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ABSTRACT

Various axiomatic set theories (ZF, NBG, NF, and KPU) are studied with
a critical eye. The basic mathematical and philosophical reasons behind
their axioms are given, as well as their review from the commonsense point
of view. An introduction to a “commonsense set theory” is attempted at
the end.

1. Introduction

In the foundations of mathematics, one of the most popular approaches is set theory. Almost
all of the mathematical objects can be constructed out of sets. In this view, mathematics
deals only with the properties of sets and all of these properties can be deduced from a
suitable list of axioms [14, 21].

In an application of set theory to commonsense knowledge representation and reasoning,
two basic mental (cognitive) processes are abstraction and categorization. In fact, a set
might be considered as the image (in mind) of a collection of things under some abstraction
mechanism. This mechanism should be similar to the one Cantor thought [13, 11, 32, 36,
38] and can use the color, size, use, location, and other things that might be useful in this
categorization process. (Here we did not say “property” instead of “thing” because the
differentiation of the objects might not depend on the object, viz. location.)

According to Piaget [27], human abstraction mechanism is different from a simple (Aris-
totelian) mechanism. Piaget calls this “reflexive abstraction.” The Aristotelian mechanism
is that given some external object, such as a crystal and its shape, substance, and color, the
subject simply separates different qualities and retains one of them—the shape, maybe—
rejecting the rest. Usually, the Piagetian categorization mechanism depends on the person
(his personal cognitive capabilities) and the situation in which this categorization occurs.
Technically speaking, if we are to construct a commonsense set theory, we have to consider
the situations (thus situation theory and situation semantics (STASS)) [4, 5, 6], and define
the axioms of our system to be somewhat compatible with the axioms of STASS. However,
the axioms of a commonsense set theory cannot be totally independent of the classical (ax-
iomatic) set theory [2, 26]; the development of the classical theory sheds considerable light
into our axiomatic system and must not be summarily rejected.

In this paper, various classical set theories (ZF, NBG, NF, and KPU) are discussed. We
will examine each axiom of these theories, both from the mathematical and philosophical
points of view. If applicable, we will also study each axiom from a commonsense angle.

2. Zermelo-Fraenkel (ZF)

In any axiomatization, axioms can be used in three ways: (i) to express the basic truths about
the universe of objects of interest, (ii) to give the basic building blocks and the principles of
construction of a universe of objects, and (iii) to give the rules of the “game to be played”
with newly introduced symbols [36].

In general, ZF is the basic axiomatization used heavily in mathematics. The origin and
the underlying mathematical properties and results of its axioms were extensively discussed

in the literature [9, 13, 15, 16, 17, 18, 19, 20, 30, 31, 33, 35, 36, 37]. The axioms are defined in
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first order logic and only the membership relation (€) is considered to be a basic relation. The
axioms of ZF are Frtensionality, Null Set, Pair Set, Union, Inﬁmty, Power Set, Sepamtwn
(Subset), Replacement, and Foundation (Regulamty) Choice is not an original axiom of ZF,
but is a must vis-a-vis some advanced topics such as large cardinals, independence proofs
and the continuum hypothesis.

Extensionality.

VaVyVz[(z €z & 2z € y) = © =y

Basically, this axiom defines the notion of being a set: a set is a collection of elements,
whose identity is completely determined by those members. In some places [13, 28] equiv-
alence of two sets is also defined as a basic notion. In this case, Extensionality is used to
define the property of this relation [36].

From a mathematical point of view, this axiom is one of the least problematic ones, but
from a philosophical vantage point and from the commonsense side, things are not so simple.

First, a questionable thing is €. This relation might be considered with modal operators,
i.e., we might think of possible memberships, believed memberships, etc. Consider the
barbers of Springfield (home-town of Bart Simpson). There might be three barbers working
for money, and one barber who does not work for money (since he has another job) but
serves the poor children. If we look at the situation from the commonsense perspective,
there are four barbers in the town, but from say, the mayor’s point of view, there are only
three (official) barbers. Thus, the context is crucial and we must have some knowledge about
the situation we are facing.

Another issue is fuzzy membership. There is a probabilistic approach, i.e., a is a mem-
ber of b with probability %, which might result in mathematically and philosophically
interesting points and discussions, but is not very attractive for a commonsense set theory.
Normally, people Would think of stralghtforward membership and non-membership, not of a
probabilistic relation.’

Consider again Springfield.? Springfield Fire Department and Springfield Barber-shop
Quartet might have the same staff members. Are these two equivalent? We hope not.

Null Set.

J2Vy-(y € z)

This axiom guarantees the existence of a set with no members (i.e., empty set @). © is
unique according to Eztensionality. In ZF, it is the only set whose existence is guaranteed.
This is a good feature for the mathematicians since there are no problematic objects (e.g.,
people, trees, collections, etc.) other than what they have created for their own purposes [13].
Pure ZF does not support urelements® but urelements are frequently useful: the universe of
commonsense reasoning and knowledge is sometimes the real world, sometimes the thoughts,
and sometimes abstract things like O.

In our daily vocabulary, the corresponding word for @ might be “nothing,” but does this
really agree with the the empty set of ZF? Here, the notion of oppositeness and complemen-
tarity comes to mind. In daily life, the opposite of “nothing” matches anything other than
nothing. From this point of view, the complement of ) must be any set other than @, but
from a mathematical point of view, the complement of empty set is the “universal set.”

Pair Set.
VaVydzVw(w € z o w=a Vw =y)

THere, we are omitting the “not-sure” cases, since being unsure is quite similar to a “don’t know.” In
this case, the conclusion is usually obtained by omitting this knowledge.

2Example suggested by M. A. Jorgensen on July 20, 1993 in a discussion in the news group sci.math.

3Urelements are the objects (or individuals) with no elements. They are sometimes called “atoms.”



Basically, this axiom enables us to form {a, b} from the sets a and b. In the beginning,
taking @ = b = O gives us the set {J}. This is the second set we form in ZF. Using this
axiom, we can generate finite number of sets with only one or two elements.

This axiom seems to be an innocent one from the mathematical point of view. However,
from philosophical and commonsense views, it is somewhat problematic. Consider the ex-
ample, a = “my coffee cup,” and b = “my leather suitcase with two books in it.” If we put
these two objects into a plastic bag, we form a set. The members of the set is a suitcase
and a coffee cup. However, the books might be considered as members of the new set. But
with this pairing schema, the books are only members of the leather bag. Similar issues
are raised by Zadrozny [40] in his study of the part- of relations for multi-media indexing.
Zadrozny introduces part-of to deal with membership in structured objects (e g., a first-aid
kit). A hereditary membership relation can be a solution in our case (i.e., using a hereditary
membership relation we can say that books are the members of plastic bag)

Union.
VaedyVz[z € y & Jw(w € 2 A z € w)]

This axiom states the existence of |Ja, and specifies its members:
U{al,ag, vy} =ayUayU...Ua,

It assures the existence of a set containing any desired finite number of elements by
asserting the existence of the union of sets already defined. Using this axiom, we can generate
sets with three or more members; this was so far impossible. However, all the sets generated
up to this point (starting from @, using Pair Set and Union) are finite. This is because only
finitely many sets can be proven to exist by finite applications of Pair Set and Union.

Infinity.
dz[@ ez AVy(y €z — Tz(z €z AVw(w €z o weEYVw=y)))]

This states that there is a set which has ) as an element and which is such that if a is
an element of it then so is J{a, {a}}. In other words, the axiom guarantees the existence

of {0,{0},{0,{0}},{0,{0,{0}}},...}. This set is well-ordered with respect to € and has

cardinality w, the first infinite ordinal.*
A set a is called finite if there exists a natural number n such that a is equinumerous (has

the same cardinality) with {0,1,...,n—1}. A set a is called denumerable if it is equinumerous
with the set of all natural numbers. A set is called reflexzive if it is equinumerous with a
proper subset of itself. Clearly, every reflexive set is infinite, since the set {0,1,...,n — 1}

cannot be reflexive for any natural number n.

Now, how many types of infinity do we have in mind in our daily life? We think that
there is only one, i.e., the one denoted by the word “infinity.” In daily use, infinity means
that the members of the set cannot be counted and that the set is not accessible. But, before
drawing the conclusion “there is a unique commonsense infinity,” we have to be very careful
about the antinomies of Russell and Burali-Forti [13, 36].

From a mathematical point of view, there is no controversy so far (i.e., the first five
axioms). In fact, these axioms are necessary for any mathematical axiomatization of sets,
even for doing s1mple arithmetic [10, 11, 14, 21, 32, 33, 36]. With the help of Peano axioms
and the constructs up to this point, we can define mtegers rationals, reals, complex numbers,
and derive their usual arithmetic and analytic properties [15]. Peano axioms are as follows:

4The above definition of infinity was not quite straightforward. Before the above definition (or definitions
that are equivalent to it), there were serious attempts by Dedekind and Bolzano [13], that led to Russell’s
antinomy.
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. 0 € w, taking 0 = O;

if n € w then suce(n) € w, where suce(n) =nU {n};

if (SCw)A(0€S)A(n € w— suce(n) € 5) then § = w;

suce(n) # 0, for all n in w;

Rl o B

if (n € w) A (m € w) A (suce(n) = suce(m)) then n = m.

These axioms clearly correspond to the basic counting mechanism of humans. The axioms
begin with 0 and and continue with the next counting number in each step. This approach to
the natural numbers and counting is definitely a powerful tool for a commonsense set theory.
The principle of induction say that the set of natural numbers are infinite (since we can
always find the following number for each number). The induction mechanism of humans
1s also similar to this principle, thus the principle is commonsense acceptable. According to
the fourth axiom, we cannot find a natural number smaller than 0, in other words natural
numbers begin with 0 (so counting starts from a predefined point).

Power Set.

VadzVz[z € y « YVw(w € 2z — w € )]

According to this axiom, if a is a set, then there is a set P(a), the power set of a, whose
elements are all the subsets of a. The cardinality of the power set is always greater than the
original set. (Cantor used this fact in his transfinite numbers [13, 36].) Using this axiom,
one can prove that for every infinite set, there is a “larger” infinite set (i.e., its power set).
Thus the existence of some “large” cardinals (e.g., Ny (cardinality of real numbers), Ry, N,
etc.) can be proven from g = w, and size comparisons can be made.

_In this axiom, the method of subset formation is not given and is postponed to the next
axiom.

Separation (Subset) and Replacement.
The axiom schema of separation can be stated as

VedyVz[z € y & 2z € 2 A p(2)]

where z and y are not free in .

This axiom schema really offers a restrictive option over the sets. Until now, all of the
axioms were used to create the universe of sets. With this axiom, we have a mechanism to
select an appropriate subset for our operations. This selection is done using the well formed
formula (wif) ¢(z). Whatever the condition is imposed by ¢(z), the axiom produces a subset
a, of given a set a. (At this point, it essentially refers to the power set of a, i.e., P(a).)

Replacement is a stronger version of Separation:

Va[Vyly € © — Fz(F(y, 2) ANVw(F(y,w) — w = 2))] — FoVulu € v« Ft(t € z A F(t,u))]]

From a mathematical point of view, Separation does not provide the workspace that
mathematicians would like to have. In mathematics, functions, transformations, and map-
pings from one definite domain to another range are frequently needed. In this respect, the
restriction of the range to be a subset of the domain seems unnecessary. For example, we
can cite the following: using Separation, we cannot prove the existence of the ordinal w +n
where n is a finite ordinal.

The last thing to note is that both Replacement and Separation are indeed axiom
schemata. This fact is often stated as “ZF is not finitely axiomatizable” and was proved by

Mostowski [13].



R(a)

Figure 1: WF universe

Using the above axioms, we can prove the existence of intersection (aNb), the existence of
outer product of a set (II(¢t) = a x b x ... for t = {a,b,...}), and the specific case of Cartesian
product using P(P(a U b)) for a x b.

We can also define relations and functions. Then we can talk about the well-ordering of
sets and size comparisons over sets. In short, we can develop all simple mathematics (e.g.,
the sets that we learned in high school and that we usually identify with Venn diagrams).
Here, we are using the term set in a loose manner, and large collections and sets usually
require the Axiom of Choice to predict such properties (e.g., the real numbers cannot be
shown to be well-ordered without reference to Choice) [13].

From the commonsense point of view, these axioms constitute the basic set formation
processes. In our view, they are rather limited. In a commonsense set theory, we have
to allow conditions like Above(z,y) or On(xz) which are very common in Al applications.
Therefore, ¢ should take some “external” conditions, but this newly introduced ¢ must be
limited to work only with urelements.

Our discussion will later be continued with the Separation and the Replacement axioms

of NBG.
Foundation (Regularity).

Ve[-(z =0) = Jy(y €z AVz(z €2 — =(z € y)))]

This states that if a is a non-empty set, then there is an element b of a such that there
are no sets which belong to both a and b. It simply restricts infinite descending sequences
of sets under the membership relation (i.e., ... € s € s1 € s is not allowed) [36].

This axiom answers a fundamental but so far unanswered question: does there exist a
set which is a member of itself?® Since Separation requires a predefined domain, this axiom
does not help us whereas Cantor’s naive Comprehension gives the answer “Yes.”

One of the important issues in the theory of sets is the well-founded sets. A set s is well-
founded if there does not exist an infinite descending sequence ... € a,41 € a, € adp_q... €
ay € b. This axiom guarantees that all of our sets will be well-founded.

One of the most elegant features of ZF is its strong support of the cumulative hierarchy.
The idea of cumulative hierarchy comes from Russell’s theory of types [23, 38]. We start
with @) and iterate the power set operation at each stage (Figure 1). Details of this process
can be found in [23, 24, 36]. The formal recursive definition of the class of well-founded sets

(WF) in ZF is as follows:

o R(0) =0,

>This question was originally asked by Mirimanoff in 1917 [1].



o Rla+1) = P(R(a)),
o R(a) =Up<y R(B) when « is a limit ordinal,
e WF =U{R(a): a € Ord}.

where R(«) is the rank function defined for ordinals a and §.

The axiom is designed to reject X = {z : € z}, and thus guarantees the cumulative
hierarchy. It can be omitted by the practical mathematician with no overhead. because the
notions “set of all sets,” “set that contains itself,” etc. are not common in daily mathematics.

From a philosophical point of view, this axiom prohibits circularity which is, in some
cases, a desirable property. Sometimes, we need to represent self-referring collections, and
with this axiom we cannot call them sets, but philosophers do not seem too unhappy with
this fact. They use the term class for this type of collections. Indeed, classes are like sets
except that they can be highly comprehensive; an example of a class is the one that contains

all sets.

In the commonsense side, we definitely need to represent circularity. An example for this
might be the non-profit organizations [26]. Non-profit organizations are sets of individuals
and the set of all non-profit organizations is also a set; all these are expressible in the cu-
mulative hierarchy. Then, we might form a new non-profit organization, which collects (is
an “umbrella” organization for) all non-profit organizations including itself. The new orga-
nization refers to the set of all non-profit organizations and is thus self-referring. Therefore,
in a commonsense set theory, Foundation should be dropped. Instead, an Anti-Foundation
Aziom (AFA) might be helpful. Aczel [1] chooses a graph representation of sets and his
AFA states that every graph, whether well-founded (acyclic) or not, pictures a unique set.
Removing Foundation from ZF and adding the AFA would result in Hyperset theory (also
known as ZFC~/AFA). What is advantageous with the new theory is that since graphs of
arbitrary form are allowed—including the ones containing proper cycles—we can represent
self-referring sets. This issue is further discussed in [1, 5, 7, 8, 23, 24, 25].

Choice.

ViVe[z €t — Jz(z € 2) AVy(y €t A ~(y=2) = -Fz(z €x Az € y))]
— JuVz(z €t — JwVvjv=w < (v EuAv € )])]

The meaning of the axiom is that, if ¢ is a disjointed set which does not contain the @,
its outer product II¢ is different from @. In other words, among all subsets of Ut there is at
least one whose intersection with each member of ¢ is a singleton.

In 1904, Zermelo formulated the axiom formally and used it in his proof of the well-
ordering theorem (i.e., every set can be well ordered). For finite sets, the well-ordering
theorem can be proven without reference to Choice (AC), but in the infinite case, AC is
essential [13]. In 1906, Russell restricted the domain set (¢ above) to be a disjointed set.

AC is not the part of original ZF, and when it is included in ZF, the new system is called
ZFC. In 1922, Fraenkel proved the independence of AC from “ZF + Urelements.” In 1938,
Mostowski and Lindenbaum extended this proof to pure ZF.

From a mathematical point of view, in order to deal with large sets (e.g., non-denumerable
ones), we need this axiom. Typical mathematical applications of AC can be found in [13,
16, 33, 35]; they include operations concerning cardinals (e.g., addition, multiplication, ex-
ponentiation) and real analysis, particularly theories of point sets and of real functions,
etc.

From a commonsense point of view, AC seems quite complicated. On the other hand,
we still have to deal with well-orderings of large collections, cardinalities, and typical math-
ematical operations that deal with large numbers. The commonsense version of AC must
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be compatible with our (newly defined) notion of infinity (and of course, new notions of
cardinality and well orderings). A problematic case will be fuzzy membership. In this case,
even the comparison of two sets will be difficult. Accordingly, AC needs reconsideration after
the formation of basic principles of a commonsense set theory.

3. von Neumann-Bernays-Godel (NBG)

In the 1925 axiomatization of von Neumann, there are three primitive notions: sets, classes
and membership. His system can be seen as a conservative extension of ZF to allow compre-
hensive classes (e.g., the set of all sets, etc.). Later, in 1937 Bernays simplified the system
[13]. The system mentioned in this section is his system. In 1940, Godel used a version of
this system in his famous consistency proof and the generalized continuum hypothesis.

The advantage of NBG over ZF is that NBG is finitely axiomatizable, i.e., it does not
contain axiom schemata.

Before the explanation of each axiom of NBG differing from ZF, we have to clarify the
notion of class. A class can be thought of as all the sets « which fulfill a condition ¢(z).
(The condition p(z) is a wif of first order logic).

In formal statements of the system, we use capital letters to denote classes, and lower case
letters to denote sets. In the definition of membership, we have two kinds of membership:
membership of a set in a set (i.e., # € y), and membership of a set in a class (i.e., z €
Y). In fact, we can use different symbols for this relations (7 is used by Bernays for class
membership). In this system, formulas of the type X € y and X € Y are not allowed.
Similar to €, the use of “=” is also limited. (It can only be used between sets or between
classes.) Quantification over the classes is allowed in this system.

Here are the axioms of NB:
Extensionality for Classes.

VAVBVz[(zr € A x € B) - A= B]

This axiom defines the machinery for comparisons of classes. It states that two classes are
identical if and only if their extensions are equivalent and is very similar to Extensionality.
The same commonsense problems and discussions are valid for this axiom as well.

Predicative Comprehension for Classes.
JAVz(z € A & ¢(z))

where (z) is a condition which does not contain quantifiers over classes.

The intended meaning of the term class lies in the following definition: there exists a
class which consists exactly of those elements @ which fulfill the condition ¢(z) where ¢(z)
in any pure condition® in x.

The reason of the small change in axiomatization is the weakness of the latter condition.
With the latter definition, we cannot express some of the properties of our intended notion
of class. An example for this is the complement of a class: for every class A, there exists a
class B which consists exactly of all elements which are not members of A.

From the mathematical point of view, the above axiom allows us to define and prove the
usual properties of the following classes:

o Null Class. N ={z:2 # z}

o Universal Class. V = {x:z =z}

6 A pure condition is a condition which mentions only sets.



o Union of Classes. AUB={x:c€ AVazxe B}
o Intersection of Classes. ANB ={x:2 € ANz € B}
o Complement of a Class. —A = {z:z & A}

After the introduction of the classes into the theory, some of the axioms of ZF require
slight revision. Fztensionality, Null Set, Pair Set, Union, Infinity, and Power Set do not
need any change since they are single axioms dealing with set construction and identity [13].

The remaining axioms of Separation (Replacement) and Foundation need revision, in
order to extend them to be compatible with classes. AC can be added to the system without
any difficulty. Here, we have to note that AC will be used only over the domain of sets (i.e.,
we will accept the same AC of ZFC). If we add this AC to the system, we call the resulting
system NBC.

Separation and Replacement.
The axiom of separation can be expressed as follows:

VPVadyVez(z €y <> x €a Nz € P)

In the previous ZF version of Separation, we had a condition (wif ¢(z)) instead of P.
Here, the separation of elements are in fact done during the formation of the class P. After
the formation of the class of all elements (not necessarily members of a) that corresponds
to ¢, we simply intersect this class with the set a. This type of definition for Separation,
results in a single axiom (shown above). Since the predicative comprehension for classes is
finitely axiomatizable, the resulting system does not contain any axiom schema.

A similar attitude towards Replacement results in:

VE(Fun(F)— VYadbVy(y € b < dx(z € a Az € Dom(F) ANy = F(z))))

The predicates Fun(F') and Dom(F) intuitively represent “F is a function” and “domain
of F')” respectively. These predicates can be expressed (can be formulated as a wif) in the
language of NBG. Then, the meaning of the axiom is as follows: if F'is a function and a is a
set, then there is a set which contains exactly the values F'(z) for all members z of @ which
are in the domain of F.

This axiom is finitely axiomatizable since F' can be seen as a class, and F'un and Dom
can be defined in the language of NBG.

From the commonsense point of view, these axioms shift the discussion to the axiom of
comprehension for classes, since the abstraction mechanism is embedded in this axiom.
Foundation.

VP(Ju(u € P) — Ju(u € PAVz(x € u— x & P)))

In other words, every class P which has at least one member has a minimal member u,
i.e., u is a member of P, but no member z of u is a member of P.

This axiom will not be useful in the commonsense set theory, because of the need for the
representation of circularity.

In the beginning of the section, we have said that the “=" would not be defined between
a set and a class. The axiomatization is carried out under this constraint. But, our intuitive
notion of class requires each set to be equivalent to a class (i.e., the extension of the set
and of the class are the same)”, but the opposite is not true (i.e., for every class there is no
equivalent set, e.g., {x : © € z}). Therefore, we can extend “=" to work between a class and

“For each set y, we have the class {x : € y} whose extension is equivalent to extension of y.



set. “z2 = A (and A = z), if and only if z and A have exactly the same members.” After
these definitions, we see that A = (). Then, A is a set if, for some z = A. A will be a proper
class 1f 1t 1s not a set.

From the commonsense point of view, the only novel thing introduced with this system
is the notion of class. It has a quite 81mple idea: “every thing that is not a set is proper
class.” Although, the system incorporates the power of finite axiomatizability, its workspace
is almost the same as the workspace of ZF. The limitations include the representation of
urelements, external predicates, etc.

It should be noted that every theorem of ZF is still valid in NBG.

4. New Foundations (NF)

In 1937, Quine tried to streamline Zermelo’s approach by giving up the unrestricted use of
the axiom of comprehension with the restriction of stratification [12, 13, 28].

His idea of stratification goes back to the Theory of Types of Whltehead and Russell [38].
An assignment of levels to variables is said to stratify a formula of the form e e 0 € — — —
if it assigns two consecutive levels to its left-hand and right-hand variables, and such an
assignment is said to stratify a formula of the form e e @ = — — — if it assigns the same levels
to its variables. A formula 1 is called stratified if there is an assignment which assigns levels
to all the variables which occur in the expanded form of the formula ¢ [13].

Quine’s system is called New Foundations (for Mathematical Logic). The system contains
the following axioms:

Extensionality.
VaVylVz(z €2 & 2z € y) =z =y

Comprehension.
FyVa(z € y < o(z))
where (z) is a stratified formula in which y does not occur free.

This system is quite powerful in the handling of logical antinomies. Since the decisive
formulae of logical antinomies cannot be stratified, antinomic sets cannot be proven directly
by Comprehension. Here, there is no guarantee agamst establishing the existence of anti-
nomic classes by an indirect proof. A simple example can be found in [13]. As a set theory,
NF has serious difficulties. With the use of NF, one can prove some strange “properties”,
and cannot prove some important facts. As a relevant example for our discussions on car-
dinalities, in NF, it is impossible to prove for every finite cardinal number n that there are
exactly n cardinal numbers (provided that NF is consistent) [13]. Choice is not compatible
with NF (i.e., the formulation of AC cannot be stratified). However, the existence of infinite
sets is provable in NF.

To continue with the undesirable properties, NF is a strong theory for its approaches
to the mathematics, but there is no mental image of set theory which leads to this axiom.
Thus, in order to form a playground for mathematics, we need to add a lot of ad hoc axioms.
This is not true for ZF (and NBG). This lessens the simplicity of the system, thus its beauty.

Another issue in NF has to do wit relatively small sets. In NF, “relatively small” sets are
expected to well-behave (i.e., they can be well-ordered, used in arithmetics, etc.), whereas it
is not the case for the sets in general terms [13, 28]. Thus, in the borderline cases, we might
need to limit the size of the relatively small sets. This results in the introduction of a new
axiom.

In NF, the underlying formal language is not specified. This might result in semantical
antinomies.

The consistency of the system cannot be proven by means of the proof mechanism of
Godel [13]. In the literature, we cannot find a proof of the sort “If ZF is consistent, then so



18 either.

How about the individuals? Quine chosen to introduce individuals as sets x which are
equal to their singletons, {}. In this way, he did not need to change Extensionality. How-
ever, if he had chosen to introduce individuals in the usual way, then he would have need to
change Frtensionality, thus the existence of an infinite set would not be granted without an
axiom. Thus, NF could be shown to be consistent by a proof similar to that of Godel.

From the commonsense point of view, this system has various advantages over the other
axiomatizations (i.e., ZF and NBG). By adding of simple axioms a workspace can be con-
structed easily. An example for this is the axiom that states that “relatively small” sets can
be well-ordered [28]. Another advantage is that the universal set can be represented in NF,
since p(z) = “x = 2” is a stratified formula [12, 28].

The list of the disadvantages is quite long. First of all, the mathematical weakness of the
system (mentioned in the preceding paragraphs) causes problems. Another disadvantage is
that 1t 1s difficult to have a mental image of the system. It is quite to identify the sets and
formulas with the “real world” objects. Since NF has a type theoretical approach, it carries
the difficulties regarding circularity and self-reference. Handling of individuals seems quite
irrelevant to human cognition, thus to common sense.

The consideration of classes in NF results in Mathematical Logic (ML) [12, 13, 28, 29].

The axioms of ML are as follows:

Extensionality.

VAYBVz(x € A~ z € B) » A= B]

Comprehension by a Set.
dyVa(z € y « ¢(z))

where (z) is a stratified formula with set variables only, in which y does not occur free.
Impredicative Comprehension by a Class.

JYVz(z €Y « ¢(x))

where ¢(x) is any formula in which Y does not occur free.

The relation between NF and ML is analogous to the relation between ZF and NBG. In
both cases, invalid sets are considered as classes and operations are limited to the sets. This
approach guarantees the mathematical completeness of the theory (i.e., any collection falls
into the range of the theory either as a set or a class), but this ad hoc extension does not
increase the power of the theory so much since sets are still the only useful objects in the
universe.

5. Admissible Set Theory (KPU)

Admissible sets were first introduced by Kripke and Platek [3]. Their point of view was
primarily that of recursion theory. They generalized ordinary recursion theory of integers
to ordinals smaller than a fixed, well-behaved admissible ordinal [22]. The switch from
admissible ordinals to admissible sets renders an elegant first order theory. From a technical
point of view we switch from admissible ordinal « to set L, of sets constructible before a.

Barwise [3] weakened KP to KPU by re-admitting urelements. Although the reason
for this decision was purely mathematical, the resultant system became stronger from the
commonsense point of view.

In the language of set theory with urelements, we have a predicate U which stands for
urelements. The set of urelements are denoted by M. The membership relation € changes
to €y to work in the range of urelements. However, since the intended meaning did not
change, we will use € both for the original € and for €y;.
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Before going into a discussion of the axioms of KPU, we define the class of A formulas.
The collection of Ag-formulas of the language L(€,...) is the smallest Y containing the
atomic formulas of L(€, ...) closed under:

(i) if p isin Y, then so is —¢;

(i) if ¢, are in Y, then so are (¢ A ) and (¢ V ¢);
(iii) if ¢ is in Y, then so are Yu € vy and Ju € v, for all variables u and v.

The importance of Ag-formulas is that any predicate defined by them is absolute®, and
many predicates occurring in usual mathematics can be defined by Ag-formulas (e.g., subset,
pairing, ordered pair, etc.). (This fact reduces the number of axioms.) The axioms of the
system are as follows:

Extensionality.

Ve(r€a—zeb)—a=0b

In Makkai [22], the extensionality axiom specifically ignores the urelements:

(=U(a) AN=U(b)) = (Ve(z €Ea — x €b) = a=0b)

Foundation.
Jzp(z) — Jalp(x) AVy € 2p(y)]
for all formulas ¢(z) in which y does not occur free.

This axiom, just like Fxtensionality, is concerned with the basic nature of the sets. The
function of the axiom in this system does not change, i.e., its primary use is to restrict of
the circular sets.

Pair.
Ja(z €a Ny € a)

Union.

AbVy € aVz € y(x € b)

Ag-Separation.
AVa(z € b x € a A p(z))

for all A formulas in which b does not occur free.

Pair and Union are the same as their counterparts in ZF. The last three axioms are
concerned with set formation. Ag-Separation is also similar to the one in ZF, but here the
range ¢ is limited to Ag-formulas.

After these five axioms, we can define the universe of admissible sets over the set of
urelements M:

o Vm(0) =0,

o Var(a+1) = P(M U Vas(a)),

o Vir(A) = Uyer Vu(a), if A is a limit ordinal.
o Vi = U Vu(a).

11



M

Figure 2: The universe of admissible sets (adapted from [3])

Here o and ) are ordinals.

This universe can be depicted as in Figure 2. It is very similar to that of ZF (except that
the urelements) and also supports the cumulative hierarchy.

Ag-Collection.
Vo € a dy p(z,y) — FbVx € a Jy € b p(z,y)

for all A formulas in which b does not occur free.

From the mathematical point of view, Aq collection axiom assures that there are enough
stages in the (hierarchical) construction process.

The elegance of the system is due to the fact that Ag-formulas are very powerful, and
with Ag collection this power is used in the system. The result is the prmczple of parsimony
(i.e., simple facts should have simple proofs). One example of this principle is the proof of
the existence of the Cartesian product. In ZF, we had to refer to P(P(a U b)) for this proof,
but here the predicate “< z,y > where ¢ € a and y € b” is a Ap-formula and with two
applications of collection (one for x and one for y) the proof is completed [3].

An admissible set is a transitive set A (in some Vjs) that is a model of KPU; more
technically if M is a structure for L, then an admissible set over M is a model Ay =
{M; A, €,...}, where A is the nonempty set of non-urelements and € is the restriction of €,
to M U A. A pure admissible set is an admissible set with no urelements (M = Q).

One of the most notable things in the theory from the commonsense point of view is
Y- Reflection. We will only state the theorem; a proof can be found in [3].

The ¥ Reflection Principle.
For all ¥-formulas ¢, the following is a theorem of KPU:

p o Ja(p)!

In particular, every Y-formula is equivalent to a ¥;-formula in KPU?. Since (¢)* is

obtained from ¢ by relativization of all quantifiers to a, the theorem says that a ¥;-formula
is true if and only if it is true in some set. This type of fact is called reflection principle because
it describes a situation in which the truth about the whole universe is locally desirable [39].

Another point to note is that the axioms of infinity, power set, null set, etc. are missing.
The system can easily be expanded (without any consistency and independence problems)
with such axioms.

8 Absolute formulas do not shift their meaning on us as we move from a model A to its extension Byr.
9 A formula of the form Jup(u), where ¢ is Ay, is called a X;-formula. The class ¥ is the smallest class con-
taining Ag and closed under conjunction, disjunction, bounded quantification, and existential quantification.
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Figure 3: Barbers of Springfield

In our opinion, although, the admissible sets remove some of the drawbacks of ZF, they
cannot be a candidate for a commonsense set theory alone. The addition of some new axioms
(the axioms in previous paragraph and more) and review of existing axioms (beginning from
the extensionality) are necessary.

6. Steps into a Commonsense Set Theory

The commonsense set theory that we propose will be quite similar to the one in [39]. Since
that theory deals with cardinalities and well-orderings in an acceptable way, it eliminates
further discussion on these subjects.

We have chosen the graph representation of the sets in the explanation of our proposal.
In the representation, edges will represent the membership relation. We represent fuzzy
membership with labels on the edges. The situation in Springfield can be represented by the
graph in Figure 3.

The labels on the edges tell that in which situation the edge (i.e., the membership) is
valid. The meaning of the graph is the following:

From the commonsense point of view:
Barbers® = {a,b,c,d}
From the mayor’s point of view:

Barbers™ = {a,b, ¢}

In Figure 3, we allowed individuals (urelements) as leaf nodes.

When we choose the above labeling schema, what are the basic building blocks of our set
theory? These building blocks must include:

1. A set of previously defined situations (contexts) to be used as labels on the edges and
the nodes. In the example above, this set is {C, M }, where C represents the situation
from the people’s point of view, and M represent the situation from the mayor’s point
of view.

13
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Barbers® Firemen

Figure 4: Set representation of Barbers and Firemen of Springfield

2. A set of individuals. ({a,b,c,d} is this set.)

3. The edge relation over the nodes. In this relation, the labeling schema must be con-
sidered.

4. Set of nodes.
5. Set of edges.

We can define the equivalence of two sets relative to the situation (e.g., Barbers® and

Barbers™ are not compatible). However, since we have used the same node, they have to
be the same set (although their extensions are different in each situation).

In the equivalence issue on the commonsense set theory consider the representation of
Figure 4. This example represents two different sets (i.e., the barbers of Springfield and the
firemen of Springfield). That these two sets are not equal is due to the fact that they are
represented by different nodes. But, from a mathematical point of view, they are equivalent
since their extensions are equlvalent If we adopt the extensionality axiom for a commonsense
set theory, we cannot say that these sets are different. Therefore, the commonsense notion
of equivalence must be different than the mathematical notion.

In treating some “useful” sets, we have chosen the the following representations.
Null Set.

The null set can be viewed as a special individual. From the commonsense side this
representation does not cause major problems, since the adoption of commonsense definition
equivalence. There might be more than one node to represent a set with no member.

Natural Numbers.

Zadrozny [39] introduced a predefined set to find the cardinality of sets. The adoption of
this set in the theory seems unproblematic. But, the problem occurs on the mathematical
side. We are explicitly defining the cardinals. The cardinal number notion of ZF seems quite
different to form an isomorphism between our notions. The natural numbers are represented
with the graph of Figure 5. Intuitively, this set corresponds to a common sense counting
mechanism. However, when people talk about large quantities, they make a generalization
with the word “many 7 In Figure 5, this counting mechanism is tried to be shown. The
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Figure 5: Natural Numbers

labels on the edges and on the nodes correspond to the person who makes this counting.
Depending on who this person is (A, B, or (') the notion of “many” changes drastically. For
example, A thinks that any quantity greater than 4 can be called “many” whereas for C
even 7 is not good enough to qualify as “many.” Note also that once A and B reach “many”
further operations with this notion results in itself, e.g., many apples plus many oranges
gives many fruits.

Infinity.

Infinity is quite an unclear concept in our daily life. In fact, we usually say “a lot” when
we want to use the infinity. Infinity, is usually used in a cardinality sense. We usually do
not refer to infinities themselves (i.e., we need not compare the cardinalities Rg and ;). In
our opinion, the place of the infinity is the end of the chain of natural numbers. It must be

represented with self-reference to itself, but indeed this reference will not be used since this
node is inaccessible.

In order to have a commonsense set theory, we may begin with the above representations.
Extending (and correcting) the above ideas with other commonsense issues, might result in
a useful commonsense set theory. But, in our opinion, the theory will grow in two different
branches: purely mathematical and pure common sense. If we increase the number of
intersection (points of contact) points of these two branches, we will probably get a better
commonsense set theory.

7. Conclusion

We tried to point out to the commonsense issues in some classical axiom systems, together
with their related mathematical and philosophical background. This review shows us the
ad hoc nature of the ZF, i.e., the system is good for the “practicing” mathematician but
sometimes it is just too strong from a commonsense point of view. The advantage of the
NBG system is that it is finitely axiomatizable. The addition of the notion of class in NBG
is sometimes an advantage and sometimes a liability. NF is a rather logical approach to the
subject and looks like the part II of Russell’s “the theory of types.” On the plus sides of the
system, we should mention the existence of a “universal set.” Finally, we reviewed KPU.
Intuitively, KPU seems better than ZF, but since it is primarily recursion theory oriented,
its target area is analysis and descriptive set theory.

After above reviews, we offered a skeleton of a commonsense set theory. This part of our
work has not been completed yet, but we think that our approach may deliver a “feasible”
commonsense set theory. In the current state of the theory, we believe that we can deal with
the fuzzy sets of the daily life and address (in some sense) the cardinality and well-ordering
issues. We are still studying the formalization of our approach and think that the review of
previous axiomatizations will give us useful tools and ideas for this task.
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