungarian. When load balancing is achieved
thorough balanced number of partitions, efficiency is quite high (Fig. 5).

Speedup (PCFP/ CFP)

15.0 WHITE : TRAIN 4

GRAY : TEST
L -~ i
=
oc
<
10.0 ~ .
o
L 2 % i
] w
(&) =
o)
()
5.0] -
hr
=
c
=
=
=
L g €<.') i
=
=]
==
0.0 L L L L L L
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Number of processors (features)

Figure 4: Achieved speedups with different number of processors
1.5 T T T T T T T

WHITE : TRAIN
GRAY : TEST

5
RIS
-
GLASS 4[

Efficiency (Speedup/processors)

[=] i
=
= E
0.5 E -
[=)
=
=
=+
<C
S
=
=]
@
0.0 L L L 1 1 1
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

Number of processors (features)

Figure 5: Achieved efficiencies with different number of processors

ARTF1 IRIS
Lo 1\{/&1
ARTF2 GLASS
o,
—
(5]
B
[
(=9
=
s . CLEVELAND _
S .o
5
HUNGARIAN
0.0 ! : :
0.0 0.5 1.0 1.5 2.0

Standard deviation / average (of number of partitions in features)

Figure 6: Efficiency (test) vs. deviations in number of partitions

4 Conclusion

This work presents a new parallel algorithm for learning from examples, called par-
allel feature partitioning (PFP).

PFP assigns feature dimensions to separate nodes. Learning in PFP is accom-
plished by storing the objects separately in each feature dimension as disjoint par-
titions of values. Every node expands a partition, which is initially a point in the
feature dimension through generalization. The PFP algorithm specializes a partition
by subdividing it into sub-partitions.

Table 1: Achieved Efficiencies in Prediction

Database No. of Features Speedup Efficiency
Iris 4 4.1 1.03
Artificiall 6 6.2 1.03
Glass 9 7.9 0.88
Hungarian 13 3.7 0.30
Cleveland 13 5.9 0.45
Artificial2 15 13.5 0.90

PFP is implemented in the PCFP (Parallel Classification by Feature Partition-
ing) algorithm. PCFP is tested in six different domains, and results are compared
with CFP of Sirin and Giivenir [1].

PCFP algorithm has a prediction complexity of O(log n) using n examples having
k features with O(k) processors. When the deviation in number of partitions in
each feature dimension is small load balance between processors is achieved and the

prediction complexity of CFP which is O(klogn) is reduced by a factor of number
of features, k.

References

1] L. Sirin and H. A. Guvenir. Classification by Feature Partitioning, Technical Re-
port CIS-9301, Computer Engineering and Information Science Dept. of Bilkent
University, Ankara 06533, Turkey.

2] L. Sirin and H. A. Guvenir. Empirical Evaluation of CFP, Technical Report
CIS-9310, Computer Engineering and Information Science Dept. of Bilkent Uni-
versity, Ankara 06533, Turkey.

