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Abstract: Trying to fathom the inner workings of the human mind has been one
of the main preoccupation's of philosophy and psychology. The advent of the
electronic digital computer provided both a new tool and a new perspective for
this quest, and spawned the research field known today as artificial intelligence
(A.l.). Yet, is an artificial intelligence a real possibility, or is it simply a myth,
unreachable in principle? Would an A.l. be conscious, would it literally be an
artificial mind, or is there something intensely human about minds which
preclude our constructing one? Despite years of research, we still have no real
answer to these most basic of questions. Speculation and controversy abound,
rekindled of late by the resurgence of the connectionist paradigm. This paper
examines some of the key arguments in the debate and suggests a new theory
based on "inscriptors" may offer plausible solutions.

Keywords: Atrtificial Intelligence, Chinese room experiment, Turing test, symbol
grounding, Inscriptors.

Introduction

Philosophers have long pondered over the inner workings of the human mind;
just how is it possible that each of us can come to view and understand the world
around us? Lacking the necessary conceptual apparatus, early attempts to
answer this question proved rather unsatisfactory. On the Dualist view, for
example, "the mind... is composed not of physical material obeying physical laws
but of soul-stuff, or 'spooky' stuff, and it operates according to principles unique
to spooky stuff" (Churchland & Sejnowski, 1989). In Plato's time, taking mental
phenomena (experiences, beliefs, etc.) to be non-physical, was perhaps natural,
afterall, what physical entities appear, combine and disappear with such ease.
Later Materialist philosophers insisted that the functioning of the mind must be
due to purely physical phenomena. However, it is only recently, with



developments in formal logic and mathematics that the necessary conceptual
apparatus have become available. Moreover, the advent of electronics, and of
the electronic digital computer, have provided the technical means which may
make it possible to actually construct an artificial intelligence. The stage appears
set, "real" answers might now be forthcoming.

Of Symbols

Early digital computers were frequently referred to as "electronic brains" (Martin,
1998), so it was quite natural for people to ask whether such machines really
were intelligent or whether they were merely imitations of the genuine thing. Can
machines REALLY think? Turing took up this question in his classic 1950 paper
(Turing, 1950). He proposed the, now (in)famous, Turing test. In effect he side-
stepped the real question and suggested instead that if we could not tell the
difference in responses between a human and a machine, then (presumably) the
machine was indeed "thinking". The test (game) was cleverly designed so that
"irrelevant" factors, such as appearance, physical abilities, accuracy, speed etc.,
could be masked as far as possible. For this reason, the participants are kept in
separate rooms and all communication is done via teletypes. Furthermore, the
machine is allowed to "lie" in order to convince the investigator that it is indeed
human. Is there any reason to suspect that some (future) computer could not
pass this test? Turing showed that the more obvious arguments which might be
advanced to show that no computer could ever pass the test, were at least
suspect, if not outright mistaken. Interestingly, the only real difficulty which
Turing foresaw was the possibility that extra sensory perception, ESP, (the
evidence for which he saw as "overwhelming") might upset the balance. This
potential problem could presumably be alleviated by placing the competitors in
"telepathy-proof" rooms. (However, in such a case there remains an uneasy
feeling that there might actually be more to thinking, and minds, than meets-the-
eye!)

In fact, independent of the potential difficulties posed by ESP, there are two real
problems with Turing's test. The first, as we shall see again later, is that it
ignores completely the physical faculties, e.g. vision, touch, motion, etc., which
enable us to interact with, and recognise and discriminate things in the world,
such that any agent lacking linguistic abilities (including animals and perfectly
intelligent but mute people) would be excluded from the test. This may be
interpreted, incorrectly, as meaning that speechless agents have no ability to
think, whereas in fact it simply indicates the need for a more refined test, similar
perhaps, to Harnad's Total Turing Test (Harnad, 1991). The second problem
with Turing's test is that it is blatantly behavioural. The behavioural stance is
unfortunate partly because it tells us nothing about what thinking is or how
thinking entities function, and partly because it leaves the way open for fakes.
There is a possibility, admittedly remote due to the open ended nature of the



test, that it may be passed by a machine which quite clearly is not "thinking". An
indication of this came with Weizenbaum's 1965 ELIZA program (Weizenbaum,
1965), which reputedly fooled several people into believing that they were indeed
talking to a human psychologist.

Newell, Shaw and Simon's 'Logic Theorist' and their later 'General Problem
Solver' (Newell & Simon, 1963), were among the first attempts to go beyond the
purely behaviourist vision and see what the internal mechanisms of thinking
might look like in practice. Winograd's 1972 SHRDLU (Winograd, 1973)
program, applied these ideas to demonstrate natural language understanding in
the context of a 'toy blocks world'. A pictorial representation of the state of
SHRDLU's world was displayed on a monitor, which was updated in response to
English sentences typed on the keyboard. Commands such as 'Put the pyramid
on the blue box' would be acted upon if "understood", or would produce such
responses as 'Sorry, | don't know which pyramid you mean' or "The pyramid is
already on the blue box'. This was indeed an impressive demonstration and
increased expectations that truly intelligent thinking machines were here, or at
least just-around-the-corner.

But this was not the case. Not only did such programs prove impossible to scale
up, but a philosophical argument due to Searle showed that however
sophisticated they may become, they would still never really "understand"
anything at all. Searle's thought experiment, commonly known as the 'Chinese
Room', (Searle, 1980) consists of a room inside of which is a non-Chinese
speaking man, say Searle himself. It also contains paper, a pencil and a rule
book. Native Chinese speakers converse with the room by passing messages
written in Chinese through a slot in the wall. Searle-in-the-room examines the
messages and, using the rule book, prepares a written response which he
passes back through the same slot. The rule book simply says things like, "If the
message is squiggle squiggle then output squoggle squoggle". Now, even
assuming that we could actually produce a rule book sophisticated enough to
enable Searle to fool the natives into believing that he understood Chinese, it is
(presumably) quite clear that Searle himself still does not understand any
Chinese. But Searle has simply put himself in the place of a computer which is
assumed able to pass the Turing test in Chinese, so if Searle doesn't understand
Chinese, then neither would the computer!

This argument hit deep at the heart of one of Al's most basic tenets, the physical
symbol system (PSS) hypothesis which states that, "A physical-symbol system
has the necessary and sufficient means for general intelligence" (Newell &
Simon, 1979). A physical symbol system is just an implementation of a symbol
system, of something which manipulates formal symbols purely on the basis of
their form (syntax), not their meaning. A computer is just such a symbol system,
but if, as Searle argues, it doesn't understand anything, then presumably the
PSS hypothesis must be wrong.



There are a number of frequently heard replies to Searle's argument. Among
them:

The 'Systems Reply': OK, so the man in the room doesn't understand
Chinese, but surely the system as a whole including the room, the man, the
rule book and the paper and pencil, does. Searle's response to this is no.
Imagine that the man memorises the rule book and hence dispense with
the room, book etc. Now the man is the system, but he still doesn't
understand Chinese.

The 'Brain Simulator Reply': If we wrote a program that simulated the
actual sequence of neural firings at the synapses of the brain of a native
Chinese speaker, then surely it could be said to understand Chinese. Once
again Searle's response is a resounding no: simulation is not duplication; "..
you could not digest pizza by running a program that simulates... digestion"
(Searle, 1990). According to Searle, what distinguishes the brain, are its
causal properties and its ability to produce intentional states. And these, he
claims, are characteristically biological and hence not reproducible in
silicon, or any other material.

The 'Robot Reply': Suppose the computer were placed inside a robot and
that it received some of its symbols from a television camera mounted on
its head and some of its output symbols were fed to motors that caused it
to act, to move around, pick things up, etc. Surely the robot could be said
to understand. But again Searle responds negatively; how could it since, as
with the room, Searle could take the place of the computer and would
obviously have no idea what the symbols he was shuffling around, actually
meant. Furthermore, since all of the robot's actions derive from its electrical
wiring, while Searle-in-the-robot's actions result directly from his following
the program, there is no intentionality in either of them.

Searle seemingly has all avenues of escape covered. Computers simply cannot
possess understanding, hence they cannot be truly intelligent, therefore no
computer, however cleverly programmed, would actually be a mind; A.l. is
impossible, dead!

Well, maybe not quite. Searle's argument is actually directed against purely
formal symbol manipulating systems, systems which have only syntax and no
semantics. His initial response to the robot reply was to claim victory on just
these grounds, since a robot is quite clearly more than just a symbol
manipulator. Moreover, several authors have questioned the validity of Searle's
main response to the robot reply. Boden (Boden, 1990), for example, points out
that intentional states, such as understanding, are properties accredited not to
brains, but to people. It is precisely in order to explain how such capacities arise,
that simpler processes which lack them are postulated. Harnad too, takes up this
issue (Harnad, 1993), pointing out that while Searle can put himself in place of



the computer and say he does not understand, he cannot logically do the same
with the transducers responsible for the robots vision, hearing, etc. If he were to
attempt to internalise these transducers too, as he did with the rule book, he
would have to use his own eyes and ears, but then he would become an integral
part of the system and the system he is already has considerable
"understanding". It is thus unclear whether Searle-in-the-robot could legitimately
claim not to understand Chinese. Indeed, some authors (e.g. Hauser, 1993)
have even questioned whether Searle-in-the-room could properly claim not to
understand Chinese, particularly after memorising the rule-book. As an
indication of why this may not be quite so straightforward a pronouncement,
consider the case of a tourist who manages to memorise a Chinese phrase-book
and can thus utter an appropriate sentence in (almost) any given circumstance.
Assuming the phrase-book was extensive enough, it would appear as if the
tourist was actually conversing in, and to all extents and purposes
understanding, Chinese. Moreover, if asked what they were doing, the tourist
may quite well reply that he/she was talking in Chinese!

The difficulty which Searle's Chinese Room argument does highlight, is that
computers are specifically designed to manipulate symbols without regard to
what they mean, i.e. what they actually relate to in the "real" world, not simply
other symbols in the machine. But true understanding most surely requires
meaning. The situation resembles the problem of obtaining the meaning of a
word from a (foreign language) dictionary. Each word is explained in terms of
other (foreign) words, which are explained in terms of still others and so on, such
that unless an external agent provides an explanation of the most primitive
words, no meaning can be extracted from the dictionary. So, despite the fact that
the symbols being manipulated may be capable of a systematic interpretation,
there is still no understanding since this interpretation is not available to the
machine. To achieve this, symbols must somehow be "grounded" in reality, and
this, of course, is precisely the function that transducers perform. Thus, far from
being mere extras to be added onto an intelligent computing device,
transducers, both receptors and effectors, must be considered an integral part of
the system, for without them there would be no understanding, no intelligence.

As noted previously, the Turing test has often been criticised precisely on the
grounds that it ignores the human faculties now seen to be a vital ingredient of
intelligence. It was in recognition of this, that Harnad proposed the 'Total Turing
Test' (Harnad, 1991), which requires a machine to be indistinguishable from
human beings, not only in their "symbolic" capacities, but also in their "robotic"
capacities. Robotic here does not necessarily mean having arms and legs, but
rather an ability to recognise and differentiate objects in the real world. Note that
the TTT is not actually stronger than the TT since, if the above argument is
correct, linguistic abilities must be founded on robotic ones. Instead it provides a
clear indication that real understanding is based firmly on robotic capabilities
involving transducers. Unfortunately, exactly how such a machine might be
implemented and how it might function, is still something of a mystery. Simply



appending transducers to a computer is obviously not enough (otherwise
SHRDLU might easily have been an A.l.). There must, presumably, be some
principled method of integrating them. Harnad suggests a hybrid solution,
employing a neural network between the transducers and the symbol system;
the network enabling the robot to learn the invariant categories in its analogue
input and then assign them a ground-level symbol. Before examining this
proposal, it is perhaps worth pausing to ask whether a connectionist system (e.g.
a neural network) could not solve the problem on its own, without the need for
any symbol system.

Of Connections

Connectionism is an attempt to model cognition, bottom up, by copying the
functional structure of the brain. This structure is presumed to consist, in
essence, of a multitude of simple, independent, yet highly interconnected,
processing units. Such units are called neurons and, for this reason,
connectionism has become synonymous with the term artificial neural networks.
Neurons have a large number of inputs, but only a single output. The output of
one neuron is connected to, and hence forms the input of, many other neurons.
Networks are usually considered to have no feedback loops and hence tend to
form some sort of hierarchical structure. The processing which a neuron
performs is generally considered to be very elementary. A neuron's state, its
output, is usually modeled as a non-linear function of its inputs. A typical scheme
would involve applying a threshold function to the weighted sum of the inputs.
Changing the interconnection weights thus affects which specific sets of neurons
respond to which input patterns. Learning then, consists in finding an appropriate
set of weights, such that the desired mapping is achieved. There are a number
of algorithms which allow for the automatic learning of such sets of weights,
directly from example inputs.

The aim of connectionism is to demonstrate that such ‘'parallel distributed
processing' as is afforded by artificial neural networks, is in fact a sufficient basis
for cognition. If this is true then the brain, contrary to the classical stance, need
not be a PSS. Fodor and Pylyshyn examined this claim in detail (Fodor &
Pylyshyn, 1989). They concluded that neural nets, as presently conceived, were
in fact not powerful enough to provide a basis for cognition, although they went
on to suggest that such nets might offer a partial implementation-level account of
the mind's PSS. F&P's argument is based on the observed productivity,
systematicity and compositionality of language, and on the apparent inferential
coherence of thought. In order to produce such effects, they claim, an agent's
internal representation must have semantic and syntactic constituent structure.
F&P observe that neural networks do not possess such a representation and,
moreover, that they implement an already discredited philosophy
(associationalism), and thus cannot offer a suitable basis for cognition. Given



this argument, Harnad's proposal for a hybrid architecture seems reasonable,
perhaps even essential.

But is this really the case? How can the shortcomings of the individual
techniques be overcome simply by combining them? Answering this requires an
appreciation of the underlying difference between the symbolic and connectionist
paradigms. What really distinguishes them is the nature of symbols and the
manner in which they combine (Davenport, 1993a). The symbolic paradigm is
based on idea that signals coming from the environment can be shown to be
mutually-exclusive. Symbols are thus considered to be like "objects" which can
be moved and copied at will, composite symbols being formed by an encoding
process, usually concatenation (the literal gluing together of copies of the
component symbols). In contrast, the connectionist paradigm is founded on the
conjunction of inputs from the environment. Connectionist symbols are
correspondingly static, unmovable 'signals', which combine by being 'linked'
(effectively and'ed) together. F&P argued that linking lacked the ability to retain
potentially vital 'relational' information, as required, for example, to distinguish
'ijohn loves mary' from 'mary loves john'. However, in principle, the structure of
the linking can be used to handle these situations, just as in classical syntax
diagrams. The catch, of course, is that a special "mechanism" is required to
"decompose" such structure, since the net itself cannot do it. Obviously, it would
be nice to be able to account for this process using the same linking technique,
however, it should be noted that the syntactic method similarly demands
extraneous mechanisms which are also presently unexplained! Assuming then,
that both 'paradigms' are capable of representing the necessary knowledge, they
are, in a sense, equivalent, and hence may be viewed merely as alternative
means of implementation. But on this account, Harnad's proposal for a hybrid
system is obviously flawed, combining techniques is not going to make any
difference, at best it would simply remove the need for a symbol system but that
would leave the neural net to do all the work, which, according to F&P, it still
couldn't manage even given a solution to the representational structure problem.

Summary

To recap, Searle's Chinese Room argument has destroyed the hope that a
symbol system alone could possibly be an artificial intelligence, while F&P have
demonstrated that neural nets are also unsuitable, finally Harnad's proposal to
combine the techniques has also been shown to fail. Is A.l. impossible then?
Well, maybe not, there remains at least one further option. F&P dismissed neural
nets on two grounds, representational structure and Associationalism. The
former, as noted above, could be resolved given a suitable mechanism to
"extract" the network structure. Can the philosophical difficulties be overcome
too? The next section presents a new theory which suggests that they can be. It
also appears to offer a suitable basis for an extraction mechanism.



Enter Inscriptors

The world, according to the inscriptor theory (Davenport, 1993b), is a vast,
complex, chaotic place. Yet, for all its apparent randomness, certain "states-of-
affairs" do recur in both space and time. An agent which could identify such
repetitions might be able to predict other "world-states". It could then use this
knowledge when selecting its actions, thus increasing its chances of
success/survival. For example, it could utter the same sounds which had
previously persuaded its mother to relieve the discomfort caused by a soiled
nappy. It could first search locations similar to where it had previously found
food. It could come to recognise and avoid undesirable, even potentially
dangerous, situations. The better an agent was at predicting the world, the better
its chances of survival (and presumably, the more intelligent we would consider
it!)

An agent's task then, is to detect and store recurrent "states- of-affairs", and to
later recognise an existing situation as appearing to match one of them, so as to
use this knowledge to decide upon the next action. Since it is impossible to know
which states will repeat, the best an agent can do is to remember whatever it
can, giving priority eventually to those states which are actually observed to
repeat in practice. In essence then, an agent merely has to remember each state
that it observes. The basic unit of memory which accomplishes this is the
inscriptor.

An inscriptor, like a neuron, has a large number of inputs and a single output. The
output of one inscriptor can feed to the inputs of other inscriptors such that
collections of inscriptors form a loose hierarchy with the system inputs at the
lowest level. Each inscriptor has a "learning threshold" and if the signals incident
on the inputs are sufficient in number to exceed this threshold, the inscriptor is
said to 'fire'. This causes it to remember the combination of inputs which made it
fire, and from then on to ignore signals on those connections which did not
contribute to the firing.

The outcome is that an inscriptor records some observed input combination, some
"state-of-affairs"; that is, whatever (logical) input connections it ends up
possessing (after firing), signals have been concurrent on those inputs. The
resulting (logical) network structure is thus a consequence of direct causal
interaction with the world and is therefore also, in some sense, a 'correct’
representation of it. While subsequent "situations" should be stored in a similar
manner, they must also be matched against the knowledge already inherent in the
network, to help discover recurrent states and hence to help select desirable
courses of action. To achieve this, inscriptors which have fired respond to signals
on their (logical) inputs by changing their "activation level" and by generating
another signal on their output. Signals from the environment thus alter the state of
various inscriptor nodes, such that there is a direct causal relationship between
the world and the activation state of the network. To understand how this can help



'recognise and predict' consider a typical inscriptor network such as that depicted
in figure 1.

... insert figure 1 about here ...

Signals incident on the inputs to the network provide "evidence" for the inscriptor
nodes to which they are connected. In other words, an input signal is evidence
that the same or similar set of inputs as caused the inscriptor to fire in the first
place, are being repeated (i.e. the same situation or concept is again apparent to
the agent's senses). Thus, in figure 1, input C is evidence for both concepts X
and Y, while input A is evidence for concept X (but not Y) and input E is
evidence for concept Y (but not X). Inscriptor outputs function in a 'winner-take-
all' fashion, such that "evidence" is gradually redirected away from nodes with
lower activation levels in favour of those with higher activation. Since this tends
to make nodes with higher activation even more active, the result 'snowballs'
towards the most likely conclusion, i.e. towards the node(s) for which there is
most evidence. So, if, in figure 1, both A and C inputs were incident on the
network, there would be more evidence for concept X than for concept Y, and
thus X would "succeed", whereas if inputs C and E were incident there would be
more evidence for concept Y than X, and it would win-out. Note that this
outcome is reached in the absence of a signal on input D (or B in the former
case), the network being able to draw "conclusions" even if the information it is
given is incomplete. An inscriptor (node) will also receive evidence (and hence
become "active"), even in the absence of any inputs, if some of the nodes to
which its output is connected are themselves active. Consequently, if, in figure 1,
the network has settled on concept Y in response to inputs C and E, node D
would actually become active since it is connected to the active Y node.
Furthermore, evidence from Y is passed on up to R and S, so that Z also sees
its output connections active and so becomes active itself. The network thus
displays 'input completion', or equivalently, raises 'expectations' of certain inputs.
Note too, that this process is entirely symmetrical, in that evidence from input F
will pass (via Z) to nodes R and S causing them to become slightly active, and
that this, in turn, will cause node Y to receive evidence and hence become active
(even in the absence of inputs on C, D and E).

Observing the state of the network once it has settled on a solution, shows that it
could be described as possessing very logical properties, e.g. if A and B then X,
if B and C and D then Y (actually it has been shown that a more suitable
description would be, if X then A and B, if Y then B and C and D, see Davenport,
1992). These letters may even be replaced with suitable propositions, e.g. if
barks and animal then dog, if animal and meows and claws then cat. It is easy to
imagine that input signals could be derived from transducers and that the
network would thus properly recognise things such as cats, dogs, or whatever
(such a system would obviously be extremely complex, however, it is, in
principle, possible). While we have achieved a certain degree of understanding
here, we have still not yet achieved conversational/language understanding



since the labels are not actually part of the system, but merely a convenience
for human interlopers.

Using language requires some further complication, the agent must be able to
recognise and utter any desired word, and words heard must be related to
objects seen and vice versa. Figure 2 illustrates how the previous network may
be extended to achieve this.

.. insert figure 2 about here ...

There are now two sets of inputs, one originating from visual senses as before,
another from the hearing senses. Both function in the same manner. Some
nodes are connected to both input sets, and represent situations in which a word
is heard and something is seen. Assuming that the net is constructed in such a
way that the word is the one used to refer to the thing seen, we now have the
required "(word) symbol grounding". Seeing something results in a particular set
of visual inputs which are "processed" as described above, the net settling into a
state such that the corresponding 'word' node, will be active, since its output is
connected to an active node. Having identified the appropriate word, it is but 'a
short leap and a jump' to actually utter it. Alternatively, if a sequence of sounds
are heard, these too are "processed" and result in the recognition of a particular
word. Again a 'side effect' of this, is that the related nodes in the visual hierarchy
are activated producing a corresponding mental image in the "mind's eye".

Language proper must be built on top of the foundation offered by this ability to
relate word to object. The processes involved are the same but this time require
linkage between abstract situations and abstract sentence patterns (as opposed
to abstract word and abstract object). Having selected an appropriate sentence
form for the situation to be described, utter it word by word, each time selecting
the most suitable word based on the pattern and the actual situation.

As an illustration that the combination of two hierarchies provides the required
"understanding/grounding", consider a robot with only hearing senses and which
only ever hears people speaking, (or equivalently imagine yourself - blind -
surrounded by people who only speak in a foreign tongue, or perhaps just
listening to foreign language radio broadcasts). The robot (you) would gradually
come to recognise syllables and words and eventually sentence patterns
(extended sequences of words which differ by only a word or so in certain
places). It (you) would probably be able to offer a list of words which could
potentially be used in specific places within a given sentence pattern. Most of
these candidate words would be ones which had actually been heard in
sentences which matched the pattern, although it is possible that others may be
suggested by comparison with the lists of words in other sentence patterns. In
this way a (partial) syntax of the language could gradually be built up, but without
the slightest idea of what any sentence or word actually meant, i.e. actually
referred to in the real world. The addition of, and linkage to, another hierarchy



which somehow encodes spatial and other knowledge of the world, can give
"meaning" to this. The second hierarchy determines groups of features, objects,
situations, etc. based on similarities which actually occur in the real world. Such
groupings are 'linked' to a word-symbol in the first hierarchy, such that even
though the agent may not have heard a sentence containing a particular word, it
can generate/understand a sentence with that word since it is in the same
grouping with (semantically) 'similar' words/concepts from which it originally
created the pattern.

Harnad's explanation concerning the grounding of unseen concepts is also
clearly valid in this scheme. An agent which knows (has nodes in both the visual
and spoken word hierarchies for) 'horse' and 'striped’, and which is told that a
'zebra is a striped horse', can successfully imagine, and thus identify, a 'zebra'
when it first encounters one. Similarly with the more fanciful peekaboo unicorn, a
horse with a horn which disappears the moment you attempt to look at it (and
hence is unseeable in principle) and so, in a similar vein, with abstract concepts
such as love, barter, freedom, etc. Lastly, notice that the second hierarchy need
not result from audio senses, but could equally well come from touch or even
vision (as evidenced by blind people who learn to touch read Braille and deaf
people who can read/sign).

In this way then, inscriptors overcome the major difficulties besetting both the
symbolic and connectionist paradigms. Being based on a connectionist, linked,
architecture, they avoid the difficult (impossible) questions concerning where
symbols come from, how to decide which set of symbols to employ and how to
correctly manipulate them. By not employing interconnection weights inscriptors
are able to evade the philosophical problems facing neural networks.
Interconnection weights are the embodiment of the Associationalist philosophy
which suggested that one concept was related to another with some fixed
"degree". The inscriptor theory recognises that the relationship between
concepts is not fixed but varies with context. By accumulating evidence only from
those situations that match the specified context inscriptors effectively compute
the relevancy of any concept as and when needed. Notice that while one may
view the firing process as setting binary weights, these are not used in
subsequent computations as they are in neural networks. Finally, by providing a
clear distinction between internal (signal) symbols and external (word) symbols,
and by employing two hierarchies (one for spatio-temporal information, the other
for the matching external symbols) the inscriptor theory suggests a solution to
the problem of constituent representational structure.

Of Intelligence and Minds

Inscriptors thus seem to be able to endow a system with "understanding”, but
does this make it intelligent? What is intelligence? | offer the following definition;



Intelligence is the ability of an agent to detect, store and subsequently use
for its own advantage, the regularities which exist in an ever changing
world. A truly intelligent agent may also be expected to exhibit creativity
whereby it fortuitously combines circumstances which are not otherwise
naturally related.

With the proviso that an agent have a goal, or set of goals (intentional states) so
that it does not remain a purely passive entity, inscriptors can thus seemingly
provide the abilities necessary for intelligent behaviour (of course, this is
cheating somewhat, since the definition, although quite reasonable, is obviously
framed to suit the needs of the paper!)

So an inscriptor-based agent seems capable of understanding and of intelligent
behaviour. Most certainly it thus provides a reasonably good MODEL of the
mind, but could it actually BE a mind? Presumably this would depend a lot on
the meaning attached to the word "mind". Most people would probably balk at
the conception of an artificial (man-made) mind, either on purely religious
grounds or because, to date, all minds have been natural so that the idea of an
artificial one seems somehow contradictory. Even allowing for this it is not
certain whether such a system would count as a mind, since exactly what the
necessary/requisite properties are is far from certain. Whether attributes such as
consciousness, causal/intentional powers, emotions etc. are essential to,
irrelevant to or a by-product of minds is unclear.

The concept of self (of self awareness, of consciousness) may, for example,
merely be the label we attach to the internal model we each have of ourselves
(our bodies). Such a model is a pre-requisite for any sort of intelligent action,
since it is vital to be able to predict the consequences of any action before
carrying it out, in order to avoid potentially disastrous results. Thus, by definition
(cheating again) there is every reason to suppose that a machine could, indeed
should, be conscious. In a similar vein, just as direct physical pain is part of the
control mechanism which helps us develop such a model by teaching us to avoid
immediate personal injury, so the more ethereal emotions/feelings such as
love/hate/jealousy etc. may be learnt to help describe and control social
interactions!

As regards causal and intentional properties, Searle has long argued that a
‘computer' could not be a mind precisely because it has the wrong causal and
intentional properties. Searle's insistence on "causal" powers being uniquely
biological is understandable, all he is saying (I believe) is that much/most/almost-
all of our existence, our very being, is bound to our biology. Things like hunger,
thirst etc. are irrelevant to anything non-biological, hence such an agent would
have no use for, and hence no real understanding of, such concepts. It may, of
course, acquire a behavioural conception of them by observing human beings,
but this is a far cry from "living" them. As an analogy consider the case of men
and women; men have no (and never can have any) real understanding of what



it feels like to be a woman, of "womanhood", of giving birth, since these are
uniquely tied to biological factors and the wrong biology at that. In an exactly
similar vein Collins (Collins, 1987) has argued that a machine must "share a
culture" in order to exhibit the understanding necessary for social interaction.
Intentional states too, were founded largely on biological needs, the desire to
survive, to reproduce, to eat, etc., although these are now often translated into
social pressures such as getting money, promotion, marriage, children, etc.

On the other hand, Searle also claims that the 'type' of causal powers embodied
in the electronic computer are wrong. He points out that simulation is not
duplication. This is correct, but the argument in this case is wrong because, in
essence, the brain's input and output is of the same "casual type" as the
simulation, i.e. electrical signals. Thus, just as a mechanical simulation of a heart
could pump blood while a computer simulation of it would not, so too an
electronic simulation of a brain could cause muscles to move while a mechanical
simulation of it could not. In other words, just as a persons real heart could be
replaced with a mechanical one, so too their brain could be replaced with an
electrical machine (suitably programmed)!

Concluding Remarks

The inscriptor theory appears to present a plausible alternative to both the
classical symbolic and connectionist paradigms. It avoids the problems posed by
Searle's Chinese room argument since it is not a symbol system per se. It could
presumably form the basis of a virtual symbol system though, since it offers a
means by which (external, word) symbols can be grounded, i.e. by which they
can attain meaning. It also overcomes the difficulties faced by neural nets (as
pointed out by F&P) by adopting a more realistic view of the world. While it
retains a connectionist type, linked, architecture it is not affected by Searle's
Chinese Gym argument (Searle, 1990), indeed it seems to show the fallacy of it
by demonstrating the clear distinction between internal and external symbols. Of
course, there are still several pieces of the puzzle left to put in place, in particular
exactly how an agent can come to understand and initiate actions such as
uttering words. But these are relatively minor details, for, if the inscriptor theory
is right, an artificial thinking, understanding, intelligent, even conscious,
emotional, mechanism, appears to be a real theoretical possibility (although in
practice constructing one with human level capabilities may prove impossible
and pointless!).

But then again, all these ideas may be partly or even wholly wrong. There may
be much more to the mind than the superficial observations presented here, as
Turing hinted, it really might be intimately bound to a spiritual world far beyond
our materialistic reach, so that an artificial mind really is a misnomer.
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