HYPERSOLVER: A GRAPH-BASED TOOL
FOR MODELING WITH SETS

aro man an ujdat Pakkan

BILKENT UNIVERSITY

Department of Computer Engineering
and
Information Science

Technical Report BU-CEIS-93-16

HYPERSOLVER: A Graph-Based Tool for
Modeling with Sets

Varol Akman and Mijjdat Pakkan
Department of Computer Engineering and Information Science

Bilkent University, Bilkent, 06533 Ankara, Turkey

1 Introduction

Set theory has long occupied a unique place in mathematics since it allows various
other branches of mathematics to be formally defined within it [1]. The theory
has ignited many debates on its nature and a number of different axiomatizations
were developed to formalize its underlying ‘philosophical’ principles. Collecting
entities into an abstraction for further thought (i.e., set construction) is an important
process in mathematics, and this brings in assorted problems. The theory had many
groundshaking crises (like the discovery of the Russell’s Paradox [2]) throughout its
history, which were nevertheless overcome by new axiomatizations.

The most popular of these is the Zermelo-Fraenkel axiomatization with ‘Choice’
(ZFC). ZFC is an elegant theory which inhabits a stable place among other axioma-
tizations as the mainstream set theory. It provides a ‘hierarchical’ framework. This
hierarchy starts with only one abstract entity, the empty set ((}), forms sets out of
previously formed entities cumulatively, and is therefore called the cumulative hier-
archy. The coherence of this hierarchy is secured by the Axiom of Foundation (FA)
which forbids infinite descending sequences of sets under the membership relation €,
such as ... € az € a; € ag € a (thereby not allowing sets which can be constituents
of themselves), and which has sometimes been regarded as a somewhat superficial
limitation [2]. Sets which obey the FA are called well-founded sets.

The cumulative hierarchy has provided a precise framework for the formalization
of many mathematical concepts [3]. However, it may be asked whether the hier-
archy is limiting, in the sense that it might be omitting some sets one would like
to have around. Cyclic sets, i.e., sets which can be members of themselves, are
examples of such interesting sets which are excluded in ZFC. A set like a = {a} is
strictly banned in ZFC by the FA since a has no member disjoint from itself. Such
sets have infinite descending membership sequences and are called non-well-founded
sets. Non-well-founded sets have generally been neglected by the practicing math-
ematician since the classical well-founded universe was a satisfying domain for his
practical concerns. However, non-well-founded sets are useful in modeling various
phenomena in computer science, viz. concurrency, databases, artificial intelligence

(AI), etc.

McCarthy stressed the feasibility of using set theory in Al and invited researchers
to concentrate on the subject in a 1985 speech [4]. Circularity is an often exploited
property in various fields of Al e.g., commonsense reasoning. Rehearsing an ex-
ample of Perlis [5], if non-profit organizations are considered as individuals, then
the organization of all non-profit organizations is a set. It is conceivable that this
umbrella organization (called NPO) might want to be a member of itself in order
to benefit from having the status of a non-profit organization (e.g., tax exemption).
But this implies that NPO must be non-well-founded, i.e., NPO € NPO.

This paper (also see [6]) investigates an alternative set theory (due to Peter
Aczel [7]) which uses a graphical representation for sets and thereby allows the
representation of non-well-founded sets. A program, called HYPERSOLVER, which
can solve systems of equations defined in terms of sets in the universe of this new
theory is presented.

2 Hyperset Theory

Hyperset Theory is an enrichment of the classical ZFC set theory. It is the collection
of all the conventional axioms of ZFC modified to be consistent with the new universe
involving atoms, except that the FA is now replaced by the AFA (to be explained
in the sequel). The sets in this theory are collections of atoms (urelements) or
other sets, whose hereditary membership relation can be depicted by graphs. These
sets may be well-founded or non-well-founded, i.e., may have an infinite descending
membership sequence, in which case they are also called hypersets.

Sets can be pictured by means of directed graphs in an unambiguous manner. For
example, a = {b,{c,d}} can be pictured by the graph in Figure 1. In this graph,
each nonterminal node represents the set which contains the entities represented by
the nodes below it. The edges of the graph stand for the hereditary membership
relation such that an edge from a node n to a node m, denoted by n — m, means
that m is a member of n. Since b, ¢, and d are assumed to contain no other entities
as elements (i.e., they are urelements), there are no nodes below them.

In Aczel’s terminology [7], a pointed graph is a directed graph with a specific node
called its point. A pointed graph is said to be accessible if for every node n, there
exists a path ng — ny — -+ — n from the point ng to n. If this path is always
unique, then the pointed graph is a tree and the point is its root. Accessible pointed
graphs (apgs) will be used to ‘picture’ sets.

A decoration D for a graph is an assignment of a set to each node of the graph
in such a way that

D(n) = { an atom or {), if » has no children,

{D(m): n — m}, otherwise.

An apg G with point n is a picture of a if there exists a decoration D(n) = a, i.e.,
if a is the set that decorates the top node.

An apg is called well-founded if is has no infinite paths or cycles. Mostowski’s
Collapsing Lemma tells us that every well-founded graph has a unique decoration.

A

{c.d}

i

Figure 1: The graph representation of a = {b,{c,d}}

Figure 2: The picture of the non-well-founded set 2 = {Q}

This leads to the corollary that every well-founded apg is a picture of a unique well-
founded set. A non-well-founded apg can never picture a well-founded set because if
a is the set which contains all the sets pictured by the nodes occurring in a cycle of
the non-well-founded apg, then it can be seen that no member of a is disjoint from
a itself, violating the FA.

Aczel’s Anti-Foundation Aziom (AFA) states that every apg, well-founded or not,
pictures a unique set, or stated in other words, every apg has a unique decoration [7].
AFA has two implications: existence and uniqueness. The former assures that every
apg has a decoration (which leads to the existence of non-well-founded sets besides
well-founded ones) and the latter asserts that no apg has more than one decoration.
By throwing away the FA from the ZFC (and naming the resulting system ZFC™)
and adding the AFA we obtain the Hyperset Theory (a.k.a. ZFC™/AFA).

One of the important advantages of the new theory is that by allowing arbitrary
graphs, non-well-founded sets are included. For example, the non-well-founded set
Q = {Q} is pictured by the apg in Figure 2, and by the uniqueness property of the
AFA, this is the only set pictured by that graph. Therefore, there is a unique set
which is equal to its own singleton in the universe of hypersets.

The picture of a set can be unfolded into a tree picture of the same set. The tree
whose nodes are the finite paths of the apg which start from the point of the apg,

Figure 3: Unfolding €2 to obtain an infinite tree

whose edges are pairs of paths (np — -+ — n, ng — -+ — n — n'), and
whose root is the path ng of length one is called the unfolding of that apg. The
unfolding of an apg always pictures any set pictured by that apg. Unfolding the apg
in Figure 2 results in the infinite tree in Figure 3, analogous to unfolding = {Q}
to @ = {{{---}}}.

The uniqueness property of AFA leads to an intriguing concept of extensionality
for hypersets. The classical extensionality paradigm, that sets are equal if and only
if they have the same members, works fine with well-founded sets. However, this is
not of use in deciding the equality of say, a = {1,a} and b = {1,b} because it just
asserts @ = b if and only if @ = b [8]. However, in the universe of hypersets, a is
indeed equal to b since they are depicted by the same graph. To see this, consider
a graph G and a decoration D assigning a to a node z of G, i.e., D(z) = a. Now
consider the decoration D' exactly the same as D except that D'(z) = b. D’ must
also be a decoration for G. But by the uniqueness property of AFA, D = D', so
D(z) = D'(z), and therefore a = b.

Aczel develops his own extensionality concept by introducing the notion of bisim-
ulation. A bisimulation between two apg’s, G; with point p; and G with point p,,
is a relation R C (G} x (G4 satisfying the conditions

1. p1Rp,
2. if nRm then

e for every edge n — n' of Gy, there exists an edge m — m’ of G5 such
that n' Rm/

e for every edge m — m/ of (G5, there exists an edge n — n’ of G such
that n' Rm/

Two apg’s GG; and G5 are said to be bisimilar, denoted by G ~ Gy, if a bisimulation
exists between them; this means that they picture the same sets. It can be concluded
that a set is completely determined by any graph which pictures it. Therefore, for

A N
./ [—)

O e’~_ 0
Q

Figure 4: Other graphs depicting €2

two sets to be different, there should be a genuine structural difference between
them. For instance, the graphs in Figure 4 all depict the non-well-founded set Q2
because their nodes can be decorated with € and there is no essential structural

difference between them.

AFA has interesting applications. In [8], a modeling scheme for propositions (of
natural language) is offered. In this scheme, the triple (P, p,i) denotes that the
proposition p has the property P if ¢ = 1, and it does not have it if ¢ = 0. (In set
theory, triples like (x,y, z) are defined as pairs of pairs, i.e., (z, (y, z)), and (y, z) is
defined as {{y},{y, z}}.) If the proposition p is taken to be say, the statement

“This proposition is not expressible using eight words,”

then it can be modeled by the triple (¥, p,0) where F (an atom) is the property
of being expressible (in English) using eight words. In Aczel’s conception, p can be
depicted as in Figure 5 where the longest arc shows that p refers to itself.

3 Solving Systems of Hyperset Equations

AFA has an important consequence which has useful applications allowing us to
assert that some sets exist without having to picture them with graphs and which
will be motivated by the following example [7].

An equation of the form = = (0,z) in one variable z can be rewritten as x =
{{0},{0,2}}. This equation is equivalent to the following system of four equations
in four unknowns:

= {y,z},
y = {w},
z = {w,z},
w = 0.

By AFA, this system of equations has a unique solution pictured by the graph in
Figure 6. Unfolding the original equation, one obtains = (0,(0,(0,...))). This
result can be generalized. It can be shown that for any set a, the equation z = (a,)

O {E.<p,0>}

O<p 0>
/ \o&
/ 0
Figure 5: The Aczel picture of the proposition p = “This proposition is not
expressible in eight words”
X
y0</ z

Figure 6: The solution of the system z = {y, 2}, vy = {w}, z = {w,z}, w =10

has a unique solution = = (a, (a, (a,...))). More generally, if we consider an infinite
system of equations

zo = (ao, 1),
1 = ial,xgi,

Ly = <a27~”03>,

then a unique solution

Tog = <a07 <a17 <a27 . >>>7
T1 = <a17 <a27 <a37' . >>>7
Ty = <a27 <a37 <a47 . >>>7

1s seen to exist.

Motivated by such examples, a technique to assert that every system of equations
has a unique solution has been developed by Aczel [7]. This technique is named the
Solution Lemma by Barwise and Etchemendy [8] and is formulated below.

Let V4 be the universe of hypersets with atoms from a given set A and let Vy
be the universe of hypersets with atoms from another given set A’ such that A C A’
and X is defined as A’ — A. The elements of X can be considered as indeterminates
ranging over the universe V4. The sets which can contain atoms from X in their
construction are called X-sets. A system of equations is a set of equations

{r=a, : € X A a,is an X-set }

for each z € X. For example, choosing X = {z,y,z} and A = {C,M} (thus
A" ={z,y,2z,C,M}), consider the system of equations

z = {C,y},
y=1{C,z},
z={M,z}.

A solution to a system of equations is a family of pure sets b, (sets which can
have only sets but no atoms as elements), one for each € X, such that for each
z € X, b, = wa,. Here, 7w is a substitution operation (defined below) and 7a is the
pure set obtained from a by substituting b, for each occurrence of an atom x in the
construction of a.

The Substitution Lemma states that for each family of pure sets b, (z € X), there
exists a unique operation © which assigns a pure set wa to each X-set a, viz.

7a = {xb : bis an X-set such that b€ a} U {7z : z € a N X}.

The Solution Lemma can now be stated [7]. If a, is an X-set, then the system of
equations x = a, (z € X)) has a unique solution, i.e., a unique family of pure sets b,
such that for each z € X, b, = 7a,.

This lemma can be stated somewhat differently [9]. Letting X again be the set
of indeterminates, ¢ a function from X to 2%, and A a function from X to A, there
exists a unique function f for all z € X such that

) ={/ly) : y € g(z)} Uh(z).

Obviously, g(x) is the set of indeterminates and h(xz) is the set of atoms in each
X-set a, of an equation z = a,. In the above example, g(z) = {y}, g(y) = {z},
g(z) = {z}, and h(z) = {C}, h(y) = {C}, h(z) = {M}, and one can compute the

solution

f(z) ={C,{C,{M,z}}},
fly) ={C,AM, {C, y}}},
f(z) = {M,{C,{C, z}}}.

The Solution Lemma is an elegant result, but not every system of equations has
a solution. First of all, the equations have to be in the form suitable for the Solution
Lemma. For example, a pair equations such as

x = {y, 2},
y =1{1,z},

cannot be solved since it requires the solution to be stated in terms of the indetermi-
nate z. (These are analogous to the Diophantine equations.) As another example,
the equation

x=2"

cannot be solved because Cantor has proved (in ZFC™) that there is no set which
contains its own power set (no matter what axioms are added to ZFC™).

This technique of solving equations in the universe of hypersets allows us to assert
the existence of some sets (the solutions of the equations) without having to depict
them with graphs. This feature can be of considerable help in modeling information
which can be cast in the form of equations. An example concerning Situation Theory
follows.

Situation Theory is a theory of meaning and information content developed by
Barwise and Perry [10]. It tries to formalize a semantics for English in the way
English speakers handle information. A situation is a limited portion of the reality.
It can be taken as a whole interacting with other situations. An infon is an ordered
list (R, a,t) where R is a relation, a is a proper sequence of arguments of R, and ¢
is the polarity, taking 0 or 1 as its value. For a given R and a, only one of the two
infons ¢ = (R,a,0) or 6 = (R, a,1) is a fact, namely the one which holds in some
situation s. For example, the infon (sleeping, Tom, garden, 1) is a fact if and only if
Tom is indeed sleeping in the garden. (As a notational convention, a polarity 1 is
dropped.)

It is generally hypothesized that situations are sets of facts and therefore can be
modeled by sets to make use of the existing set-theoretic techniques [11, 12]. Indeed,
this was the approach Barwise and Perry chose in [10]. However, using Barwise’s

8

Admissible Set Theory [3] as the principal mathematical tool in the beginning led to
problems in the handling of circular situations and they had to turn to the Hyperset
Theory [13]. To demonstrate this, an example concerning common knowledge will
now be given, viz. the Conway paradox [14]. Two card players P, and P, are given
some cards such that each gets an ace. Thus, both P, and P, know that the following
1s a fact:

o : Either P, or P, has an ace.

When asked whether they knew if the other one had an ace or not, they both would
answer ‘no’. If they are told that at least one of them has an ace and asked the above
question again, first they both would answer ‘no’. But upon hearing P; answer ‘no’,
P, would know that P, has an ace. Because, if P; does not know P, has an ace,
having heard that at least one of them does, it can only be because P; has an ace.
Obviously, P; would reason the same way, too. So, they would conclude that each
has an ace. Therefore, being told that at least one of them has an ace must have
added some information to the situation. How can being told a fact that each of
them already knew increase their information? This is the Conway paradox. The
solution relies on the fact that initially o was known by each of them, but it was
not common knowledge. Only after it became common knowledge, it gave more
information.

Hence, common knowledge can be viewed as iterated knowledge of o of the fol-
lowing form: P; knows o, P, knows o, P, knows P, knows o, P, knows P; knows o,
and so on. This iteration can be represented by an infinite sequence of facts (where
K is the relation ‘knows’ and s is the situation in which the above game takes place,
hence o € s): (K, Py, s), (K, Py, s), (K, P, (K, Py, s)), (K, P, (K, Py,s)), ...

However, considering the system of equations

T = {<I{7 P17y>7 <I{7 P27y>}7
y=s U {<I{7 P17y>7 <I{7 P27y>}7

the Solution Lemma asserts the existence of the unique sets s’ and s U s’ satisfying
these equations, respectively, where

s'={(K,P,sUs),(K,Py,sUs')}.

Then, the fact that s is common knowledge can more effectively be represented by
s" which contains just two infons and is circular.

4 The Implementation

HYPERSOLVER is a stand-alone program which can solve equations in the uni-
verse of hypersets by making use of the Solution Lemma. It has built-in graphical
capabilities for displaying the graphs depicting the equations input by the user and
the solutions of these equations. HYPERSOLVER is implemented in Lucid Com-
mon Lisp. To communicate with the user and to display graphs, it makes use of
the XView Window Toolkit built on the X Window System. The user interface of
HYPERSOLVER, called the Command Interface, is shown in Figure 7.

9

HYPERSOLVER

FILENAME:

OPTIOMNS

Figure 7: The Command Interface of HYPERSOLVER

4.1 Functionality

HYPERSOLVER solves a system of equations in the universe of hypersets. By a
system of equations, the definition in Section 3 is meant:

{z =a, : © € X and a, is an X-set }

for each x € X, where X is a set of indeterminates, A is a set of atoms, and an
X-set is a set which can contain elements from X. HYPERSOLVER does not solve
systems which are not of this form. Therefore, taking A = {0,1} and X = {z,y}, a
system like

xz=1{0,1,y},
y = {z},

is a valid input for HYPERSOLVER, while the single equation
1 = {x7 y7 0}7
or the system

x=4{0,1},
x = {z},

are not since 1 ¢ X and there should be a single equation for each z € X. (HY-
PERSOLVER includes some filtering functions to detect invalid input.)

10

[¢] HYPERSOLVER

AN

Figure 8: An example output of HYPERSOLVER

The notational conventions in HYPERSOLVER are as follows. Letters A through
L are used to represent atoms of A, while letters M through 7 represent indetermi-
nates of X. The symbol @ will be used to represent the non-well-founded singleton
Q. (One-letter variable naming may seem quite limiting but it is simple to adopt
the parser to handle variables with longer names.) Therefore, the graphs of solution
given in Section 3 are depicted as in Figure 8.

HYPERSOLVER gets its input from a file which is to be specified by the user.
The file must have one equation per line. For example, a file consisting of the
following lines is a valid input file:

X={X,Y},
Y={A,B,Y,Z},
Z={X,Y,0}.

The input read from the file is sent to the parser of HYPERSOLVER. The parser
is a character checking parser with a lookup table for the input characters. After
converting the input into Lisp form, a transformation is applied to convert it to a
list that can be processed by the equation solver. Finally, the input is checked to see
whether it conforms the input requirements of HYPERSOLVER (e.g. if it contains
one equation for each indeterminate, if each equation is of the form x = a,, and so
on).

The equation solving step of the HYPERSOLVER applies the Solution Lemma to
the input system of equations. The alternative formulation mentioned in Section 3
is used for this purpose:

f(@) ={f(y) : y € g(z)} Uh(x),

for any set X of indeterminates where ¢ is a function from X to 2% and A is function
from X to a set A of atoms. For the above example set of equations, ¢(X) = {X, Y},

11

9(Y) ={Y,Z}, 9(Z) = {X,Y} and A(X) = 0, A(Y) = {A,B}, h(Z) = {@} = Q.
This representation scheme is suitable for recursive substitution. The algorithm of
the equation solver performs this substitution by applying the Substitution Lemma
on each equation of the input equation system. So, the solution for an indeterminate
X can be found by finding the solutions of the indeterminates in ¢g(X) recursively.
For each indeterminate, a decoration is found and the solutions are expressed in
terms of these decorations. If the decoration for an indeterminate includes itself,
then this denotes self-membership, and @ is used to signal that. For example, the
decorations of the graphs for the above system of equations are (p, ¢, and r are the
decorations for the indeterminates X, Y, and Z, respectively):

p={@,{A,B,e,{p,q,C}}},
q={4,B,0,{{@,q},q,@}},
r={{0,q},{A,B,0,r},0}.

To prevent duplicate substitutions which arise when an indeterminate occurs two
or more times in an X-set, a list of already visited indeterminates is maintained.
Nevertheless, because of the nature of recursion, duplication may occur in different
levels of set nesting. Therefore, a kind of filtering is applied on the output of the
solver to remove such duplicates.

The next step is the invocation of the graph display part of the HYPERSOLVER.
This part takes the solution of a system of equations produced by the equation solver
as input. As the general graph layout algorithm, a variant of the hierarchical layout
algorithm proposed in [15] is exploited. The reason to use a hierarchical layout
algorithm instead of a general-purpose algorithm is that most of the equations to be
solved by the Solution Lemma will be hierarchical and that self-reference generally
occurs for a single indeterminate. (Figure 5 is a good example of this.) A hierarchical
algorithm leads to simplification in the display procedure and efficiency in run time.

The algorithm which has been adapted to the representation conventions and
output requirements of HYPERSOLVER first forms the edge list of the solution
system which consists of pairs of nodes. This list helps to get all children of each
indeterminate. Then the nodes corresponding to these children are distributed to the
levels taking care of the relationships between pairs of nodes. A more complicated
part of the graph display unit is the one calculating the positions of the nodes on the
screen. The hierarchical nature of the solution graphs is again exploited to make
this calculation. The positions of the descendants of a node are calculated with
respect to its own position, which in turn has been calculated with respect to its
antecedents.

After the calculation of the positions, the actual graph drawing procedure is
activated to display first the nodes and later the edges. This procedure pops up
a large window (called the Graph Display Window, GDW) on which all graphical
information is put. The output convention is such that the node labels which are
the decorations of the sets represented by those nodes are written inside the node
boundaries. While the edges which define hereditary membership are easily drawn,
care has to be taken in case of a cycle. Cycles implying self-reference are not

12

[¢] HYPERSOLVER

[=)

L, =

Figure 9: The HYPERSOLVER graph of

[¢] HYPERSOLVER

Figure 10: The graphs depicting the solution of the example in Section 4

displayed as circular edges, but are drawn in a different form. (Therefore, § is
depicted as in Figure 9.) Cycles of one level are not much of a problem. If there
exists a cycle between two nodes a and b, then the directed edge (b, a) can be drawn
over the directed edge (a,b) to give a double arrow. However references to higher
levels, especially to the root node representing the indeterminate are problematic
since a path with minimum edge-crossing has to be found for aesthetic reasons. In
such a case, paths walking around the graph are preferred (cf. Figure 12). Edge
crossings may be unavoidable if no such path can be found. The solution graphs of
the above example are depicted in Figure 10. The displaying of the graphs depicting
the input sets proceeds exactly the same way as the displaying of the solution system.
For example, the graphs of the input equations of the example system above can be
seen in Figure 11.

4.2 Limitations and Future Work

HYPERSOLVER can solve any system which is in the form required by the Solution
Lemma. This requires the equations to be in the form z = a, for each z € X.

13

[¢] HYPERSOLVER

Y

L

Figure 11: The graphs of the input equations of the example in Section 4

The systems which cannot be solved by HYPERSOLVER are those to which the
Substitution Lemma cannot be applied. Such systems have been exemplified in
Section 3.

HYPERSOLVER is generally weak in input/output operations. First of all it
has limitations on the format of the input, such as one-letter variable naming, and
one equation per line in the input file with no space between the characters of the
input equations. These limitations arise because of the brittleness of the parser. A
more powerful parser would let HYPERSOLVER be more flexible with input but
the extra features would not add to the power of the program.

The graph display unit is another weak part of HYPERSOLVER. Graph drawing
is a hard problem when considered for general graphs with any number of nodes
[16]. Limiting the scope of the graph display problem as explained above reduces
the difficulties considerably, but classical problems like minimizing the number of
edge-crossings remain. HYPERSOLVER’s graph display unit does not claim to
know much about the graph layout problem. The algorithm does not work well for
arbitrary graphs with no coherent node relationships. However, it works fine for the
examples presented so far. Graph drawing problems are addressed in [17], [18], and
[19] which propose generic graph browsers or editors.

Future work on HYPERSOLVER will concentrate on its applications to modeling
of various phenomena in Al. This may include, for example, integrating HYPER-
SOLVER into a situation-theoretic framework [20] where the program may solve
equations whose indeterminates can be unknown elements of situations, or unknown
situations themselves. As a simple example, if a situation S is represented by the
triple (R, P, S"), meaning object P is in relation R to another situation S’, then S
can be found in terms of S’ by solving the equation S = (R, P, S"). Then, if S is a
circular situation, P could also be in relation R to S itself, i.e., S = (R, P, S). This
would, for example, correspond to an actual situation S in which a person P utters
the statement “This is a very exciting situation.” By “this situation,” P is surely
referring to the situation which his utterance describes. Such a circular situation S
would be depicted as in Figure 12.

[¢] HYPERSOLVER

Figure 12: The graph of a circular situation S = (R, P, S)

5 Conclusion

The Solution Lemma is a useful feature of the Hyperset Theory. Besides its mathe-
matical importance and elegance, it provides an interesting way of modeling various
circular phenomena.

The implementation presented in this paper, HYPERSOLVER, is a program
which is based on the Solution Lemma and which can be a useful tool in areas of
AT where information can be cast in the form of equations. Its simplicity, clarity,
and well-defined user interface make it a practical instrument accessible for such
purposes. When supported by a more general parser and a better graphical interface,
it can be one of the emerging tools in mathematical logic, along the lines of, e.g.,
TARSKI'S WORLD [21].

HYPERSOLVER may be an important utility for basic research on the use of set
theory in Al, too. Such research involving conceptual innovations is urgently needed
in Al as pointed out by McCarthy in [22].

References

[1] P. Suppes. Axiomatic Set Theory. Dover, New York, 1972.

[2] A. A. Fraenkel, Y. Bar-Hillel, and A. Levy. Foundations of Set Theory. North-
Holland, Amsterdam, 1973.

[3] J. Barwise. Admissible Sets and Structures. Springer-Verlag, Berlin, 1975.

15

4]

[5]

J. McCarthy. Acceptance Address, International Joint Conference on Artificial
Intelligence (IJCAI) Award for Research Excellence, Los Angeles, 1985.

D. Perlis. Commonsense Set Theory. In P. Maes and D. Nardi, editors, Meta-
Level Architectures and Reflection, pages 87-98. Elsevier (North-Holland), Am-
sterdam, 1988.

[10]

[11]
[12]

[16]

[17]

[18]

M. Pakkan and V. Akman. Issues in Commonsense Set Theory (Extended
Abstract). In K. Oflazer, V. Akman, H. A. Giivenir, and U. Halic, editors,
Proceedings of the First Turkish Symposium on Artificial Intelligence and Neu-
ral Networks, pages 47-52. Bilkent University, Ankara, 1992.

P. Aczel. Non-Well-Founded Sets. Number 14 in CSLI Lecture Notes. Center
for the Study of Language and Information, Stanford, CA, 1988.

J. Barwise and J. Etchemendy. The Liar: An Fssay on Truth and Circularity.
Oxford University Press, New York, 1987.

J. Barwise and L. Moss. Hypersets. Mathematical Intelligencer, 13(4):31-41,
1991.

J. Barwise and J. Perry. Situations and Attitudes. MIT Press, Cambridge, MA,
1983.

R. Parikh. Dumb-founded Sets. Bulletin of EATCS, 1989.

V. Akman. Undaunted Sets. ACM SIGACT News, 23(1):47-48, 1992. Also in
Bulletin of EATCS, 45:146-147, 1991.

J. Barwise. Situations, Sets, and the Axiom of Foundation. In The Situation in
Logic, number 17 in CSLI Lecture Notes, pages 177-200. Center for the Study
of Language and Information, Stanford, CA, 1989.

J. Barwise. On the Model Theory of Common Knowledge. In The Situation in
Logic, number 17 in CSLI Lecture Notes, pages 201-220. Center for the Study
of Language and Information, Stanford, CA, 1989.

L. A. Rowe, M. Davis, E. Messinger, C. Meyer, C. Spirakis, and A. Tuan. A
Browser for Directed Graphs. Software— Practice and Ezperience, 17(1):61-76,
1987.

J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. North
Holland, Amsterdam, 1976.

E. R. Gansner, S. C. North, and K. P. Vo. DAG—A Program that Draws
Directed Graphs. Software—Practice and Ezperience, 18(11):1047-1062, 1988.

T. Kamada and S. Kawai. An Algorithm for Drawing General Undirected
Graphs. Information Processing Letters, 31:7-15, 1989.

16

[19] F. N. Paulisch and W. F. Tichy. EDGE: An Extensible Graph Editor.
Software— Practice and Ezperience, 20(S1):63-88, 1990.

[20] E. Tin and V. Akman. BABY-SIT: Towards a Situation-Theoretic Computa-
tional Environment. First International Conference on Mathematical Linguis-
tics, Barcelona, 1993.

[21] J. Barwise and J. Etchemendy. The Language of First-Order Logic. Number 23
in CSLI Lecture Notes. Center for the Study of Language and Information,
Stanford, CA, 1990.

[22] J. McCarthy. Artificial Intelligence Needs More Emphasis on Basic Research:
President’s Quarterly Message. Al Magazine, 4(4):5, 1983.

17

