SITUATED MODELING OF EPISTEMIC
PUZZLES

urat krsan an aro man

BILKENT UNIVERSITY

Department of Computer Engineering
and
Information Science

Technical Report BU-CEIS-94-17



Situated Modeling of Epistemic Puzzles

Murat Ersan and Varol Akman
Department of Computer Engineering and Information Science
Bilkent University, Bilkent, 06533 Ankara, Turkey
Fax: +90 (312) 266-4126

Email: {ersan,akman}@bilkent.edu.tr

Situation theory is a mathematical theory of meaning introduced by Jon Barwise
and John Perry. It has evoked great theoretical and practical interest and motivated
the framework of a few ‘computational’ systems. Unfortunately, there is a lack of

‘real life’ applications on these systems and this paper is a preliminary attempt to
remedy this situation. Here, we solve a class of epistemic puzzles, introduced by
Raymond Smullyan, using the situation-theoretic programming language PROSIT.

1 Introduction

Situation theory is a principled programme to develop a mathematical theory of meaning
which aims to clarify and resolve some tough problems in the study of language, informa-
tion, logic, and philosophy [3]. It was introduced by Jon Barwise and John Perry in the
Eighties and has stimulated great interest [4]. The theory matured within the last ten
years or so [1, 7, 8, 15, 23, 24] and various versions of it have been applied to a number of
linguistic issues [9]. This was followed by assorted studies on the computational aspects
of the theory, which gave birth to a group of computational systems based on situation

theory [5, 6, 12, 13, 14, 20, 21, 22].

PROSIT (PROgramming in Sltuation Theory), developed by Nakashima et al. [12, 13,
14], is the pioneering work in this direction. PROSIT seems to be especially suitable for
writing programs simulating human-like (commonsense) reasoning [10, 11]. Unfortunately,
there have been very few attempts to employ PROSIT in this style. Such a study is,
however, of great importance, and would help us see where and why we should utilize
systems based on situation theory, and how we should formulate a situation-theoretic
programming paradigm. In fact, as far as we know the only remarkable application in
which PROSIT has been effectively exploited is the “Three Wisemen Problem” [12]. This
is a problem involving common knowledge in a multi-agent setting. Pinning our faith
upon situation theory, we tried to make use of PROSIT in the solution of what we came
to call ‘epistemic puzzles.” These puzzles were introduced by Raymond Smullyan in his
book Forever Undecided: A Puzzle Guide to Godel [16]. (Also cf. [17, 18, 19] for similar
puzzles.) Here, the main goal is to distinguish the liars and truth-tellers living on an
island (using the statements they make). Throughout this paper the nature of epistemic
puzzles and how they are handled via a situation-theoretic world-view will be analyzed.
A short introduction to PROSIT will be offered at the outset to motivate the presentation
in the sequel. (This can be skipped by readers familiar with PROSIT.)

1



2 Situation Theory

The three major concepts of situation theory [1, 4, 8, 9, 10] are infons, situations, and con-
straints. Infons are the basic informational units and are denoted as < P, ay,...a,,1 >
where P is an n-place relation, aq,...a, are objects appropriate for the respective argu-
ment places of P, and ¢ is the polarity (0 or 1). It is possible to use spatial and temporal
locations in the argument places of relations.

Situations are ‘first-class’ citizens of the theory. There is no clear definition of what a
situation exactly is. Rather, a situation is considered to be a structured part of the Reality
that the agent somehow manages to pick out (individuate). The only definition given at
this level is that of the supports relation:

s supports a (s |E ) means that « is an item of information that is true of s.

It is desirable to have some computational tools to handle situations. Abstract situations
are the mathematical constructs with which we can abstract analogs of real situations.
They are more amenable to mathematical manipulation. An abstract situation is defined
as a set of infons. Given a real situation s the set {«a | s = a} is a corresponding abstract
situation.

In situation theory, the flow of information is carried out by constraints. A situation s
will carry information relative to the constraint C' = [S = 5], if s : S[f], where f anchors
the parameters in S and S’. Hence, the information carried by s relative to C' is that
there is a situation s', possibly extending s, of type S’[f].

An important feature of situation theory is the existence of types. Types are higher-
order uniformities which cut across uniformities like individuals, relations, situations, and
spatial and temporal locations. Just as individuals, temporal locations, spatial locations,
relations, and situations, types are also (higher-order) uniformities that are discriminated
by agents. In this framework, relations may have their argument places filled either
with individuals, situations, locations, and other relations or with types of individuals,
situations, locations, and relations. For example, if an agent sees smoke he can conclude
that there is fire. For he is aware of the constraint which links situations where there is
smoke to those where there is fire. This constraint is not particular to a certain instance,
but holds in general. Actually the constraint links types of situations, viz. smoky-type of
situations to ones with fire.

The development of types brings the requirement of devices for making reference to arbi-
trary objects of a given type. Therefore for each type T', an infinite collection of parameters

Ty, Ts, ... is introduced. For example IN D3 is an [N D-parameter (parameters of type
IND).

These parameters bring about some computational power, but we need more than that.
Rather than parameters ranging over all individuals, we need parameters that range over a
more restricted class, e.g. all men kicking footballs. Such parameters are called restricted
parameters. For example,



rl = a 1< kicking, a, ?.3,1 >
a=IND3 1< man,IND3,1 >
= 2 1<K football, 2,1 >

Once defined, 1 ranges over all men kicking footballs.

In addition, it is possible to obtain new types using a parameter, s, and a set, I, of infons
(in the form [s | s = I]). For example,

[SIT | SIT =< kicking, a,b,1 >

represents a situation-type where a man is kicking a football and
[a | SIT E< kicking, a,b,1>]

denotes the type of men kicking a football.

3 PROSIT

PROSIT is a declarative language in which both programs and data are just sets of declar-
ative elements called infons. This feature makes PROSIT akin to Prolog, but PROSIT is
based on situation theory rather than Horn clauses. The motivation behind the design of
this new language rests on the following gross features, each of which is supported by the
theory:

e The use of partially specified objects and partial information
e Situations as first-class citizens
e Informational constraints

o Self-referential expressions

In PROSIT, an infon (a discrete item of information) is represented as a list whose first
element is the symbol for a relation and whose remaining elements are the objects for
which the relation holds:

(relation objecty ... object,)
For example, the infon

(listening-to John Mary)



states that the relation 1istening-to holds between the objects represented by the pa-
rameters John and Mary, i.e., John is listening to Mary.

One can assert infons and query a knowledge base incorporating, among other things,
such as infons. Unlike Prolog, all infons are local to situations. For example, to assert
the infon mentioned above in situation sit1 the following expression is used:

('= sitl (listening-to John Mary))

Expressions in PROSIT are Lisp-style objects (i.e., atoms or lists). Atoms that are num-
bers or strings are considered to be constants. Symbols starting with a character other
than “*” are parameters. They are used to represent things in the world, such as indi-
viduals, situations, and relations. Usually, different parameters correspond to different
entities. Parameters can be used in any infon (including queries and constraints); their
scope is global. A third kind of expression is a variable. Variables are represented with
symbols starting with “*”. They can only occur in queries and constraints. They can
stand for any PROSIT expression, yet their scope is local to the constraint or query they
participate in.

In PROSIT, there exists a tree hierarchy among all situations, where the situation top
is at the root of the tree. top is the global situation and the ‘owner’ of all the other
situations generated. One can traverse the ‘situation tree’ using the predicates in and
out. Although it is possible to issue queries from any situation about any other situation,
the result will depend on where the query is made. If a situation sit2 is defined in the
current situation, say siti, then sit1 is said to be the owner of sit2, or equivalently:

e sit2is a part of sitil, or

e sitl describes sit?2

The owner relation states that if ('= sit2 infon) holds in sit1, then infon holds in
sit2, and conversely, if infon holds in sit2 then ('= sit2 infon) holds in sitl. in
causes the interpreter to go to a specified situation which will be a part of the ‘current
situation’ (the situation in which the predicate is called) and out causes the interpreter
to go to the owner of the current situation.

Similar to the owner relation there is the ‘subchunk’ relation. It is denoted as([_ sit1
sit2), where sit1 is a subchunk of sit2, and conversely, sit2 is a ‘superchunk’ of sit1.
When a situation, say sit1, is asserted to be the subchunk of another situation, say sit2,
it means that sit1 is totally described by sit2. A superchunk is like an owner (except
that out will always cause the interpreter to go to the owner, not to a superchunk).

PROSIT has two more relations that can be defined between situations. These are the
‘subtype’ and the ‘subsituation’ relations. When the subtype relation (denoted by (@<
sitl sit2)) is asserted, it causes the current situation to describe that sit2 supports i
for every infon i valid in sit1 and that sit2 respects every constraint that is respected
by siti, i.e., sit1l becomes a subtype of sit2. The subsituation relation is denoted as

4



(<-- sit1 sit2) and is the same as (@< sitl sit2) except that only infons, but no
constraints, are inherited. Both relations are transitive.

A distinguishing feature of PROSIT is that the language allows circularity [2]. The fact
that PROSIT permits situations as arguments to infons makes it possible to represent
self-referential statements. Consider a card game (sit) where there are two players. John
has the ace of spades and Mary has the queen of spades. When both players display their
cards the following infons will be factual:

('= sit (has John ace-of-spades))
('= sit (has Mary queen-of-spades))
(1= sit (see John sit))

('= sit (see Mary sit))

The notion of informational constraints is a distinguishing feature that encouraged the
design of PROSIT. Constraints can be considered as a special type of information and
‘generate’ new facts. They are just a special case of infons, and therefore, are also situ-
ated. A constraint can be specified using either of the three relations =>, <=, and <=>.
Constraints specified with => are forward-chaining. They are of the form (=> fact head,
heady ... head,). If fact is asserted to the situation then all of the head facts are also
asserted to that situation. Constraints specified with <= are backward-chaining. They
are of the form (<= head fact; fact, ... fact,). If each of the facts from 1 to n are
supported by the situation, then the head fact is also supported (though not asserted) by
the same situation. Finally, constraints specified with <=> should be considered as both
backward- and forward-chaining.

Now, if there is a constraint stating that everything that smilesis happy in situation siti,
viz.,

(resp sitl (=> (smiles *X) (happy *X)))
then the assertion of
(smiles John)
in sit1 will force PROSIT to assert the following infon in Sit1, too:

(happy John)

4 Epistemic Puzzles

An epistemic puzzle is one which mainly involves knowledge and belief. This can be either
in the form of individual knowledge or common knowledge (mutual information) [1] in a
multi-agent setting (e.g., the Three Wisemen Problem, see presently). A computational

5



Inheritance relation

° - — - == Ownership relation

Figure 1: The Three Wisemen Problem. The facts that all wisemen know are kept in
situation W. The facts that A knows are kept in situation A. The facts that A knows that
C knows are kept in situation A.C. The facts that A knows that C knows that B knows
are kept in situation A.C.B.

solution to such puzzles requires a system that is able to perform human-like reasoning
[10, 11]. Including certain situation-theoretic constructs, PROSIT is highly eligible for
implementing and solving these puzzles.

4.1 The Three Wisemen Problem

The solution of the “Three Wisemen Problem” [12] in PROSIT is, to our best knowl-
edge, the only serious attempt to use situation-theoretic constructs in resolving epistemic
puzzles. The main aim is to show how to use common knowledge computationally in solv-
ing problems involving cooperation of multiple agents. The situation-theoretic aspects of
PROSIT (reasoning about situations and in situations) generated an intuitive and simple
solution for this hypothetical problem, stated as follows [12, p. 79]:

“Three wisemen are sitting at a table, facing each other, each with a white
hat on his head. Someone tells them that each of them has a white or red hat
but that there is at least one white hat. Each wiseman can see the others’
hats but not his own. If a fourth person asks them whether they know their
own color, then the first two wisemen will answer no, but, after that, the third
one will answer yes.”

The existing facts in the problem can be categorized into two groups: facts that all
wisemen are aware of, and facts that are known individually. Facts such as that there are
three agents A, B, and C| that all agents are wise, and that each agent is wearing either
a white or a red hat are known by all three wisemen. On the other hand, the fact that B
and C' are wearing white hats is known only by A.

There are two ways for an agent to decide that his hat is white. The first is when the
other two wisemen have red hats. The second is when his assumption of having a red
hat causes a contradiction. The approach in [12] is to use the latter in order to solve this
problem. A assumes that he has a red hat. After B and (' answers no, A concludes that



C should have said yes (because from B’s answer C concludes that at least one of A and
C is wearing a white hat) if he were wearing a red hat. So he knows that he is wearing
a white hat. The key observation used in the solution is the one causing the transfer of
knowledge, i.e., if A knows something about B, then he also knows that C knows it, too!
PROSIT’s tree hierarchy of situations makes it rather easy to represent this (Figure 1).

4.2 Smullyan’s Puzzles

In [16] Smullyan introduces a number of puzzles about liars and truth-tellers to warm
up the readers with symbolic logic. Most of the events in the puzzles take place on an
island, viz., the Island of Knights and Knaves. On this imaginary island the following
three propositions hold:

1. Knights always make true statements.
2. Knaves always make false statements.

3. Every inhabitant is either a knight or a knave.

The puzzles are epistemic in the sense that knights ‘reflect’ their individual knowledge
and beliefs while knaves ‘reflect’ the contrary of them. A simple puzzle of this type is the
one about the census taker Mr. McGregor [16, pp. 15-16]:

“The census taker Mr. McGregor once did some fieldwork on the Island of
Knights and Knaves. On this island, women are also called knights and knaves.
McGregor decided on this visit to interview married couples only. McGregor
knocked on one door; the husband partly opened it and asked McGregor his
business. “I am a census taker,” replied McGregor, “and I need information
about you and your wife. Which, if either, is a knight, and which, if either, is
a knave?”

“We are both knaves!” said the husband angrily as he slammed the door.
What type is the husband and what type is the wife?”

The solution is as follows [16, p. 16]:

“If the husband were a knight, he would never have claimed that he and his
wife were both knaves. Therefore he must be a knave. Since he is a knave, his
statement is false; so they are not both knaves. This means his wife must be
knight. Therefore he is a knave and she is a knight.”

As it can be seen from the solution of the puzzle, when a reasoner is asked to solve
this puzzle he first makes assumptions, then based on these assumptions he considers
a hypothetical world and then tries to find out if there are any inconsistencies in this
hypothetical world. If an inconsistency exists he concludes that his assumption is wrong

7



Husband (H)
Wife (W)

H: Knight

First Assumptions

H: Knave

Second Assumptions
H: Knight H: Knight H: Knave H: Knave
W: Knight W: Knave W: Knight W: Knave
sitt X siz X siz X sia

Figure 2: The hypothetical worlds created by the reasoner for the census taker problem.
There is only one world (Sit4) consistent with the statement the husband uttered.

and totally forgets about that hypothetical world. The reasoner continues to make new
assumptions (while learning something from the previous failures) until he finds all the
solutions of the puzzle, i.e., the consistent hypothetical worlds (Figure 2). In the puzzle
above, first it was assumed that the husband is a knight, but this assumption led to failure
because a knight can never claim that he is a knave (an inconsistency). So it was decided
that the husband is a knave. The next section explains how these puzzles are handled in

PROSIT.

4.3 Epistemic Puzzles in PROSIT

Examining the structure of these puzzles one will notice properties that are suitable for
a situation-theoretic representation. These are as follows:

o Actions always take place in a clearly defined context, i.e., the Island of Knights
and Knaves.

e There are abstract individuals, properties, and relations (e.g., being a knight, being
on the island, and so on).

e There are well-defined rules that invariably hold on the island (e.g., knights always
make true statements).

As mentioned previously, a system to solve these puzzles should be able to make human-
like reasoning. There are three main properties that enable PROSIT to simulate human-
like reasoning. The first one is situated programming, i.e., infons and constraints are
local to situations. The second is PROSIT’s situation tree structure, with which we can
represent nested knowledge/belief (e.g., “A thinks that B believes that C' knows ...”).



; testing the consistency of a situation requires a
; translation of the uttered sentences to what they
; really mean
(! (resp island (<= (consistent)
(means P1 *sentence *translation)
(means P2 *sentence2 *translation2)
(and *translation *translation2))))
; every sentence uttered by a knight is true
(! (resp island (<= (means *x *sentence *sentence)
(says *x *sentence)
(knight *x))))
; any sentence uttered by a knave is false
(' (resp island (<= (means *x *sentence (no *sentence))
(says *x *sentence)
(knave *x))))

Figure 3: Three main constraints of the PROSIT implementation.

The third is the use of inconsistency to generate new information. Now, it is time to see
how PROSIT solves these puzzles. The following puzzle [16, pp. 23-24] will be exploited
to explain our approach:

“This is the story of a philosopher—a logician, in fact—who visited the cluster
of islands and fell in love with a bird-girl named Oona. They were married. His
marriage was a happy one, except that his wife was too flighty! For example,
he would come home late at night for dinner, but if it was a particularly lovely
evening, Oona would have flown off to another island. So he would have to
paddle around in his canoe from one island to another until he found Oona
and brought her home. [...] On one occasion, the husband came to an island
in search of Oona and met two natives A and B. He asked them whether
Oona had landed on the island. He got the following responses:

A: B is a knight, and Oona is on this island.

B: A is a knave, and Oona is on this island.

Is Oona on this island?”

The solution of this puzzle will make use of various properties of PROSIT, including
inheritance. As the solution is based on creating hypothetical situations and testing their
consistency, it is useful to have a situation, say island, from which all the hypothetical
situations will inherit some essential facts that will not change from one situation to
another. For example, the fact that the native A says “B is a knight, and Oona is on
this island” will hold in every hypothetical situation. Therefore this fact is kept in the
island situation. Similarly, the rules stating that knights always make true statements
and that knaves always make false statements are kept in the island situation. The three
main constraints used in the solution of this puzzle are shown in Figure 3. The first
step of the solution, i.e., making assumptions about the natives, is simulated by creating



hypothetical situations. Each hypothetical situation represents a different combination of
assumptions. A reasoner can assume the native A to be a knight or a knave, the native
B to be a knight or a knave, and Oona to be on the island or not. So, the program will
generate eight (2°) hypothetical situations. The following are two hypothetical situations
(Sit1l, Sit2) that we will be examining throughout this section:

Sitl: (knight A) (knave B) (on-island Oona)
Sit2: (knave A) (knave B) (not-on-island Oona)

The next step is to generate the infons that hold in the hypothetical situations. If a
knight makes a statement, it means that this statement holds in that situation. On
the other hand, if a statement is made by a knave, it is concluded that the negation of
that statement holds in the situation. So the following infons hold in the hypothetical
situations Sit1 and Sit2:

Sit1l: (and (knight B) (on-island Oomna))
(no (and (knave A) (on-island Oona)))
Sit2: (no (and (knight B) (on-island Oona))
(no (and (knave A) (on-island Oona)))

The final step is to check the hypothetical situations and to discard the inconsistent ones.
The consistent situations are the solutions of the puzzle. In the previous case Sit1 is one
of the inconsistent hypothetical situations to be discarded, and Sit2 is a solution (in fact,
the only solution):

Sit1l: (and (knight B) (on-island Oona)) (from the second step)
(knave B) (from the first step)
Inconsistency!

Sit2: Consistent, therefore A and B are knaves and Oona is not on the island.

Smullyan’s solution is as follows [16, p. 26]:

“A couldn’t possibly be knight, for if he were, then B would be a knight (as
A said), which would make A a knave (as B said). Therefore A is definitely
a knave. If Oona is on the island we get the following contradiction: It is
then true that A is a knave and Oona is on the island, hence B made a true
statement, which makes B a knight. But then A made a true statement in
claiming that B is a knight and Oona is on the island, contrary to the fact
that A is a knave! The only way out of the contradiction is that Oona is not
on the island. So Oona is not on this island (and, of course, A and B are both
knaves).”

The simpler puzzle given earlier, i.e., the one about Mr. McGregor, is solved in a similar

fashion. There are two natives, H and W, in the puzzle. Each can be either a knight or
a knave. So there will be four hypothetical situations (Figure 2):

10



; 1f a native is a knight, he definitely is not a knave
(! (resp island (=> (knight *x)
(no (knave #*x)))))
; 1f a native is a knave, he definitely is not a knight
(v (resp island (=> (knave *x)
(no (knight *x)))))
; (no (and *stl *st2)) is equivalent to (or (no *stl) (no *st2))
(v (resp island (<= (means *x (or (no *stl) (no *st2)))
(says *x (and *stl *st2))
(knave *x))))
; (mo (or *stl *st2)) is equivalent to (and (no *stl) (no *st2))
(' (resp island (<= (means *x (and (no *st1) (no *st2)))
(says *x (or *stl *st2))
(knave *x))))

Figure 4: The constraints about negative knowledge.

Sitl: (knight H) (knight W)
Sit2: (knight H) (knave W)
Sit3: (knave H) (knight W)
Sit4: (knave H) (knave W)

After the generation of new infons using the statement uttered by H, the hypothetical
situations will consist of the following;:

Sitl: (knight H) (knight W) (and (knave H) (knave W))
Sit2: (knight H) (knave W) (and (knave H) (knave W))
Sit3: (knave H) (knight W) (no (and (knave H) (knave W)))
Sit4: (knave H) (knave W) (no (and (knave H) (knave W)))

Among these hypothetical situations the only consistent one is Sit3, which states that H
is a knave and W is a knight.

It is time to examine how PROSIT finds out about these inconsistencies. As it is seen from
the examples above a distinguishing feature of PROSIT is that it allows inconsistency in
situations. The assertion of an infon 7in a situation does not prevent it to be supported by
that situation. A situation may support both 7 and (no 7). This should not be considered
as a contradiction in the system, but merely a contradiction in the situation, which means
that the situation is inconsistent. This kind of inconsistency can be adequately used to
get new information. In the example above, there is a situation (Sit1) that supports
both (knight H) and (knave H). (knave H) is equivalent to (no (knight H)) (using
the rules in Figure 4), therefore both (knight H) and its negation are supported by
the situation. The situation is inconsistent and the assumptions have failed. One final
comment on PROSIT is that it does not apply the predicate no over the predicates and

11



and or, therefore two additional constraints should be explicitly defined in order to achieve

this (Figure 4).

5 Concluding Remarks

This study shows that situation theoretic languages are suitable means for human-Ilike
reasoning. PROSIT is especially appropriate for problems involving knowledge and belief.
Self-referential expressions, and situations as arguments of infons are two very powerful
features. These features can efficiently be used in representing one’s knowledge and beliefs.
It is left for future work to improve the algorithms and rules so that fewer number of
hypothetical worlds are manipulated. This can be achieved once we decide to use some
statements as shortcuts, e.g., a knight can never state that he is a knave, or a knave can
never utter a statement such as “If I am a knight, then ...”. These facts can be employed
to limit the number of hypothetical worlds.

This paper should be considered as a preliminary study on ‘real life’ situation-theoretic
applications. We hope that situation-theoretic systems will be used more seriously in
general knowledge representation applications.

References

[1] J. Barwise, The Situation in Logic, CSLI Lecture Notes, No. 17, Center for the Study
of Language and Information, Stanford University, Stanford, CA, 1989.

[2] J. Barwise and J. Etchemendy, The Liar: An Essay on Truth and Circularity, Oxford
University Press, New York, N.Y., 1987.

[3] J. Barwise and J. Etchemendy, “Model-Theoretic Semantics,” in M. I. Posner, editor,
Foundations of Cognitive Science, MIT Press, Cambridge, MA, pp. 207-243, 1989.

[4] J. Barwise and J. Perry, Situations and Attitudes, MIT Press, Cambridge, MA, 1983.

[5] A. W. Black, Constraints in Computational Situation Theory, Lecture Notes circu-
lated during Logic, Language, and Information Summer School, Saarbriicken, Ger-
many, May 1991.

[6] A. W. Black, An Approach to Computational Situation Semantics, Ph.D. Thesis, De-
partment of Artificial Intelligence, University of Edinburgh, Edinburgh, U.K., April
1993.

[7] R. Cooper, “Three Lectures on Situation Theoretic Grammar,” in M. Filgueiras,
L. Damas, N. Moreira, and A. P. Thomas, editors, Natural Language Processing,
Lecture Notes in Artificial Intelligence, Vol. 476, Springer-Verlag, Berlin, Germany,
pp. 102-140, 1991.

12



8]

[9]

R. Cooper, A Working Person’s Guide to Situation Theory, Human Communication
Research Centre (HCRC) Publications, RP-24, University of Edinburgh, Edinburgh,
U.K., October 1991.

K. Devlin, Logic and Information, Cambridge University Press, New York, N.Y.,
1991.

D. B. Lenat et al., “Cyc: Toward Programs with Common Sense,” Communications

of the ACM, 33(8): 30-49, August 1990.

J. McCarthy, “Programs with Common Sense,” in V. Lifschitz, editor, Formalizing

Common Sense: Papers by John McCarthy, Ablex, Norwood, N.J., 1990.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

H. Nakashima, S. Peters, and H. Schitze, “Communication and Inference through
Situations,” in Proceedings of the International Joint Conference on Artificial Intel-

ligence (IJCAI °91), pp. 76-81, 1991.

H. Nakashima, H. Suzuki, P. Halvorsen, and S. Peters, “Towards a Computational
Interpretation of Situation Theory,” in Proceedings of the International Conference
on Fifth Generation Computer Systems (FGCS-88), Tokyo, Japan, pp. 489-498,
1988.

H. Schiitze, “The PROSIT Language,” Version 0.4, CSLI Memo, Center for the Study
of Language and Information, Stanford University, Stanford, CA, August 1991.

J. Seligman, “Perspectives in Situation Theory,” in R. Cooper, K. Mukai, and J.
Perry, editors, Situation Theory and Its Applications, Vol. 1, CSLI Lecture Notes,
No. 22, Center for the Study of Language and Information, Stanford, CA, pp. 147-
191, 1990.

R. Smullyan, Forever Undecided: A Puzzle Guide to G'odel, Oxford University Press,
New York, N.Y., 1987.

R. Smullyan, Alice in Puzzle-land: A Carrollian Tale for Children Under Eighty,
Penguin Books, New York, N.Y., 1984.

R. Smullyan, The Lady or The Tiger? (and Other Logic Puzzles), Knopf, New York,
N.Y., 1982.

R. Smullyan, What is The Name of This Book? (The Riddle of Dracula and Other
Logic Puzzles), Prentice-Hall, Englewood Cliffs, N.J., 1978.

E. Tin and V. Akman, “Computational Situation Theory,” Manuscript, Depart-
ment of Computer Engineering and Information Science, Bilkent University, Bilkent,

Ankara, Turkey, 1993.
E. Tin and V. Akman, “BABY-SIT: Towards a Situation-Theoretic Computational

Environment,” Extended Abstract, in C. Martin-Vide, editor, Proc. I. International

Conference on Mathematical Linguistics, Barcelona, Spain, pp. 97-99, 1993.

13



22]

E. Tin and V. Akman, “BABY-SIT: A Computational Medium Based on Situations,”
Abstract, in P. Dekker and M. Stokhof, editors, Proc. 9th Amsterdam Colloquium,
Institute for Logic, Language, and Computation (ILLC), Department of Philosophy,
University of Amsterdam, Amsterdam, The Netherlands, p. 29, 1993.

23]

[24]

D. Westerstahl, “Parametric Types and Propositions in First-Order Situation The-
ory,” in R. Cooper, K. Mukai, and J. Perry, editors, Situation Theory and Its Appli-
cations, Vol. 1, CSLI Lecture Notes, No. 22, Center for the Study of Language and
Information, Stanford, CA, pp. 193-230, 1990.

E. N. Zalta, “Twenty-five Basic Theorems in Situation and World Theory,” Journal
of Philosophical Logic 22: 385-428, 1993.

14



