Effects of Stemming on Turkish Text
Retrieval

by
Aysin Solak

and
Fazli Can

BU-CEIS-94-20

£

BEE

EEE
o e e o e e e e e o e i S s e e s e e
oo mmo—tee o EESmmm oI T
R ETITETE TR eI IrTEE s T B ET
H ETE = =8 = =iz = = =B S
ELEEETESFEE E F-FE E-E=EEEEEES.EI.EE =5
E=SSSTEE RS E Z=EE EziEiSEEEiEcccsEiifEiE
TEESS 22 B = i ESC T SEEEEaEST=ERT

E=E:

FEEE
o mm e o o D e mm o o T T s T e S e
s mmr o o EE RIS EE SS S CSCSECS TSI
=z = TEE- SIS EEEDE ECE-E o oIl - i
=S = = E7 =S = I
= E :E S 35 = oiE.EEEoFacz
=TS TEEEE S22 2 =2 TSI SESSSETTEEES

BINLEENT UNIVERSIY

Effects of Stemming on Turkish Text Retrieval

Aygin Solak and Fazli Can

nnnnn 3

Bilkent University, Bilkent, 06533 Ankara, Turkey

Abstract

A stemming algorithm developed for the Turkish language is presented. The retrieval
performance of the algorithm is then measured in terms of its effect on retrieval per-
formance of a best-match text retrieval system. The results show that the stemming
algorithm reduces the index dictionary size significantly and also improves the retrieval
effectiveness.

1 Introduction

The widespread availability of text in machine-readable form has led to increasing use of
text retrieval systems that are designed for the storage, retrieval and processing of textual
databases. Such systems allow a user to specify a query by a set of natural language
words; the database is scanned for those documents that match the query and these are
presented to the user. Many of such systems have been based on the use of boolean
searching, where the user must specify AND, OR, or NOT logical operators between the
words of the query; however, the new trend is the use of nearest neighbour, or best-match
retrieval systems, where the user specifies just a natural language query without any
logical operators. In this case, the system ranks the documents in the order of decreasing
similarity with the query [13]. Such systems make extensive use of automatic indezing
techniques, rather than relying on manual indexing. An automatic indexing procedure
processes an input text string, either a document or a query, in two stages [10]:

1. Each word in the input string is compared with a stopword list, a dictionary of
high frequency words, such as AND, OF, THE, TO, etc. in English. Removal of
such words provides an effective way of reducing the storage requirements of the
document and query representatives. Words from the input string that are not on
the stopword list are assumed to be descriptive of the document or query.

2. The remaining words are then passed on for processing by a stemming algorithm, a
computational procedure that conflates morphological variants of a given root to a
single stem by removing (or sometimes replacing) the inflectional and derivational
suffixes. The resulting word stems are then used to characterize the document or
query for indexing purposes.

Many such text retrieval systems have been implemented. Among them are MEDLINE,
implemented at the National Library of Medicine; BRS, developed by Bibliographic Re-

trieval Services; ORBIT, developed by the System Development Corporation; and DIA-
LOG, designed by Lockheed Information Systems [12]. However, the great majority of
such works have been carried out with English language material, where stopword lists
and stemming routines have been available for many years. In this study, we aimed to
evaluate the use of stemming and best-match searching in Turkish text retrieval. Using a
stemming algorithm that takes great account of the language’s morphological structure,
a database of Turkish news and a set of Turkish queries are indexed automatically. The
performance of the stemming algorithm is then measured in terms of its effect on retrieval
performance of the system.

The structure of the paper is as follows: Section 2 presents an overwiev of the concept
of stemming in information retrieval. A brief information about the general properties
of the Turkish language and the details of the stemming algorithm used in this study
are given in Section 3. Section 4 covers the characteristics of the databases and queries
used in this work, while Section 5 presents the method applied to generate the stopword
lists. In Section 6, an overwiew of the best-match retrieval method is presented. Last
two sections provide the retrieval effectiveness results and the conclusions obtained in our
study, and give some suggestions about the future work.

2 Stemming

One technique for improving information retrieval performance is to provide morpholog-
ical variants of query terms [4]. For example, if the user enters the term COMPILER
as part of a query, it is likely that s/he will also be interested in such variants as COM-
PILE, COMPILED, COMPILATION, etc. In natural language processing, conflation is
the process of matching morphological term variants. Conflation can either be manual,
i.e., using some kind of regular expression, or automatic, via programs called stemmers.
Stemming is also used in IR to reduce the size of index files.

There are several approaches to stemming [4]. Among those, the most popular one is
called as affiz removal stemming. Affix removal stemmers remove suffixes and/or prefixes
from terms leaving a stem. A number of stemming algorithms have been described in the
literature,! notable among them being Lovins [7], Dawson [3], Porter [11], and Paice [9].
However, all of these stemmers are specific to English text. Especially for agglutinative
languages (in which words are formed by combining root words and morphemes, such as
Japanese, Turkish, Finnish, Hungarian, etc.) there are limited number of known studies
[5. 6]. Stemming in such languages are not so straightforward as in English because it is
necessary to make significant phonological and morphological analyses.

There are several criteria for judging performance of a stemmer in IR: correctness,
retrieval effectiveness, and compression performance. A stemming algorithm can be con-
sidered as incorrect if it causes overstemming (removal of too much of a term) or under-
stemming (removal of too little of a term). Stemmers of IR are not usually judged on
the basis of linguistic correctness [4]. The effect of a stemming algorithm on retrieval
performance in IR test collections is usually measured in terms of recall and precision.”

LFor other sources see Frakes [4].
2Recall is the proportion of relevant documents retrieved, while precision is the proportion of retrieved
documents that are relevant.

]

Stemmers can also be rated on their compression performance.

In Frakes [4], various studies of stemming in English for improving retrieval effective-
ness and their results can be found. Those studies prove that stemming affects retrieval
performance positively. There is no evidence that stemming will degrade retrieval ef-
fectiveness. The results also show that there is a little difference between the retrieval
effectiveness of different stemmers.

3 A Stemming Algorithm for Turkish

3.1 The Turkish Language

Turkish is an agglutinative language, which means that it expresses syntactic relations
between words or concepts through discrete suffixes, each of which conveys a single idea.
For an agglutinative language such as Turkish, the concept of word is much larger than the
set of vocabulary items. Words can grow to be relatively long by addition of suffixes and
sometimes contain an amount of semantic information equivalent to a complete sentence
in another language. A popular example of complex Turkish word formation is

CEKOSLOVAKYALILASTIRAMADIKLARIMIZDANMISSINIZ

whose equivalent in English is “(it is speculated that) You had been one of those whom we
could not convert to a Czechoslovakian.” In this example, one word in Turkish corresponds
to a full sentence in English. Each suffix has a certain function and modifies the semantic
information in the stem preceding it.

Turkish word formation uses a number of phonetic harmony rules. Vowels and conso-
nants change in certain ways when a suffix is appended to a stem, so that such harmony
constraints are not violated.

Turkish roots can be classified into two main classes as nominal and verbal roots. The
suffixes that can be received by either of these groups are different, i.e., a suffix which can
be affixed to a nominal root can not be affixed to a verbal root with the same semantic
function.

Turkish suffixes can be classified as derivational and inflezional. Derivational suffixes
change the meaning and sometimes the class of the stems they are affixed to, while an
inflected verb or noun remains as such after the affixation. Inflexional suffixes can be
affixed to all of the roots in the class that they belong to. On the other hand, the number
of roots that each derivational suffix can be affixed to changes.

The simplified models for nominal and verbal grammars can be given as follows:*
The nominal model:

nominal root + plural suffix + possessive suffix + case suffix + relative suffix

3Refer Solak [15] for detailed information on each of the suffixes in these models and the exceptional
cases about them.

The verbal model:

verbal root + voice suffixes + negation suffix + compound verb suffix + main tense
suffix + question suffix + second tense suffix + person suffix

3.2 Stemming Algorithm

The complexity of Turkish morphology, as summarized in the previous section. necessi-
tates the use of a morphological analysis for the purpose of stemming. The stemming
algorithm used in this study makes use of a morphological analyzer developed previously
to be used for spelling checking of Turkish [15, 16, 17]. The documents and queries used
in our experiments have been passed from the spelling checker and all the words in them
are considered to be correctly spelled. As a preprocessing step, both the documents and
queries are given as input to our stemmer and the stems of the words in both are written
into separate files. After this, all the remaining operations are done on these stemmed
database.

Morphological analysis of a Turkish word is handled in three steps:

1. Root determination,

[v]

. Morphophonemic checks, and

(]

. Morphological parsing.

During these steps a dictionary of Turkish root words, and a set of rules for Turkish
morphophonemics, and morphotactics are used concurrently.

3.2.1 Root Determination

Before parsing the morphological structures of a Turkish word, the root has to be deter-
mined. All parsers use a dictionary of correctly spelled words. A dictionary of all possible
words is neither an efficient nor a practical approach. So, only root morphemes and some
irregular stems are to be held in the dictionary. Our dictionary, of about 23,000 words,
has been based on the Turkish Writing Guide (Tirkce Yazim Kilavuzu) [19, 20] as the
source. Each entry of the dictionary contains a root word in Turkish and a series of flags
showing certain properties of that word. We currently have reserved space for 64 different
flags for a single word. If the bit corresponding to a certain flag is set for an entry then
it means that the word which this entry belongs to has the property represented by that
flag. Only 41 flags have been used yet, but later implementations may use the remaining
ones.*

The root of a word is searched in the dictionary using a maximal match algorithm. In
this algorithm, first the whole word is searched in the dictionary. If it is found then the
word has no suffixes and therefore it does not need to be parsed. Otherwise, we remove

4The list of these flags together with some examples of root words for which those flags are applicable
can be found in Solak [15]. :

a letter from the right and search the resulting substring. We continue this by removing
letters from the right until we find a root. If no root can be found although the first letter
of the word is reached, the word can not be stemmed and it is inserted into the stemmed
database as 1s.

The maximum length substring of the word that is present in the dictionary 1s not
always its root. If the word can not be parsed correctly using that root, a new root is
searched in the dictionary, this time removing letters from the end of the previous root. If
a new root can be found the same operations are repeated, otherwise the word is inserted
into the stemmed database as is. For instance, the root of the word YAPILDIN (YOU
WERE MADE) is first determined as the noun YAPI (STRUCTURE). However, the
rest of the word does not form a valid sequence of suffixes for a nominal root. Instead
of reporting YAPI as the root of the word, a new root is searched, and the verbal root
YAP (MAKE, DO) is found. Since with this root the word can be parsed correctly, it is
reported as the root of the word.

Root determination presents some difficulties when the root of the word is deformed.
For the root words which have to be deformed during certain agglutinations (see [15, 17]),
a flag indicating that property is set in the dictionary entry. The individual cases such
as the dative and plural forms of personal pronouns are inserted into the dictionary and
treated as exceptions. For the other root deformations, the root of the word is found by
making some checks and some necessary changes.® For some roots both of the deformed
and undeformed forms are valid. Such cases are handled again by the help of certain flags.

The exact root of a word can not be uniquely determined in some cases. A Turkish
word may have more than one potential roots. For example, the root of the word KARIN
might be KARIN (ABDOMEN), KARI (WOMAN, WIFE) or KAR (SNOW), giving the
word the meanings ABDOMEN, YOUR WIFE or YOUR SNOW (or THE SNOW’S),
respectively. Obviously, it is very difficult to determine which one is the exact root of the
word without extensive semantic processing. For this reason, instead of reporting only
one stem per a word, we prefered to find and add to the stemmed database all the possible
roots of it. As a result, for some terms in the unstemmed database, there exists more
than one terms (1.22 terms on the average) in the stemmed database.

3.2.2 Morphophonemic Checks

After a root of a word is found, the rest of the word is considered as the suffixes. Vow-
els and consonants within suffixes should obey certain rules during agglutination [15].
Therefore, the suffixes part of a word must be checked to see whether any of the morpho-
phonemic rules are violated. The vowel harmony check may be done just after the root
determination, but to perform the other morphophonemic checks, the suffixes must be
determined. Because of this, these checks are done during morphological parsing, after
each suffix is isolated. During the lexical analysis, if any of the allomorphs® of a suffix
can be matched, it is sent to the parser without checking whether the correct form of it
is used. These checks are done within the parser. Since the vowel harmony check is done
beforehand, only the remaining morphophonemic checks must be done at that point. The

5In Solak [15, 17}, some examples representing how the real value of a deformed root is determined
can be found.
6 An allomorph is any of the variant forms of a morpheme.

consonant harmony checks are among these checks [15].

If a word can not pass any of the morphophonemic checks, considering the possibility
that the root may have been determined wrongly, a new root is searched in the dictionary,
and the process is repeated.

3.2.3 Morphological Parsing

For the morphological parsing of Turkish words two separate sets of rules for the two main
root classes have been prepared. When the root ot a word is found, the class of the root
determines which set of rules (i.e., verb parser or noun parser) is to be used for further
parsing.

For the implementation of the lexical analyzers and parsers in which the rules are
included, two standard UNIX utilities, lez and yacc, have been utilized respectively [8, 14].
Two sets of lex specifications, one per each root class, are prepared to generate the lexical
analyzers which are to be called by the parsers each time a new token is needed. The
specifications contain regular expressions that match suffix tokens. The lexical analyzer
corresponding to the category of the current stem sends, as the next suffix token, the
maximum length substring from the left of the remaining suffixes part that matches to
any allomorph of a suffix in the permitted class.

The grammar rules for morphotactics of Turkish word structures have been described
in two yacc specifications, one for nominal and one for verbal roots. The lexical analyzers
produce the suffix token stream. Yacc generates the programs for the parsers. The two
parsers are alternatively used. First parser to be used is determined according to the class
of the root, but as the parsing continues it may be necessary to switch from one parser
to another and continue there, or again pass back to the previous one, since the class of a
stem can change when it receives certain suffixes. For example, while parsing continues in
the noun parser, if the derivational suffix ~-L{A}§, which makes a verb from a noun (e.g.,
SAKALASMAK (to joke with another)), is matched, a jump to the verb parser must be
done.

For the roots that can take all the suffixes belonging to both nominal or verbal classes,
if parsing is unsuccessful in the first parser chosen, the other one must also be tried. For
example, the root of the word ACLAR (hungry people) is AC. This root may either be
used as a verb (open) or as a noun (hungry). Parsing is first attempted with the verb
parser, but it results unsuccessfully. So we backtrack and use the other parser. With the
noun parser the word can be parsed successfully.

In current implementation, the grammar for verb parser consists of 230 rules in which
80 terminals and 81 nonterminals are used, and the grammar for noun parser, consists of
263 rules in which 68 terminals and 94 nonterminals are used.

4 Characteristics of Databases and Queries

In this study, a news database consisting of 533 Turkish documents is used as the text
corpus. It is obtained from a Turkish news agency and contains news on different subjects

such as politics, sports, economics, etc. The queries are Turkish natural language queries
prepared by graduate students.

4.1 Documents

Originally the news database included 110,605 words. After a preprocessing, all unneces-
sarv symbols, numbers, etc. are removed from the database and only words which have a
potential to become an index term are left. As an example, consider the following short
document from the original database: » -

[sci emeklileriyle dul ve yetimlerinin maas farklar bugiin &deniyor. Sosyal
vardim zammui ile katsayimin 1 temmuz 1992 tarihinde arttirmasindan kay-
naklanan 45 ginlik maasg farklar ilgili banka subelerince 6deniyor. 1 temmuz
- 15 agustos tarihlerini kapsayan maag farklar: toplami 680 milyar liray: bu-
luvor. SSK’dan 1 milyon 790 bin emekli, dul ve yetim maas aliyor.

After the preprocessing step, the above document looks like as follows:

Isci emeklileriyle dul ve yetimlerinin maag farklar1 bugiin 6deniyor Sosyal
vardim zammi ile katsayimmin temmuz tarihinde arttirmasindan kaynaklanan
gunliik maag farklar: ilgili banka subelerince 6denivor temmuz agustos tarih-
lerini kapsayan maag farklar: toplami milyar liray1 buluyor ssk’dan milyon bin
emekli dul ve yetim maag aliyor

The resulting database is used in the subsequent experiments and it is referred to as
the unstemmed database in this report. It contains 90,912 words.

Applyving the stemming routine on the unstemmed database, the stems of all the words
in this database are found, and the stemmed database is created. The stemmed database
contains 111,062 words. It contains more words than the unstemmed database, because,
as explained in Section 3.2.1, for some words in the unstemmed database, the stemmer
finds more than one root. Our example document looks like as follows in the stemmed
database:

Is emekli dul ve yetim maag fark bugiin 6de Sosyal ya yar yardim zam il ile
katsay1 temmuz tarih tarihi art kaynaklan giin maasg fark ilgi ilgili bank banka
sube 6de temmuz agustos tarih kapsa maag fark topla toplam milyar lira bul
bula ssk milyon bin emek emekli dul ve yetim maas al

Using the stemmed and unstemmed databases two stopword lists are generated (see
Section 5). The stopword list of the stemmed database contains 293 terms, where the
other one contains 3128 terms. For both databases, the remaining unique terms are
considered as the termlist to be indexed, i.e., the index dictionaries. The termlist for the
stemmed database contains 6673 terms, while the other one contains 19086 terms. Hence,
stemming decreases the index dictionary size to one third.

Both termlists are stored alphabetically and a term number is given to each term.
Fach document vector contains the <termno, weight> information for each unique term
in that document. Table 1 lists the characteristics of both databases.

Database No. of No. of Avg. no. of No. of terms
documents | distinct terms | distinct terms / doc | in the stoplist
Stemmed 533 6673 78.13 293
Unstemmed 533 19086 86.85 3128

Table 1: Characteristics of the databases

No. No. of Avg. no. Avg. no. Total no. -
Queries of distinct of distinct of relevant of distinct
queries | terms | terms / query | doc.s / query | relevant doc.s
Stemmed 71 448 11.10 7.11 324
Unstemmed 71 521 11.23 7.11 324

Table 2: Characteristics of the queries

4.2 Queries

Originally 110 queries were written by seven graduate students. Then, the relevant docu-
ments for each query were determined. 39 queries with less than two relevant documents
are eliminated, and remaining 71 queries are used in the experiments.

Queries are written in natural language form and they also contain a list of keywords to
indicate the importance of certain terms in the query. They are written just in the same
format as the original database. Applying the same preprocessing step, the queries are
converted to a most suitable form, which is refered to as unstemmed queries. Afterwards,
the stemmed queries are constructed just in the same way as the stemmed documents.

The query vectors are also prepared in the same way as document vectors. The only
difference is that, if a query term is present in neither the termlist nor the stoplist, i.e., if
it is not an index term, it is not represented in the query vector. The query characteristics
are presented in Table 2.

5 Stopword List Generation

A stoplist is a list of words considered to have no indexing value, used to reduce the
number of indexing terms. Each potential indexing term is checked against the stoplist
and eliminated if found there [4]. The advantages of the process are not only that non-
significant words are removed and will therefore not interfere during retrieval, but also
that the size of the total document surrogate file can be reduced significantly.

In this study, two different stoplists are prepared, one to be used with the stemmed
database, another one for the unstemmed database (see Section 4.1).

Term | English Meaning(s) Frequency
VE | AND 2128
OL |BE 1917
BIR | ONE, A, AN 1784
BU | THIS 1347
DA | TOO, ALSO 1186
DE | TOO, ALSO, SAY 1072
ET | DO, MAKE, MEAT 1034
YAP | DO, MAKE 1030
[C | IN, INSIDE, DRINK 803
MI Question suffix 729
IL CITY 704
ICIN | FOR 703
AL | TAKE, RED 671
ILE | WITH 663
YIL | YEAR 588
VER | GIVE 588
ARA | LOOK FOR, INTERVAL 520
BIL | KNOW 520
BUL | FIND 519

Table 3: Most frequently occuring terms in the stemmed database

5.1 Stemmed Stopword List

The stemmed database contains 6966 unique terms. Majority of these terms occur infre-
quently in the documents, where a small portion of them are very frequent. For example,
while 2508 of these terms occur only once in the whole database, the term VE, meaning
AND in English,occurs 2128 times. An inspection of the most frequently occuring terms,
i.e., those that are primary candidates for inclusion in a stoplist, as seen in Table 3, con-
firms that they are mainly function words. Considering this property, the first stoplist is
prepared by taking into account of the most frequently occuring terms.

It should be noted that there are some words in Turkish that have exactly the same
written form but differ in their meaning. For example, as seen in Table 3, the term ET
can be either the root form of the verbs TO DO or TO MAKE, or it can be used in
themeaning MEAT. Hence, this term can be considered as a function word in the first
usage, but not in the second. Since it is difficult to distinguish between the variants
without extensive semantic processing, we prefered to include such words in the stoplist.

Another observation shows that some non-function words have a large frequency, e.g.,
the term IL in Table 3. This happens since sometimes the exact root of a word can
not be determined uniquely, and there may be more than one term in the stemmed
database corresponding to a single term of the unstemmed database (see Section 3.2 1.
For example, the term IL seems to occur too much in the database, because for each
occurence of the term ILE in the unstemmed database, both the terms IL and ILE are
inserted into the stemmed database, since ILE can be used either in the meaning WITH

or it can be the dative form of the noun IL, which means TO THE CITY. Such terms are
also included in the stoplist.

The stopword list prepared according to the term frequencies contained only 200 terms
and it was excluding some of the non-context bearing terms such as BUT, SO, THUS, AL-
THOUGH in English. Although such termsdo not occur very frequently in the database,
it is certain that theydo not have any indexing value. In order to determine such terms, a
stopword list for English, given in [18], is examined and the corresponding Turkish terms
are added to our stoplist. Consequently, the stopword list for the stemmed database in-
cludes 293terms. The terms in this stopword list cover nearly 40% of all word occurences.

5.2 Unstemmed Stopword List

In order to have equivalent conditions in both stemmed and unstemmed case, the stopword
list of the unstemmed database is prepared by the help of the stemmed stoplist. A term in
the unstemmed database is inserted into its stoplist only if all of its potential stems occur
in the stemmed stoplist. For example, the term ALTINA is not included inthe unstemmed
stoplist, because this term might have two meanings, TOTHE BOTTOM or TO GOLD,
hence, two potential stems, ALT (BOTTOM) or ALTIN (GOLD). The first stem occurs
in the stemmed stoplist, but the second one does not. Thus, the index for the stemmed
database includes the term ALTIN, but not ALT. Therefore, the unstemmed database
shouldalso include this term. On the other hand, the term ONDA, which can mean either
AT TEN or AT HIM/HER/IT, is included in the unstemmed stoplist, because both of its
potential stems, ON (TEN) and O (HE/SHE/IT), are members of the stemmed stoplist.
Using this method, 3128 terms are inserted into the stopword list of unstemmed database,
and they cover nearly 34% of all word occurences.

6 Best-Match Retrieval

In a best-match retrieval environment, the best-matching d; documents out of m docu-
ments are retrieved [2]. There are several matching functions based on the term weighting
used for document and query terms. For term weighting there are three components [13]:

1. TFC (Term Frequency Component)

2. CFC (Collection Frequency Component)

3. NC (Normalization Component)

The weights of the terms of a document and a query, denoted by wy; and wy,, 1 <7 < n,
where n is the number of terms, are obtained by multiplying the respective weights of these
three weighting components. After obtaining the term weights, the matching function for
a query q and a document d is defined as the following vector product:

similarity(q,d) = Y7_; Wy, * wa,

10

Abbreviation | TW1 | TW2 | TW3 | TW4 | TW5 | TW6 | TWT
Meaning tre.tzz | tfe.nfe | tfe.tfz | tfe.bfz | nfe.nfe | nfc.tfr | nfc.bfz

Table 4: Term weighting approaches

Consider d;;. The weight of term t; in d; will be (TFC * CFC * NC). There are
three possibilities for TFC: b, ¢ and n, three possibilities for CFC: =, fand p, and two
possibilities for NC: z and ¢. The meanings of those letters are as follows:

e TFC

1. b is the binary weight where when a term is present the term frequency is
ignored and TFC is taken as 1;

S\D

t is raw term frequency tf, which means TFC is equal to the number of oc-
curences of t; in dj;

3. n is the augmented normalized term frequency, defined as

0.5 + 0.5%¢

mazxtf
where magztf is the maximum number of times any term appears in d;.

e CFC

1. z indicates no change, thus CFC is taken as 1;

[SW]

. fis inverse document frequency, which is equal to
In +1
.

J
where ¢y, indicates the number of documents containing ¢;;

LI

. p is the probabilistic inverse collection frequency factor, which is equal to
lnm—'tg‘f‘]
tg

e NC

1. = means no normalization, thus NC is taken as 1;

2. ¢ is cosine normalization, which is equal to
U
e
The normalization of query terms is insignificant, since it does not change the
relative ranking of documents.

The various combinations of the term weighting components yield different matching
functions. For example, TW1, i.e., the combination tzc (TFC = t, CFC = z, and NC =
¢) and tzz, respectively, for documents and queries, yields the well known cosine function
in IR literature [12, 18]. The combinations tfc, nfc for documents, and nfz, iz, bfz for
queries lead to better IR performance [13]. This gives us six different matching functions:
tfe.nfr, tfe.tfz, tfe.bfr, nfe.nfz, nfe.ifz and nfe.bfz. Table 4 shows these seven combinations
used in the experiments.

11

Effectiveness Measure Q Precision Recall
d 10120 10 20 10 20
TW1 | Unstemmed | 10| 6 | 0.258 | 0.170 | 0.501 | 0.628
Stemmed 8 | 5 10.258 | 0.168 | 0.512 | 0.635
TW2 | Unstemmed 6 | 4 |0.280 | 0.182 | 0.552 | 0.675
Stemmed 5 13 10.293 10.196 | 0.589 | 0.715
TW3 | Unstemmed 8 | 4 10273 | 0.181 | 0.542 | 0.673
Stemmed 3 13 10.297 10.193 | 0.600 | 0.710
TW4 | Unstemmed 5 14 10.277 1 0.180 | 0.551 | 0.663
Stemmed 513 10.292 | 0.192 | 0.585 | 0.701
TW5 | Unstemmed | 10| 4 | 0.283 | 0.185 | 0.548 | 0.630
Stemmed 4 | 4 10.300 | 0.190 | 0.595 | 0.691
TW6 | Unstemmed | 10| 4 | 0.283 | 0.180 | 0.546 | 0.671
Stemmed 513 10.294 | 0.192 | 0.580 | 0.700
TWT7 | Unstemmed 8 | 5 10.275 | 0.182 | 0.543 | 0.663
Stemmed 6 4 {0.293|0.187 | 0.575 | 0.677

Table 5: Effectiveness results for stemmed and unstemmed databases

7 Retrieval Effectiveness Results

In this study, the effects of our stemming algorithm on retrieval effectiveness of Turkish
text retrieval are analyzed. The effectiveness measures used in this study are the total
number of queries with no relevant documents, Q; the average precision for all queries; and
the average recall for all queries. The effectiveness measures are obtained after retrieving
10 and 20 documents, which are typical values for d; [1]. An effective system yields lower
Q and higher precision and recall.

Table 5 shows the effectiveness figures for both the stemmed and unstemmed databases.
The experimental results indicate that the matching function has a major part in retrieval
effectiveness. The increase in precision due to stemming varies from 0.0 percent (ds = 10
of TW1) to 8.8 percent (d, = 10 of TW3). The lowest values for precision and recall with
both databases are obtained with TW1, so we can conclude that cosine function is not a
good choice as a matching function.

Table 5 proves that stemming increases the retrieval effectiveness, because lower Q)
values and higher precision and recall values are obtained with the stemmed database
than with the unstemmed database. The only exception is the decrease in precision for
d, = 10 of TW1. Excluding TW1, for all the remaining cases, the average percentage
increase in precision is 7.05 percent; in recall 5.78 percent. TW3 with d, = 10 gives the
highest precision and recall increases, and highest Q decrease.

Although precision values seem too low in all cases, in fact this is misleading because
the average of possible maximum precision values for all queries is 0.51 for d;, =10 and
0.30 for d, = 20. The average precision is less than one since the number of relevant
documents for some queries is less than d, (10 or 20).

12

In this paper, a stemming algorithm for the l'urkish language is presented. Using this al-
gorithm a database of Turkish news is indexed. The retrieval performance of the stemming
algorithm is then measured in terms of its effect on retrieval performance of a best-match
text retrieval system. The results show that stemming reduces the index dictionary size
about 65 percent and also improves the retrieval effectiveness.

The increase in the retrieval effectiveness due to stemming is low. The reason may
be that the stemming algorithm returns more than one stem for a single word in some
cases, causing some unrelevant terms to be conflated. The solution is to select one of
the potential stems of the word, but without a semantic investigation i1t is impossible
to determine the correct stem. Considering the fact that stemmers of IR need not be
linguistically correct, our stemmer can be modified to select one of the possible stems,
either the longest or the shortest one. This will decrease the index size and also shorten
the document and query vectors significantly, however may result in understemming or
overstemming in various cases. A better approach may be the use of a language inde-
pendent stemming algorithm, such as successor variety algorithm [4] on Turkish text and
compare the effectiveness results with our stemming algorithm.

ACKNOWLEDGEMENTS

We are grateful to Dr. Kemal Oflazer who provided us the Turkish news database, and
to the graduate students of CS 533 (Information Retrieval Systems) course who helped
us to prepare queries and find the relevant documents for each query.

References

[1] Can, F., Ozkarahan, E. A., “Concepts and Effectiveness of the Cover-Coefficient-
Based Clustering Methodology for Text Databases”, ACM Transactions on Database
Systems, Vol. 15, No. 4, Dec. 1990, pp. 483-517.

[2] Can, F., “On the Efficiency of Best-Match Cluster Searches”, Information Processing
and Management (to appear).

13] Dawson, J. L., “Suffix Removal and Word Conflation”, ALLC Bulletin, Vol. 2, No.
3. 1974, pp. 33-46.

[4] Frakes, W. B., “Stemming Algorithms”, in Information Retrieval Data Structures
and Algorithms, edited by William B. Frakes and Ricardo Baeza-Yates, Prentice
Hall, Englewood Cliffs, N.J., 1992, pp. 131-160.

(5] Fujii, H., Croft, W. B., “A Comparision of Indexing Techniques for Japanese Text
Retrieval”, ACM-SIGIR Conference (Pittsburgh, PA, USA, June 1993), 1993, pp.
237-246.

13

[6]

[12]

[13]

[14]

18]

[19]
[20]

Koksal, A., “Timiiyle Ozdevimli Deneysel Bir Belge Dizinleme ve Erisim Dizgesi:
TURDER?”, Tirkiye Bilisim Dernegi 3iincii Ulusal Bilisim Kurultay:, Ankara, 1981,
pp. 37-44.

Lovins, J. B., “Development of a Stemming Algorithm”, Mechanical Translation and
Computational Linguistics, Vol. 11, No. 1-2, 1968, pp 22-31.

Mason, T., Brown, D., “lex & yacc”, edited by Dale Dougherty, O'Reilly & Asso-
ciates, Inc., USA, May 1990.

Paice, C. D., “Another Stemmer”, 4ACM SIGIR Ferum, Vol. 24, No. 3, pp. 36-€1.

Popovic, M., Willett P., “Processing of Documents and Queries in a Slovene Language
Free Text Retrieval System”, Literary and Linguistic Computing, Vol. 5, No. 2, 1990,
pp- 182-190.

Porter, M. F., “An Algorithm for Suffix Stripping”, Program, Vol. 14, No. 3, 1980,
pp- 130-137.

Salton, G., “Automatic Text Processing: The Transformation Analysis and Retrieval
of Information by Computer”, Addison-Wesley, Reading, Mass., 1989.

Salton, G., Buckley, C.,“Term-Weighting Approaches in Automatic Text Retrieval”.
Information Processing and Management, Vol. 24, No. 5, 1988, pp. 513-523.

Schreiner, A. T., Friedman, Jr., H. J., “Introduction to Compiler Construction with

UNIX”, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1985.

Solak, A., “Design and Implementation of a Spelling Checker for Turkish”, Master’s
Thesis, Bilkent University, 1991.

Solak, A., Oflazer, K., “Parsing Agglutinative Word Structures and its Application
to ‘Spelhn«f Checking of Turkish”, , Proceedings of COLING’92, Nantes, France, 1992,
. 26-45.

Solak. A., Oflazer, K., “Design and Implementation of a Spelling Checker for Turk-
ish”, Literary and Linguistic Computing, Vol. 8, No. 3, 1993, pp. 113-130.

van Rijsbergen, C., J., “Information Retrieval”, Second Edition, Butterworths, 1979,
pp- 18-19.

“Yeni Yazim Kilavuzu (New Writing Guide)”, Ninth Edition, TDK, Ankara, 1977.

“Yeni Yazim Kilavuzu (New Writing Guide)”, Eleventh Edition, TDK, Ankara, 1981.

14

