Spelling Correction in Agglutinative Languages

Kemal Oflazer and Cemaleddin Giizey

BILKENT UNIVERSITY

Department of Computer Engineering
and
Information Science

Technical Report BU-CEIS-94-01

Spelling Correction in Agglutinative Languages

Kemal Oflazer and Cemaleddin Guzey
Department of Computer Engineering and Information Science
Bilkent University
Bilkent, Ankara, 06533, Turkey
e-mail: {ko,guzey}@cs.bilkent.edu.tr, Fax: (90-312) 266-4126

Abstract: This paper presents an approach to spelling correction in agglutinative languages that
is based on two-level morphology and a dynamic programming based search algorithm. Spelling
correction in agglutinative languages is significantly different than in languages like English, because
the concept of a word in such Janguages is much wider that the entries found in a dictionary, owing
to productive word formation by derivational and inflectional affixations. After an overview of
certain issues and relevant mathematical preliminaries, we formally present the problem and the
our proposed solution. We then present results from our experiments with spelling correction in
Turkish, a Ural-Altaic agglutinative language

1 Introduction

Spelling correction is an important component of any system for processing text. Creation of textual
information is prone to many errors: people make errors when they type, or sometimes are ignorant
of the correct spelling of a word. Optical character recognition systems often make errors during
recognition due to bad quality of the input, change in fonts or typefaces, or insufficient training.
Nowadays, many word processors employ a spelling checking and correction functionality. However
this functionality is mainly available for languages like English, French, etc. Recently, Kukich
[10] has presented a very comprehensive overview of the spelling correction problem (mainly for
English) and approaches many researchers have employed over years.

Agglutinative languages such as Turkish or Finnish, differ from languages like English in the way
lexical forms are generated. The concept of word in such languages is much wider than the roots or
lemmata found in a dictionary or lexicon. Words are formed by productive affixations of derivational
and inflectional suffixes to roots or stems like, “beads-on-a-string” [14]. Furthermore, roots and
suffixes (morphemes) may undergo changes at the boundaries due to various phonetic interactions,
and may have to obey constraints like vowel harmony. A typical nominal or a verbal root may
have thousands of valid forms which never appear in the dictionary. For instance, we can give the
following (rather exaggerated) example from Turkish:

uygarlastiramayabileceklerimizdenmissinizcesine

whose toot is the adjective uygar (civilized).! Its morpheme breakdown is:

!This is an adverb meaning roughly “(behaving) as if you were one of those whom we might not be able civilize.”

uygar+las+tir+ama+yabil+ecek+ler+imiz+den+mis+siniz+cesine

The portion of the word following the root, consists of 11 morphemes each of which which either adds
further semantic information to, or changes the part-of-speech, of the part preceding it. Though
most words one uses in Turkish are considerably shorter than this, this example serves to point
out the fundamental difference of the spelling checking and correction problem in such languages.
Any errors made in the transcription, such as insertion, deletion, replacement, or transposition of
characters may necessitate a whole set of techniques not typically used in systems for languages
like English.

Our prior work has mainly been on spelling checking in Turkish [12, 13], and two-level morpho-
logical analysis of Turkish [11]. In this work, we develop an algorithm for spelling correction for
agglutinative languages that we have applied to Turkish. Our approach uses a two-level morpho-
logical analyzer and generator, coupled with a dynamic-programming like search procedure for
intelligently enumerating candidate lexical forms from a given misspelled form. However, our use
of two-level morphology for spelling correction, is fundamentally different from that of Aduriz et.al.,
[1]. In the following sections, we overview the spelling correction problem in general and in agglu-
tinative languages. We then present some preliminary definitions and mathematical background
and introduce an algorithm for spelling correction for agglutinative languages. We finally present
results from our implementation for Turkish.

2 The spelling correction problem

Du and Chang [3] define the spelling correction problem as follows:

From a set of known words (dictionary), find those words that most resemble a given
(misspelled) character string.

The keyword in this definition is “resemble.” It is difficult to express rigorously how two strings
resemble. Generally, a distance metric is used to compare two strings. Then the problem becomes
that of finding those words that are neighbors of a given character string with respect to a given
distance metric.

There have been a number of proposals to be used as the distance metric in comparing two strings
[8, 10, 15]. The most popular and widely used metrics are g-gram and linear trace based metrics.
In the ¢-gram metric, two strings are compared according to the number of different substrings
of length ¢ they share. In the linear trace method, two strings are compared according to an edit
distance metric which measures the extent of changes one needs to apply to one of the strings to
get the other string.

3 Spelling correction in agglutinative languages

As briefly discussed earlier, agglutinative languages have certain aspects that make the spelling
correction problem substantially harder and different than that for languages like English. The
expression “from a set of known words” no longer implies what is usually found in typical word list,
and now means “all possible words that can be generated from a given root word by derivational
and inflectional suffixes.” For example, Finnish nouns have about 2000 distinct forms while Finnish

verbs have about 12,000 forms ([4], pp. 59-60). The case in Turkish is also similar where nouns
may have about 170 basic different forms, not counting the forms for adverbs, verbs, adjectives,
or other nominal forms, generated (sometimes recursively) by derivational suffixes. Hankamer [5],
however, reports a much higher number (in the millions) of forms for Turkish nouns and verbs.

If we look closely into the problem, it will not be difficult to observe that it consists of two
subproblems.? Given a misspelled word

1. determine all the roots from the dictionary that can be the root of the misspelled word, and

2. generate (systematically) all the possible words that “resemble” the given character string,
from roots identified in subproblem 1.

The first step of the problem is relatively easy because of the static structure of the root dictionary.
Various techniques developed for spelling correction, say, in English can usually be applied here.
However, sometimes the roots are partially or totally deformed either by morphophonemic varia-
tions, or by misspellings which makes this step a bit more complicated, or in the latter case rather
intractable. We will opt not to deal with cases where a root can not be determined, especially due
to total or near-total deformation.

The second step is the heart of the problem. Producing all the possible words from all the known
roots requires an exhaustive generate and test search procedure. This search must be done in an
intelligent way such so that all the words that resemble the misspelled string are produced and
words that do not resemble it are not produced. Obviously, once all such forms are generated,
there is still the problem of ranking them so that the most “plausible” suggestions are ranked
higher according to editing distance, word usage statistics, etc. We do not consider this aspect in
this paper.

In the following sections we will formally introduce the problem after a brief overview of the various
notational tools we employ.

3.1 Notation

We denote the set of the surface forms of the roots in the language® by R, and the set of lexical
forms of the roots by Riez.* We use X = 21,29, ..., 2, Y = 41, Y2, ..., Yn to denote strings from the
alphabet X of the language. X will denote the surface form of the incorrect or misspelled string,
and Y will typically denote the surface string that is a (possibly partial) candidate word. Y., will
denote the lexical form of this candidate string.> The notation X[i : j] = @;, 2s41, ..., ¢ refers to the

2In this paper, we do not deal with languages that have productive prefixes.

®From now on, language will refer to an agglutinative language.

*Here, we are referring to the two levels of forms in the two-level morphology terminology: the lezical form which
essentially corresponds to the structure of a word in terms of morphemes etc., and the surface form which is the
surface realization of the lexical form as allowed by the automata implementing the two-level correspondence rules
[14, 2, 9, 6].

®Just to make this clear we can give an example from Turkish. For instance

ev+1Ar+nHn (house+PLU+GEN)

represents such a lexical form where A represents a low unrounded vowel (a and e in Turkish) which is unresolved for
frontness, and H represents a high vowel (1, i, u, and i) which is unresolved for other features. The +’s indicate the
morpheme boundaries. When this lexical form is processed by the generation component of a two-level morphological
analyzer, the surface form obtained is:

evlerin

substring (from characters i to j inclusive) of any string X If 7 is missing, then the substring refers
to the prefix of the string up to and including the j** character. X[0] denotes empty substring and
| X | denotes the length of string X. We assume the existence of a function, surface() to generate
surface strings from lexical strings, i.e., surface(Yj;) = Y. The function surface() applies the
constraints imposed by the automata implementing the two-level rules for the language.

3.2 Edit distance metrics

In both parts of the problem, we need some criteria to measure how much two strings resemble
each other. The most widely accepted and readily applicable metrics are based on linear traces and

g-gTaTms.

3.2.1 Edit distance with linear traces

The edit distance measures how many unit operations are necessary to convert one string into an-
other. The unit operations are insertion, deletion, replacement of single character and transposition
of two adjacent characters.

Definition 1 (Edit Distance) Given two strings X andY of length m and n respectively, then
ed(X[m],Y[n])® computed according to the recurrence

d(X[+1, Y[+1) = ed(X[,YI) i i1 = s
= 14+ min{ed(X[i—1],Y[j—1]), if both &; = yj41

ed(X[i+1],YTj]), and ooy = 3,
ed(X[1], Y[j + 1)}
= 14+ min{ed(X[i],Y[j]), otherwise
ed(X[i+ 1], Y[j)),
ed(X[a], Y[j + 1))}
ed(X[0LY[j]) = 1<j<n
ed(X[i,Y[0]) = 1 1<i<m

gives the minimum number insertions, deletions, replaces and transpositions one needs to perform
to convert one string to the other.

This is a slight modification of edit distance formulas given by Du and Chang [3] and by Wagner
et.al., [15]. For example, the edit distance between iflobra and foobar is 3: an i is to be deleted, [
has to be replaced with an o, and ra has to be transposed.

3.2.2 qg-grams

A g-gram is a simply substring of length ¢. The ¢g-gram distance is based on counting the number
of occurrences of different ¢g-grams in two strings. The most popular g-grams are one-gram and

where vowel harmony rules have resolved the A and the H, and the first n in the last morpheme has disappeared since
the previous morpheme ends with a consonant. (See Oflazer [11].)

5We may occasionally drop the index of one or both arguments to indicate that we are referring to the whole
string.

bi-gram. Increasing ¢, decreases the number of ¢-grams in a given string and increases position
dependency between characters. We can define the ¢-gram distance between two strings.

Definition 2 (q-gram distance) Let g € X7 be a g-gram. Let G(X[m])]g] denote the total num-
ber of the occurrences of g in the string X of length m. The q-gram distance between X[m] and

Yn| is

Dy(X[m),Y[n]) = Y |G(X[m])lg] = G(Y[n))[g]]

3.3 Recognizing and generating strings in the language

We would like to capture and abstract the behavior of a morphological generator and analyzer for
the given language by two finite state automata.

Definition 3 A finite state generator M, = (P,6,V,S,F) where P is a set of states, § is the
state transition function, V is the output alphabet, S is the starting state, and F is a set of final
states, generates, all correctly formed words of the language. The transitions of M, are of the form
0(p;) = p; (pi and p; € P), with an output v, € V which denotes the lexical form of a morpheme in
the language and also labels the transition. It should be noted that it is possible to go from one state
p; to another p; by more than one transition, outputting a different morpheme. We say a string
Yiew ts generated by M, if Yie, is formed by concatenating, in order, the outputs of the machine as
we traverse starting from S to one of the states in F. We denote by L(M,) as the set of all lexical
strings generated by M,.

M, essentially captures the morphotactics of the language, and in general may contain circular
transition sequences (as is the case in Turkish). Applying the function surface() to a string
generated by M, will give us a valid surface string in the language.

We also have a finite state recognizer M, which recognizes whether given surface strings are in
the language or not. When a word in language is input to M,, if M, reaches one of its final
states, the input surface word is a legal word in the language; hence M, implements a spelling
checking functionality for the language. It should be noted that the actual finite state machine
may actually be very complicated dealing with morphophonemic changes as required by parallel
automata implementing the two-level rules. The details of M, are not really necessary for our
exposition.

We can view M, as a directed graph with states as the vertices and the state transitions as the
edges. For misspelled words that are rejected by M,, the spelling correction problem is then to
find all directed paths from the start state S of M, to one of the states in F' so that the distance
of the surface form of the lexical word formed by concatenating the morphemes (that is, v’s) along
this path, is within a certain edit distance threshold of the misspelled word.

3.4 Formal description of the spelling correction problem
We can now define the spelling correction problem as:

Definition 4 For given an incorrect word X (rejected by M,), and a distance threshold t, find the
solution set of possible correct words

S(X,t)={Y]ed(X,Y) <t and Y = surface(Yi,) and Y, € L(M,)}.

in viable time and space.

We will now consider two subproblems of the problem.

3.5 Determining the root

In an agglutinative language, presenting alternatives for a given incorrect string requires de-
termination of all possible roots.” The criteria used to select roots is based on the edit dis-
tance between the (surface form) of a root and the prefixes of X. If any root word has a
edit distance from all prefixes of the misspelled word less than the threshold ¢, then it is a
candidate root. An example from Turkish makes this clear. For the misspelled Turkish word
X = kalayhlamak, kalayla and kalas (among others) are possible roots when ¢ = 1 because
ed(kalayhla, kalayla) = ed(kalay,kalas) < 1. However, yatay is not a possible root since
ed(kala,yatay) = 3 > 1, ed(kalay,yatay) = 2 > 1, and ed(kalayh,yatay) = 3 > 1. Other
prefixes of X are either too long or too short to consider, since the edit distance in such cases
exceeds the threshold. This observation leads to the following definition:

Definition 5 The set of all the possible roots for the incorrect word X is,

PR(X,t)={r|ed(X[i],r)<tand 1 <i:<m and r € R}

3.5.1 Root determination with q-grams

In general, the cardinality of R — the set of all roots— is usually in the tens of thousands, thus
one needs a fast search algorithm that works on a pre-constructed data structure for efficient
determination of PR(X,t). We have chosen to represent the g-gram information associated with
root words with an inverted bit vector structure so that the bit-vector corresponding to a g-gram
has 1’s at positions corresponding to the root words containing that ¢-gram. Since the root list
is static, such a structure can be constructed off-line, and can be accessed randomly by using the
g-gram as a key. Let us denote by k, how many ¢-grams in a root that we would like to consult,
and by ¢,, how many g-grams we are willing to leave out and yet call the root a possible candidate
root. To generate the set of such roots, we take the first k ¢ — grams of the incorrect word and then

consider all () subsets of the (k —t;) ¢-grams. For each such subset, we intersect the bit

k—t,
vectors corresponding to the g-grams in that subset. We then union the bit vectors resulting from
each subset. The resulting bit vector then has 1’s corresponding to root words which are “close”
to a prefix of the misspelled word X. These roots are then filtered by the edit distance constraint
in Definition 5 to compute PR(X,t). The parameters k and ¢, are in general fixed once according
to the average length of the root words in a language.

3.6 Generating candidate words from a given root

Assuming that we have a set of root words found as described above, we now have to generate
words in the language having this root, that do not deviate from the given misspelled string by
more than the threshold. We can state this problem as

"Recall that we do not deal with the case where the language also has productive prefixes.

Subproblem: Given the misspelled word X, the threshold value ¢, and the generator
automaton My, and the set of roots PR(X,t), generate all elements of the solution set

(X, 9).

We will first consider solutions where the root portion of the word may be misspelled and the rest
may be okay. We call such solutions as being on the left edge of the word.

3.6.1 Getting solutions on the left edge

The edit distances between an element r of PR(X,t) and certain prefixes of X® are between 0 and
t. Sometimes, these distances are equal to ¢, which means no further mismatches between X and Y
— the candidate string— are to be tolerated. In such cases, there is no need for further checking by
generating a morpheme sequence. Just concatenating the portion of X that remains after aligning
r with a prefix of X, to 7.z, and then the generating the surface string will give us candidate Y
strings. However, determination of the alignment of the root word r with X is somewhat tricky
because the root in X may be deformed.

Let us now define a new edit distance measure between r, an element of PR(X,t), and X. This is
the minimum of the edit distances between r and any prefix of X.

Definition 6 (Prefix edit distance) The prefiz edit distance between v and X is

pred(X,r) = min{ed(X[i],r)| 1 < i < m}.

Definition 7 (Alignment index) The set of alignment indexzes of r in X is

index(X,r)={i| ed(X[i],r) = pred(X,r)}.
For the example given before

pred(kalayhlamak, kalayla) = 1 and index(kalayhlamak,kalayla) = {8} and
pred(kalayhlamak, kalas) = 1, and indez(kalayhlamak, kalas) = {4,5}.

When pred(X,r) = t, the remaining part of X after alignment with the root r must com-
pletely occur in Y after r to satisfy ed(X,Y) < ¢. That is Y must be in the form Y =
sur face(concatenate(riey, X[t + 1 : m])), ¢ € index(X,r). For the example above, the candi-
date from root kalayla, is kalaylamak, which happens to be the correct solution and hence is
accepted by M,. The candidates due to kalas are kalashlamak and kalashylamak, both of which
are rejected by M,.. Constructing Y’s for all the elements of the index set and all elements of the
candidate root set, gives all possible solutions on the edge. If the intended word is among these (as
can be possibly be indicated by a user) then we can eliminate the remaining work.

3.6.2 Generating candidate words

Getting solutions on edge will ease the computation of the correct word if the erroneous part
happens to be in the root, but it does not solve the problem completely. The solution requires

8These prefixes are X[|r| —] through X[|r| + ¢].

a depth-first generate and test probing of the finite-state automaton M, starting with the start
state 5. We now have to find all the paths from this state to one of the final state using the roots
in PR(X,t), so that when the morphemes along this path are concatenated and surface string is
generated, it is within an edit distance ¢ of X.

When the search starts morphemes are concatenated and the length of the candidate lexical string
Y} increases. After one step of the search, the partial surface string Y is compared with a suitable
prefix of X. In most of the cases the candidate Y will deviate from these prefixes of X by more
than the threshold without reaching a final state, so that it can no longer lead to a viable solution.
In such cases we do not consider any further transitions from that state.

The following theorems from Du and Chang [3] helps us to determine when a partial candidate Y
will not yield any result.

Theorem 1 The error distance matriz for all prefizes of X and Y, Hpx, where H(i,j) =
ed(X[i,Y[J]) 1<t <m and 1 <j<n, has the following properties:

a) H(i,j)— 1< H(G+1,j) < H(i,5)+ 1 for 0 < i< m,0<j < n,
b) H(i,j)— 1< H(i,j+ 1)< H(i,j)+ 1 for 0 <i<m,0<j < n,

¢) Hi,j) < H(i+ 1,7+ 1)< H(i,j)+ 1 for0 <i<m,0<j < n.
Proof: See Du and Chang [3].

Theorem 2 Let H,,«, be the error distance matriz in Theorem 1. Assume that m > n and let
d =m —n. Then, the sequence of elements of H, along the path H(1,1)— H(2,1)— H(3,1)—
H(d+1,1)— H(d + 2,2)— ...— H(m,n), are non-decreasing.

Proof: (Du and Chang [3]) From Theorem 2-b, H(d + 1,1) > H(d+ 1,0) — 1 = d. Also, from
Theorem 1-c¢, H(1,1) < H(0,0)+1 = 1. Hence, H(d 4 1,1) — H(1,1) > d — 1. Since we know
from Theorem 1-a, H(¢+ 1,1) < H(i,1)+ 1, H(l 1), (2 1),..., (d+ 1,1) can only be non-
decreasing. Remaining part of the path H(d+ 1,1), H(d+ 2,2),..., H(m,n) (by Theorem 2-c) is
non-decreasing.

Theorem 2 determines a non-decreasing path in error distance matrix H,,«,. This is not exactly
what we need since the theorem requires that the length of the candidate string Y be known. In
our case, we know that this length has to be in the range m — ¢ to m + t for Y to be a candidate.

3.6.3 Limiting search during word generation

Due to the limitation above, we can not cut a branch of the search by looking at only a single
path in H,,x, as defined in Theorem 2. First we construct H for the current (possibly partial)
Y, then consider column n (n being the current length of Y'), and then find the minimum of the
edit distance values along this column between rows n — ¢ and n + ¢ inclusive. If this value exceeds
the threshold ¢, then there is no point in further pursuing this path. Formally, we define a cut-off
distance metric:

Candidate String

\

- m e ——— -

X PIOAA 1091100U]

wI

<
8
.=
(@)
@]
&
- g
(@)
@]
2.
=X

7
—_— e o — e - — =

m

Figure 1: Determination of Cut-Off Paths in H,,«,

Definition 8 (Cut-off distance)

min{H[i,n]|1<i<n+t} if n<t
min{H[i,n]|n—t<i<n+4+t} ift<n<m
min{H[i,n]|n—1t<i<m} fm<n<m+t
n—m Ifm+t<n

cuted(X[m],Y[n]) =

The idea is similar to pred(X,r) defined earlier, in that prefixes of X are again considered. If the
cut-off edit distance between X and the current Y does not exceed the threshold, further transitions
along from the state in M, currently reached by Y, have to be pursued.

After these observations we can state our algorithm for word generation as follows:

Initialize C(X,t) to the empty set
for all r € PR(X,1)

Push((7ez,5)) /* on to search stack*/
while stack not empty
Pop((Yiez, pi)) /* pop the next state to check */
For all p; such that (p;) = p; with morpheme v € V as the output
Y «— surface(concat(Yie,,v)) /* generate surface form Y */
If cuted(X[m],Y[n]) <t
Push((concat(Yiez, v), p;))
if ed(X[m],Y[n]) <t and p; € F, then insert Y into C(X,1?)

Theorem 3 The algorithm above produces exactly the solution set C(X,t) when PR(X,t) is given.

Proof: Every element of PR(X,?) is pushed into the stack. If Y € C(X,t) then Y;., € L(M,),
that is, there is sequence of states in M,

gh

ex Vi Uig—
ST s by~ iy Di_, —— i (pi € F)

so that
Y = sur face(concat(Ties, iy, Vigy -+ - -5 iy)

and for all Y; = sur face(concat(rice, viy, Vi, - - -, v;;)) 1 < j < k we have cuted(X,Y;) < t.
4 Results from experiments with spelling correction in Turkish

We first present two spelling correction examples from our implementation. For our implementation
we used bi-grams (hence ¢ = 2), and we chose k as 3 and ¢, as 2.°

EXAMPLE 1
Misspelled word: verememetkeyim
Threshold t: 1
Solutions on left edge: None
Candidate Roots: vere verem ver
Solutions: Lexical Surface
Edit distance 1 ver+yAmA+mAktA+yHm verememekteyim
EXAMPLE 2
Misspelled word: gaigmalariyla
Threshold t: 2
Solutions on left edge: yazigmalariyla yatigmalariyla
yapismalariyla yakigmalariyla
takigmalariyla sayigmalariyla
mayigmalariyla katigmalariyla

9The duplicate entries in the list of candidate roots for the second example, are in fact not duplicate; they have
different part-of-speech categories and hence different morphotactics.

10

Candidate Roots:

kapismalariyla kakismalariyla
kagismalariyla ¢lkismalariyla
gagrilmalariyla gagirmalariyla
atigmalariyla aligmalariyla
yarigmalariyla tanigmalariyla
karigmalariyla danigmalariyla
garpismalariyla gakilmalariyla
gagrigmalariyla barigmalariyla
apigmalariyla

cag caki gal gali gam gan gap gar cat gati gav cgay
cag cak gakig ¢al galig gap gat gatig cav

11

(correct form)

Solutions: Lexical Surface

Edit distance 1 cat+Hg+mA+1ArH+ylA gatismalariyla
gap+Hg+mA+1ArH+ylA gapigmalariyla
galig+mA+1ArH+ylA galigmalariyla
gakig+mA+1ArH+ylA gakigmalariyla
cag+Hg+mA+1ArH+ylA gagigmalariyla

Edit Distance 2 cav+mA+1ArH+ylA gavmalariyla
gav+Hg+mA+1Ar+Hm+ylA gavigmalarimla
gav+Hg+mA+1Ar+Hn+ylA gavigmalarinla
cav+Hg+mA+1ArH+ysA gavigmalariysa
cat+Hl+mA+1ArH+ylA gatilmalariyla
cat+mA+1ArH+ylA gatmalariyla
gat+Hg+mA+1Ar+Hm+ylA gatigmalarimla
gat+Hg+mA+1Ar+Hn+ylA gatigmalarinla
cat+Hg+mA+1ArH+ysA gatigmalariysa
cap+Hl+mA+1ArH+ylA gapilmalariyla
cap+mA+1ArH+ylA gapmalariyla
gap+Hg+mA+1Ar+Hm+ylA gapigsmalarimla
gap+Hg+mA+1Ar+Hn+ylA gapigsmalarinla
gap+Hs+mA+1ArH+ysA gapigmalariysa
galig+mA+1Ar+Hm+ylA galigmalarimla
galig+mA+1Ar+Hn+ylA galigmalarinla
galig+mA+1ArH+ysA galigmalariysa
cal+Hn+mA+1ArH+ylA galinmalariyla
cal+mA+1ArH+ylA galmalariyla
gakig+mA+1Ar+Hm+ylA gakigmalarimla
gakig+mA+1Ar+Hn+ylA gakigmalarinla
gakig+mA+1ArH+ysA gakigmalariysa
cak+mA+1ArH+ylA gakmalariyla
cag+Hl+mA+1ArH+ylA gagilmalariyla
cag+mA+1ArH+ylA gagmalariyla
cag+Hg+mA+1Ar+Hm+ylA gagigmalarimla
gag+Hg+mA+1Ar+Hn+ylA gagismalarinla
cag+Hg+mA+1ArH+ysA gagigmalariysa

Table 1: Average number of operations per misspelled word, for t = 1

Recognitions | Generations | Edit Distance | Solutions | % Accuracy

k Operations Offered

3 30.9 311.2 2498.4 3.6 95.1
4 10.4 194.7 1068.8 2.4 78.2
5 3.9 88.5 471.7 1.5 54.0

Table 2: Average number of operations per misspelled word, for ¢t = 2

Recognitions | Generations | Edit Distance | Solutions | % Accuracy

k Operations Offered

3 108.4 4462.0 20680.4 52.0 95.1
4 46.5 2247.8 10386.6 35.5 78.2
5 13.6 817.1 3799.9 20.3 54.0

The algorithm described above was tested on a set of 141 randomly selected incorrect words from
Turkish text. Among these misspelled words, 14% had edit distance of 2, and the remaining 86%
had edit distance 1, to their intended correct form. The morphological analyzer and generator that
we used was our two-level specification for Turkish [11], developed using the PC-KIMMO system.
This system has a rather comprehensive coverage of Turkish morphology and uses a root lexicon
of about 24,000 words. It is, however, rather slow and can analyze only about 2 forms per second
and can generate about 50 forms a second on Sun Sparcstations. So, instead of using timings,
we counted the number of times the morphological analyzer and generator, and the edit distance
computations, were called as these were the most expensive operations our algorithm.

These statistics show the average number of morphological recognitions and generations, and the
edit distance operations required, and the number of correct solutions offered per misspelled input
word. The last column indicates the percentage of cases the intended correct form was found. The
results in Table 1 are for threshold ¢ = 1 and the results in Table 2 are for for threshold t = 2. In
both cases, bi-grams were used with ¢, = 2. We varied k£ which determines how many bi-grams from
the begining of the incorrect word are to be considered, between 3 and 5. This range was considered
because according to some limited statistics we have on Turkish text, the average root length is
about 4.5 characters. Choosing k = 3 allows more deformed roots to be handled at the expense of
more computation, while choosing k = 5 sometime will not find roots with minor deformations but
it runs faster.

Although, our PC-KIMMO based morphological analyzer and generator that we have used for this
study, is rather slow, we have now ported our morphological analyzer system to the XEROX-PARC
system by Karttunen [7], and intend to integrate it to our system. This system can recognize and
generate Turkish forms in few milliseconds on Sun Sparcstations. With this system it will be
possible to generate all solutions in about 1 to 2 seconds for t = 1 and in a few seconds for ¢t = 2,
on Sun Sparcstations.

12

5 Conclusions

This paper has presented a spelling correction algorithm for agglutinative languages that is based
on a two-level morphological generator and analyzer, and a intelligent generate and test search
procedure. The algorithm uses a ¢-gram based approach to determine the candidate roots words,
and then from each root word, generates valid forms in the language, that are guaranteed not to
deviate from the given misspelled string by more than a threshold, using morphological generator.
We have applied this approach to Turkish, and our results indicate that we can find the intended
correct word in 95% of the cases.

References

[1] 1. Aduriz and et.al. A morphological analysis based method for spelling correction. In Proceed-
ings of the Sixth Conference of the Furopean Chapter of the Association for Computational
Linguistics, April 1993.

[2] E. L. Antworth. PC-KIMMO: A two-level processor for Morphological Analysis. Summer
Institute of Linguistics, Dallas, Texas, 1990.

[3] M.W.Duand S. C. Chang. A model and a fast algorithm for multiple errors spelling correction.
Acta Informatica, 29:281-302, 1992.

[4] G. Gazdar and C. Mellish. Natural Language Processing in PROLOG, An Introduction to
Computational Linguistics. Addison-Wesley Publishing Company, 1989.

[5] J. Hankamer. Morphological parsing and the lexicon. In W. Marslen-Wilson, editor, Lezical
Representation and Process. MIT Press, 1989.

[6] L. Karttunen. KIMMO: a general morphological processor. Tezas Linguistic Forum, 22:163 —
186, 1983.

[7] L. Karttunen and K. R. Beesley. Two-level rule compiler. Technical Report, XEROX Palo
Alto Research Center, 1992.

[8] J. Y. Kim and J. Shawe-Taylor. An approximate string-matching algorithm. Theoretical
Computer Science, 92:107-111, 1992.

[9] K. Koskenniemi. Two-level morphology: A general computational model for word form recog-

nition and production. Publication No: 11, Department of General Linguistics, University of
Helsinki, 1983.

[10] K. Kukich. Techniques for automatically correcting words in text. ACM Computing Surveys,
24:377-439, 1992.

[11] K. Oflazer. Two-level description of Turkish morphology. In Proceedings of the Sizth Confer-
ence of the Furopean Chapter of the Association for Computational Linguistics, April 1993.

[12] A. Solak and K. Oflazer. Parsing agglutinative word structures and its application to spelling
checking for Turkish. In Proceedings of the 15" International Conference on Computational
Linguistics, volume 1, pages 39 — 45, Nantes, France, 1992. International Commitee on Com-
putational Linguistics.

13

. Solak and K. Oflazer. Design and implementation of a spelling checker for Turkish. Lin-
13] A. Solak and K. Ofl Desi d impl i f i hecker for Turkish. Li
guistic and Literary Computing, 8(3), 1993.

[14] R. Sproat. Morphology and Computation. MIT Press, 1992.

[15] R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal of the
Association for Computing Machinery, 21:168-173, 1974.

14

