EFFICIENCY OF RANDOMLY ASSIGNING
TASKS TO PROCESSORS

Wmn. Randolph [I'&IlEIlIl, Chandrasekhar Narayanaswaml, Mohan S.
KanEanlialll, and Varol Akman

BILKENT UNIVERSITY

Department of Computer Engineering
and
Information Science

Technical Report BU-CEIS-94-03

EFFICIENCY OF RANDOMLY
ASSIGNING TASKS TO PROCESSORS

Wm. Randolph Franklin
Electrical, Computer, and Systems Eng. Dept.
Rensselaer Polytechnic Institute
Troy, New York 12180-3590, USA
E-mail: wrf@ecse.rpi.edu

Chandrasekhar Narayanaswamsi
IBM Corporation
11400 Burnet Road, Mail Stop 9260
Austin, Texas 78758, USA

E-mail: chandra@austin.ibm.com

Mohan S. Kankanhalli
Institute of Systems Science
National University of Singapore
Kent Ridge, Singapore 0511
E-mail: mohan@iss.nus.sg

Varol Akman
Dept. of Computer Eng. and Information Science
Bilkent University
Bilkent, Ankara 06533, Turkey

E-mail: akman@trbilun.bitnet

January 28, 1994

Abstract

We have implemented the uniform grid technique—due to the first author—on several
parallel machines. It is complicated to globally equalize the load across the processors
to correct for the fact that some grid cells have more data than others. Therefore,
in our implementations we randomly assigned grid cells to different processors. The
actual performance observed was very good and we obtained a near-linear speedup
for many different algorithms. In this paper, we analyze the efficiency of this random
assignment method of load balancing for parallel machines. The problem of analyzing
the efficiency of leaving the loads uneven may be abstracted as follows.

Suppose that we have N independent tasks of unit weight and P processors to
execute them. Assume that we are randomly, uniformly, and independently assigning
each job to one of the processors. Since some processors will have more tasks than
others, the efficiency, or the optimal time, N/ P, divided by the expected time until the
last processor finishes will be less than unity. This paper analyzes this and presents
finite numbers and asymptotic equations. For example, N = 1000, P = 100 gives
53% efficiency. N = 1000, P = 1000 gives 18% efficiency. These efficiency figures are

surprisingly high and they explain the good performance of our implementations.

1 Introduction

Efficient geometric algorithms are crucial in various key areas of industry such as
VLSI design and CAD [9]. The uniform (a.k.a. adaptive) grid [3] spatial subdivision
scheme divides the extent of a geometric scene uniformly into many smaller subregions
(cells) of identical shape and volume. The idea is to exploit the limited spatial extent
of individual geometric entities by inserting them into the subdivision and perform-
ing subregion-wise computations on them, thereby minimizing global computations.
Figure 1 shows an example. Uniform grid has been used to develop and implement
parallel algorithms for segment intersection, visible surface determination [5], Boolean
operations on polygons and polyhedra, etc., on actual parallel machines such as the

Sequent, CM-2, and the Intel iPSC/1 Hypercube [6].

%

A%

\

/

Figure 1: The uniform grid partitioning.

The problem of analyzing the efficiency of scheduling tasks by random assign-
ment was motivated by a referee’s query concerning implementing the uniform grid
technique on a parallel machine [3, 7, 8, 10, 12]. We illustrate the motivation by
considering a specific problem, line-segments intersection, to be solved using the uni-
form grid technique. Suppose that we wish to determine all intersections of a large
number, say one million, of small line segments. The process is as follows.

1. Place, say, a 1000 x 1000 grid over the data.
2. For every edge, determine in parallel which cells each edge passes through.

3. Logically invert the resulting data structure so we know the edges in each cell.

4. For every cell, process in parallel each cell by comparing all its occupants pair-
by-pair to determine intersections. If there are more cells than processors,
the obvious solution is to group the cells into blocks. A better solution is to
randomly assign cells to processors, so as to break up any dense clusters.

Although the edges are not randomly distributed, any correlations between them
are local, and become relatively less important as their number grows. Indeed, the
number of pairs of edges that are actually tested for intersection does track the theo-
retical number that would hold if the edges were random. So we assume randomness.
Then the number of edges in any given cell follows a Poisson distribution. The prob-
lem is the time taken by the slowest step, 4 above, since some cells have more edges
than others.

Random assignment has been used for memory allocation by Rettberg et al. [13].
This reference mentions the problem of hot spots and uses randomization of memory
locations with address hashing to mitigate them. It also uses statistics of random
arrivals to analyze the problem.

However, randomly assigning jobs to parallel processors is quite contrary to current
practice, where much work is often spent to calculate the optimum assignment [14].
It would seem that random assignment just has to be intolerably inefficient. This
paper shows that that is not so, even when there is one processor per job.

Sometimes the workload is distributed among the processors even more unevenly
than this model gives, as can happen when ray-tracing and volume-rendering in com-
puter graphics [2]. In this case, dynamic load-balancing—where each processor gets a
new job from a master allocator whenever it finishes the previous one—is appropriate.

2 Analysis

We assume a PRAM (Parallel Random Access Machine) model of parallel computa-
tion [11]. Assume that we have N tasks, each of which takes unit time to execute, and
which do not interact with each other. Assume that we have P processors on which to
execute them. If we can assign N/P tasks to each processor, then all the processors
will finish in time N/P, which is 100% efficient. Unfortunately, that may require
more global planning than we can afford, so an alternate solution is to randomly and
independently assign each task to some processor. This is not 100% efficient since
some processors will have more tasks than others. How efficient is it?

Let the average number of tasks per processor, A = N/P. By our assumption of
independence, the probability distribution of tasks per processor is Poisson:

e_AAk
Ik ==

A Poisson probability has 4 = ¢ = A. If A >> 1, then a normal approximation is
reasonable. The probability distribution function, pdf, is the probability that the
random variable is at most k:

Unfortunately it has no closed form. However, it is monotonic and smooth. Note
that for small A\, we must use the exact discrete distribution since the continuous
approximation is very coarse. In fact, for A = 1, while > 72, ek;,l =1, [i2, %dk =
0.83. For A =3, 22 S dk = 0.98, and for A = 5, 2, <25 dk = 0.998.

We wish to know when the last of the P processors will finish. If we have P random
variables, each with pdf F', then the pdf of their maximumis G = F'F. The probability
density function of the completion time of the last processor is g(¢) = G(i) — G(: — 1),
and so ¢, the expected time for the last processor to complete, can be calculated.
The efficiency is then \/g. We used Maple [4] and represented f, F', g, G as discrete
arrays truncated when fy(z) = 1078, For example, fi000(1172) ~ 1078, Some sample

results are shown in Table 1.

Jobs (N) | Processors (P) | Efficiency (A/g)
1 1 1.00
2 1 1.00
2 2 0.66
4 1 1.00
4 2 0.72
4 4 0.48
10 1 1.00
10 2 0.80
10 5 0.54
10 10 0.37
30 1 1.00
30 3 0.79
30 10 0.51
30 30 0.29
100 1 1.00
100 10 0.66
100 100 0.24

1000 1 1.00
1000 10 0.86
1000 100 0.53
1000 250 0.37
1000 1000 0.18
3000 1 1.00
3000 30 0.83
3000 100 0.67
3000 300 0.49
3000 1000 0.30
3000 3000 0.16

Table 1: Sample results for efficiency.

Of interest is the question of the maximum P that may be used for a given A, and
still achieve 50% efficiency, i.e., a completion time of 2A. (It’s easier to fix A than to
fix N.) Since A will be large enough, we will approximate f as a normal density with

3

¢ = 0% = \. The median is the mean under the normality assumption. Therefore we
calculate the median which is easier to calculate. Thus we want t,,cq € G(tmeq) = 1/2.

Le., FP(2)) = 1/2.
If

Q(z) = /:O %e“’”’z/zdx

P =1-Q (V)

then

so we want P such that

Q(VA)=1-271F

Now,

2
ex/2

27
eM2/27 \

In2

How good is this approximation? If A = 10, this gives P &~ 1200. The actual
efficiency for A = 10, P = 1200, and hence N = 12000, is 46%.

What if P = N, so that A, the average load, is 17 Let E be the efficiency. Then
G(1/E) =1/2, so that Fi_1(1/E) = 2=YN. Thus FE falls very slowly with increasing
N, being about 0.12 at N = 1000000.

These efficiencies compare favorably to many parallel algorithms, whose efficien-
cies fall with log(N).

If the above efficiencies are too low, they may be improved by even a modest
amount of load averaging. Assume that the P processors are grouped in blocks of L
processors each. Within each block, the processors take jobs from a common queue,
so that all the processors in one block finish at the same time. All the processors in
another block will finish together at, probably, a different time. Since random Poisson
variables add, the efficiency in this case is exactly the same as the efficiency with N
jobs and P/L processors, with no averaging (although the actual time is a factor of L
less). For example, with N = 3000, and P = 3000, the efficiency is 0.16, from Table
1. If the processors are grouped in pairs of three, then the efficiency rises to 0.30,
while groups of ten give an efficiency of 0.49.

Q(z) ~

(1+1/a%+--)
For large X, we get
P~

3 Summary

The above analysis proves that the uniform grid should work well in parallel, so our
previous actual implementation results [10, 12] were not deceiving us.

This analysis would apply to any other geometric algorithm where it is not conve-
nient to globally assign the work evenly to all the processors. In other words, central
planning is not always necessary.

4

Acknowledgments

This research was funded by the NSF under grants ECS 83-51942 and CCR~-9102553.

We are grateful to Professor D. J. Hand for his initial encouragement and kind advice.

References

[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, U. S. Government Printing Office,
1972.

B. Corrie and P. Mackerras, “Parallel Volume Rendering and Data Coherence on
the Fujitsu AP1000,” Technical Report TR-CS-92-11, The Australian Nationa
University, Department of Computer Science, Computer Sciences Laboratory,

1992.

V. Akman, W. R. Franklin, M. Kankanhalli, and C. Narayanaswami, “Geometric
Computing and Uniform Grid Technique,” Computer-Aided Design, 21, 7 (1989),
pp. 410-420.

B. Char, First Leaves: A Tutorial Introduction to Maple V, Springer-Verlag,
1992.

W. R. Franklin and V. Akman, “Adaptive Grid for Polyhedral Visibility in Ob-
ject Space: An Implementation,” Computer Journal, 31, 1 (1988), pp. 56-60.

W. R. Franklin, C. Narayanaswami, M. Kankanhalli, M. Seshan, and V. Akman,
“Efficiency of Uniform Grids for Intersection Detection on Serial and Parallel

Machines,” in New Trends in Computer Graphics, Eds. N. Magnenat-Thalmann
and D. Thalmann, Springer-Verlag, 1988, pp. 288-297.

W. R. Franklin, C. Narayanaswami, M. Kankanhalli, D. Sun, M. C. Zhou, and
P. Wu, “Uniform Grids: A Technique for Intersection Detection on Serial and
Parallel Machines,” Proc. Auto Carto 9: Ninth International Symposium on
Computer-Assisted Cartography, Baltimore, MD, 1989, pp. 100-109.

W. R. Franklin and M. S. Kankanhalli, “Parallel Object-Space Hidden Surface
Removal,” ACM Computer Graphics, 24, 4 (1990), pp. 87-94.

W. R. Franklin, C. Narayanaswami, M. Kankanhalli, V. Akman, and P. Y. F. Wu,
“Efficient Geometric Algorithms for CAD,” in Geometric Modeling for Product
Engineering, Eds. M. J. Wozny, J. U. Turner, and K. Preiss, Elsevier, 1990, pp.
485-498.

M. S. Kankanhalli, “Techniques for Parallel Geometric Computations,” Ph.D.
Thesis, Electrical, Computer, and Systems Eng. Dept., Rensselaer Polytechnic
Institute, Troy, NY, 1990.

[11] R. M. Karp and V. Ramachandran, “Parallel Algorithms for Shared-Memory Ma-
chines,” in Handbook of Theoretical Computer Science: Volume A—Algorithms
and Complexity, Ed. J. van Leeuwen, Elsevier, 1990, pp. 869-942.

[12] C. Narayanaswami, “Parallel Processing for Geometric Applications,” Ph.D.
[hesis, Electrical, Computer, and Systems Eng. Dept., Rensselaer Polytechnic
Institute, Troy, NY, 1990.

[13] R. D. Rettberg, W. R. Crowther, P. P. Carvey, and R. S. Tomlinson, “The
Monarch Parallel Processor Hardware Description,” Computer, 23, 4 (1990),
pp. 18-30.

[14] Journal of Parallel and Distributed Computing, Special Issue on “Scheduling and
Load Balancing,” 16, 4 (1992).

