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Abstract: A real-time database system (RTDBS) is designed to provide timely response to the
transactions of data-intensive applications. Fach transaction processed in a RTDBS is associated
with a timing constraint in the form of a deadline. Efficient transaction scheduling algorithms
are required to minimize the number of missed transaction deadlines. In this paper', a perfor-
mance evaluation model is provided to enable distributed RTDBS designers to analyze transaction
scheduling algorithms. The model is developed progressing from a simple mathematical analysis to
complicated simulations. The performance is expressed in terms of the fraction of satisfied transac-
tion deadlines. The paper also provides an example simulation experiment implemented using the
model presented.

1. Introduction

A real-time database system (RTDBS) is a database system designed to provide real-time response
to the transactions of data-intensive applications such as stock market, computer-integrated manu-
facturing, telephone-switching systems, network management, and command and control systems.
Each transaction submitted to a RTDBS is associated with a timing constraint in the form of a
deadline. Tt is difficult in a RTDBS to meet all transaction deadlines due to the overhead of the
consistency requirement for the underlying database. Conventional scheduling algorithms proposed
to maintain data consistency are all based on transaction blocking and transaction restart, which
makes it virtually impossible to predict computation times and hence to provide schedules that
guarantee deadlines. The performance goal in RTDBS transaction scheduling is to minimize the
number of transactions that miss their deadlines. A priority order is established among transactions
based on their deadlines.

Distributed databases fit more naturally in the decentralized structures of many RTDB applications
that are inherently distributed. Distributed RTDBSs provide shared data access capabilities to
transactions; i.e., a transaction is allowed to access data items stored at remote sites. While
scheduling distributed RTDBS transactions, besides observing the timing constraints, it must also
be provided that the global consistency of the distributed database is preserved as well as the
local consistency at each data site. To achieve this goal we require the exchange of messages
carrying scheduling information between the data sites where the transaction is being executed. The
communication delay introduced by message exchanges constitutes a substantial overhead for the
response time of a distributed transaction. Thus, guaranteeing the response times of transactions

1 An earlier version of this paper was published in the Proceedings of 25th Annual Simulation Symposium, 1992.



(i.e., satisfying the timing constraints), is more difficult in a distributed RTDBS than that in a
single-site RTDBS.

The transaction scheduling problem in RTDBSs has been addressed by a number of recent studies
(111, 121, 141, I5], 16], [12] in single-site systems, and [8], [9], [10], [13] in distributed systems);
however, the emphasis in all these works is the development of new scheduling algorithms rather
than providing accurate performance models. The proposed algorithms have been evaluated using
simple performance models each with different simplifying assumptions. In this paper, we provide
a detailed performance model to be used in the evaluation of distributed transaction scheduling
algorithms in RTDBSs. The model is developed by progressing from a simple mathematical analysis
to complicated simulations. The mathematical analysis is in terms of a probabilistic cost model
to focus on the processing and 10 ‘cost’ (actually time requirements) of executing a distributed
transaction in the system. The analysis enables us to determine the transaction load supported by
the system, and to ensure that the values of system parameters are kept in reasonable ranges in
simulation experiments.

The proposed model can be used in evaluating various components of transaction scheduling algo-
rithms. Among those components are the concurrency control protocol, the CPU/disk scheduling
algorithm, the priority assignment policy, the deadlock detection/recovery method, and the trans-
action restart policy. The model enables the users to study the relevant performance behavior of
each component under diverse real-time and database environments to provide insights into dif-
ferent approaches. The performance is expressed in terms of the fraction of satisfied transaction
deadlines.

Section 2 describes our performance model proposed for distributed RTDBSs. Section 3 presents
the results of a performance experiment which evaluates some concurrency control protocols and
priority assignment methods using the introduced performance model. Some final comments on
the proposed model are provided in the last section.

2. A Distributed Real-Time Database System Model

The performance model is based on an open queuing model of a distributed database system which
processes transactions associated with timing constraints. The model is driven by an external
transaction source at a certain arrival rate.? We use a data distribution model which provides a
partial replication of the distributed database. Each data item may have any number of replicas in
the system (as many as the number of data sites). We believe that this model of data replication
is a convenient one for real-time applications, because the number of copies of each data item
might depend on the criticality and access frequency of the item. If a data item contains critical
information and is required by many transactions from each data site, it must be fully replicated.
On the other hand, there is no need to have many copies of a data item if it is not requested
frequently.

Let {51,952, ...,9,} denote the set of n data sites. The number of data items originating at each
site is assumed to be the same. A data item D, originating at site Sk, 1 < k < n, can have 0 to
n - 1 remote copies, each stored at a different site. Let N(D) denote the number of replicas of D,
including the one stored at the originating site. We assume that N (D) can have any value from 1

2Tt could also be possible to involve a closed queuing model in our analysis. In such a model, the transaction
population in the system would be kept constant (i.e., there would be no external arrivals and each committed
transaction would be restarted as a new transaction). We did not consider a closed form solution as we believe that
the behavior of a real RTDBS can be captured better by using an open form solution.



to n with equal likelihood, i.e.,
Prob(N(D) = )= —

n

Selecting the number of replicas of a data item from a uniform distribution was preferred to simplify
various analyses performed in the rest of the paper.® It is also assumed that the copies of data item
D are uniformly distributed over the remote data sites.

Mutual consistency of replicated data is achieved by using the ‘read-one, write-all’ approach. A
read operation on a data item can be performed on any copy of the data. If a local copy of the
item exists, that copy is accessed without performing an intersite communication; otherwise, any
of the remote copies is accessed with uniform probability. The ‘write-all’ approach requires that a
write operation on a data item must be performed on all copies of the data.

Each site contains a transaction manager, a scheduler, a buffer manager, a resource manager, and
a message server. The transaction manager is responsible for generating the workload for each
data site. The arrivals at a site are assumed to be independent of the arrivals at the other sites.
Fach transaction submitted to the system is associated with a real-time constraint in the form of
a deadline. The transaction is assigned a globally distinct real-time priority by using a specific
priority assignment technique. FEach transaction is executed to completion even if it misses its
deadline. We model a distributed transaction as a master process that executes at the originating
site of the transaction and a collection of cohorts that execute at various sites where the required
data items reside. The transaction manager at a site is responsible for the creation of the master
process and the cohort processes for each transaction submitted to that site. The cohorts are
created dynamically as needed. There can be at most one cohort of a transaction at each site.
For each operation executed, the transaction manager refers to the global data dictionary at its
site to find out which data sites store copies of the data item referenced by the operation. Then
the cohort(s) of the transaction at the relevant sites are activated to perform the operation. The
master process provides the coordination of cohort processes; it does not itself perform any database
operations. The priority of a transaction is carried by all its cohorts.

Atomic commitment of each transaction is provided by the centralized two-phase commit (2PC)
protocol. An ideal commit protocol for RTDBSs should have the following desirable properties:
predictability, low cost, fault-tolerance, and consistency. However, to our knowledge, no commit
protocol with those properties has appeared in the literature yet. For the applications with hard
timing constraints, the consistency requirement can be relaxed to guarantee deadlines, but RTDBSs
are basicly restricted to soft timing constraints and maintaining data consistency is the primary
consideration in processing transactions. Some recent work has concentrated on the commitment
problem for real-time transactions (e.g., [11], [3]). However, there is a tradeoff between the con-
sistency and timeliness constraints in all proposed commitment approaches. We did not consider
those protocols in our evaluations due to several reasons. First, we did not want to sacrifice the
data consistency. Second, those protocols are based on the hard deadlines assumption; i.e., a trans-
action that missed its deadline is aborted. In our system, the deadlines are soft; i.e., a transaction
continues to execute even if it misses its deadline. The protocol provided in [11] is adaptive in the
sense that under different situations the system can dynamically change to a different commitment
strategy. It is difficult to capture the behavior of an adaptive protocol in a mathematical analysis.

® Another data distribution model was also considered in [14]. In that data model, each data item has exactly N
copies in the distributed system, where 1 < N < n (note that N = 1 and N = n correspond to the no-replication
and full-replication cases, respectively). That model enabled us to execute the system at precisely specified levels of
data replication.



Returning back to our model, each cohort of a transaction performs one or more database operations
on specified data items. Concurrent data access requests of the cohort processes at a site are
controlled by the scheduler at that site. The scheduler orders the data accesses based on the
concurrency control protocol executed. The concurrency control protocol involves some form of
priority-based decision policy in resolving data conflicts that may arise among the cohorts. Based
on the real-time priority of a cohort, an access request of the cohort is either granted or results in
blocking or abort of the cohort. The scheduler at each site is also responsible for effecting aborts,
when necessary, of the cohorts executing at its site.

If the access request of a cohort is granted, but the data item does not reside in main memory,
the cohort waits until the buffer manager transfers the item from the disk into main memory. The
FTFO page replacement strategy is used if no free memory space is available. Following the access,
the data item is processed. When a cohort completes all its accesses and processing requirements, it
waits for the master process to initiate 2PC. Following the successful commitment of the distributed
transaction, the cohort writes its updates, if any, into the Iocal database.

Each site’s resource manager is responsible for providing 10 service for reading/updating data items,
and CPU service for processing data items, performing various concurrency control operations (e.g.
conflict check, locking, etc.), and processing communication messages. Both CPU and IO queues are
organized on the basis of the cohorts’ real-time priorities. Preemptive-resume priority scheduling is
used by the CPUs at each site; a higher-priority process preempts a lower-priority process, and the
lower-priority process can resume when there exists no higher-priority process waiting for the CPU.
Communication messages are given higher priority at the CPU than other processing requests.

There is no globally shared memory in the system, and all sites communicate via message exchanges
over the communication network. A message server at each site is responsible for sending/receiving
messages to/from other sites. It listens on a well-known port, waiting for remote messages.

Reliability and recovery issues were not addressed in this paper. We assumed a reliable system,
in which no site failures or communication network failures occur.* Tt was also assumed that the
network has enough capacity to carry any number of messages at a given time, and each message
is delivered within a finite amount of time.

The set of parameters described in Table 1 is used to specify the system configuration and workload.
All sites of the system are assumed to be identical and operate under the same parameter values.
Each site is assumed to have one CPU and one disk. These simplifying assumptions aim to keep
the analysis tractable.

The times between transaction arrivals at each site are exponentially distributed with mean 7at. The
transaction workload consists of both query and update transactions. The type of a transaction (i.e.
query or update) is determined on a random basis using the parameter tr_type_prob which specifies
the update type probability. access_mean specifies the mean number of data items to be accessed by
a transaction. Accesses are uniformly distributed among the data sites. Each transaction’s deadline
is set in proportion to the number of data items in its access list. The parameter slack_rate is used
in determining the slack time of a transaction while assigning a deadline to the transaction. The
deadline of a transaction is determined by the following formula:

deadline = start-time + processing-time-estimate + slack-time

The value of slack-time is chosen from the exponential distribution with a mean of slack_rate

%[14] provides an extension to the performance model to consider site failures.



n Number of data sites in the distributed system

local db_size Size of database originated at each site
mem_size Size of main memory at each site
cpu_time CPU time to process a data item
10time IO time to access a disk-resident data item
comm_delay Delay of a communication message between any two data sites

mes_proc_time | CPU time to process a communication message
pri_assign_cost | Processing cost of priority assignment

lookup_cost Processing cost of locating a data item
wat Mean interarrival time of transactions at a site
tr_type_prob Fraction of transactions that are updates
access_mean Mean number of data items accessed by a transaction
data_update_prob | Fraction of updated data items by an update transaction
slack_rate Average slack-time/processing-time for a transaction

Table 1: Distributed System Model Parameters

times processing-time-estimate. The processing-time-estimate of a transaction is calculated based
on CPU/IO delay of the operations performed for the transaction [14].

2.1. Expected 10 and CPU Utilizations at Each Data Site

A simple probabilistic cost model is used to determine the CPU and IO cost (in terms of expended
time) of processing a distributed transaction in the system. The model is based on an evaluation
of expected CPU and IO utilizations in terms of system parameters. It enables the users to keep
the system parameter values in appropriate ranges to obtain a desired level of resource utilization.

Assuming that the mean interarrival time between the successive transaction arrivals at each data
site is the same and specified by the parameter iat, the expected 10 utilization experienced at a
site can be represented by the following formula:

1
Uro = i (10-co8ti_gact + (0 — 1) % i0_cost, _q4ct)

10_c08t]_pact and 10_cost, 4.+ denote the average 10 cost (delay in mseconds) of a local and remote
transaction, respectively. The following subsection provides the specification of these variables in
terms of the system parameters.

Similarly, the expected CPU utilization at a site will be:

1
Ucpy = g (cpu—costy_yact + (n — 1) * cpu_cost, zact)

Cpu_cost]_zqer and cpu_cost, _q.4 are the the average CPU cost (execution time) of a local and remote
transaction, respectively.

Average 10 Cost of a Distributed Transaction at a Site
Let’s specify the average IO cost of transaction T at a representative site k. We have two different
cases based on the classification of the transactions executed at a site.

Case 1: T is a local transaction (it originated at site k).

The average 10 cost of local transaction T at site k can be specified as:

10_COSl|_ypqct = ACCESS_MEAN * 10_COSL|_op



access_mean specifies the mean number of data items accessed by each transaction. 7o_cost;_,), is
the average 10 cost of an operation submitted by 7', and can be formulated as follows.

10_cost]_op = P+ Pp, xt, + Py *x P * (4, + 1)

P, (P,) is the probability that the operation is a read (write). t, (¢,,) specifies the average 10 cost
of executing a read (write) operation. It is assumed that each data item to be written is read first.
Py, is the probability that the data item accessed by the operation has a local copy (at site k). The
values of these variables in terms of system parameters are provided in the Appendix section.

Case 2: T originated at a remote site.

The average IO cost of remote transaction T at site k:
10_COSly_gact = ACCESS_MEAN * 10_COSlrem, _op

10_€0Strem_op 18 the average IO cost of an operation of T at site k, and it can be specified by the
following formula.

iO—COStTem_op =P * Preadk * 1y + Py * Pwritek * (tr + tw)

Pread, (Purite,) is the probability that remote transaction 7' accesses a data item at site k to
perform the read (write) operation. These variables are formulated in the Appendix.

Average Processing (CPU) Cost of a Distributed Transaction at a Site

In formulating the average processing cost of a transaction 1" at a site k, we again have to consider
the two different transaction classes 1" can belong to.

Case 1: T is a local transaction.

The average processing cost formula of local transaction 1" is made up of three cost components
corresponding to different stages of the transaction execution.

CPU_COSL]_paqet = TNIL_COSL]_pact + OP_PTOC_cOSt]_poct + cOMMIt_cOSt)_4oct

The cost components specify the average processing cost of transaction initialization, operation
execution, and atomic commitment, respectively. Each of these components is formulated as follows.

1Nit_coSt]_pqaet = pri_assign_cost + data_locate_cost + cohort_init_cost

pri_assign_cost is the parameter specifying the processing cost of priority assignment. data_locate_cost
specifies the cost of locating the sites of data items in the access list of a local transaction.
cohort_init_cost is the cost of initiating cohorts of a local transaction at remote sites.

data_locate_cost = access_mean * lookup_cost

Note that lookup_cost refers to the processing time to locate a single data item.

cohort_init_cost = (n — 1) ¥ Peypmit; * mes_proc_time

There exist n — 1 remote data sites. Pyypmat, (see Appendix) is the probability that transaction T
submits at least one operation to remote site j. mes_proc_time specifies the CPU time required to
process a communication message before being sent or after being received.



OP_PTOC_COSl|_gqct = Op_act_cost + access_mean * erec_cosl; oy,

op_act_cost represents the CPU cost of activating T’s operations at remote sites (if remote data
access is needed) and processing the corresponding ‘operation complete’ messages sent back at the
end of each operation execution. exec_cost;_, specifies the cost of processing each local operation.

op_act_cost = Nop_submit * 2 * mes_proc_time

Nop—submit, the average number of operations a local transaction submits to remote sites, is derived
in the Appendix.

exec_cosly_,, = Pr x cpu_time

Recall that Py, is the probability that the data item accessed by the operation has a local copy.

commit_costi_gact = (1 — 1) * Psybmit; * (2 ¥ mes_proc_time + mes_proc_time)

commit_cost] gqe is due to executing the 2PC protocol® for a committing local transaction. Re-
member that Psupmg, is the probability that a local transaction submits operation to a remote site
(e.g., site j). 2 * mes_proc_time corresponds to the cost of Phase 1 of 2PC (sending a message to
each of the cohort sites and processing the messages sent back from those sites), while the second
term in the parentheses, i.e., mes_proc_time, corresponds to Phase 2 (sending the final decision
message to cohort sites).

Case 2: T originated at a remote site.

Similar to the local transaction case, the average processing cost of remote transaction T can be
specified as follows.

CPU_COSt,_pqet = INUE_COSt, et + OP_PTOC_cOSt, _poct + cOMMIt_COSt, _pget

init_cost,_pqc specifies the average cost of processing the ‘initiate cohort’ message for each remote
transaction.
init_cost,_zact = Pop—from,; * mes_proc_time

Pop—from; is the probability that remote transaction 7' (from site j) submits a cohort to this site
(to site k). This probability is equal to Psupmit,, derived in the Appendix.

Op_proc_cost, _pqct = ACCESS_MEAN * (act_msg_cost + ewec_costrem_op)

act_msg_cost specifies the average CPU cost for each of T’s operations due to processing ‘activate
operation’ message from 1"’s site and sending back ‘operation complete’ message at the end of oper-
ation execution. exec_cost,cn,_op represents the average CPU cost due to processing each operation
of T.

act-msg_cost = (P % Preqq, + Puw * Purite,, ) * (2 * mes_proc_time)

5As the coordinator.



As noted earlier, P, (P, ) is the probability that the operation is a read (write), and Preqa, (Purite,)
is the probability that 7' accesses a data item at this site (site k) to perform the read (write)
operation.

exec_CoStrem_op = (Pr * Pread, + Puw * Purite, ) * cpu_time

commit_cost, . is the average processing cost due to executing the commit protocol® for remote
transaction T.

commit_cost, vact = Pop— from, * (2 ¥ mes_proc_time + mes_proc_time)

2 * mes_proc_time corresponds to the overhead of Phase 1 and mes_proc_time corresponds to the
cost of Phase 2 of 2PC protocol for each committing remote transaction.

3. A Performance Evaluation Example

A program to simulate our distributed system model was written in CSIM [7], which is a simulation
language based on the C programming language. For each simulation experiment, the final results
were evaluated as averages over 100 independent runs. Each configuration was executed for 500
transactions originated at each site. 90% confidence intervals were obtained for the performance
results. The width of the confidence interval of each data point is within 4% of the point estimate.
The mean values of the performance results were used as final estimates.

Two important components of a RTDBS transaction scheduler were involved in our evaluation
process: Concurrency Control Protocol and Priority Assignment Policy.

3.1. Concurrency Control Protocols

The concurrency control protocols studied are all based on the two-phase locking (2PL) method.
In our earlier performance works ([14], [12]) we compared various lock-based, optimistic, and
timestamp-ordering protocols and observed that lock-based protocols perform consistently bet-
ter than the other ones under different system configurations and workloads. The optimistic
and timestamp-ordering protocols performed well only under light transaction loads, or when the
data/resource contention in the system was low.

For the locking protocols studied, each scheduler manages locks for the data items stored at its site.
Each cohort process executing at a data site has to obtain a shared lock on each data item it reads,
and an exclusive lock on each data item it updates. In order to provide global serializability, the
locks held by the cohorts of a transaction are maintained until the transaction has been committed.
The concurrency control protocols are different in how the real-time priorities of the transactions
are involved in scheduling the lock requests.

Local deadlocks are detected by maintaining a local Wait-For Graph (WFG) at each site. WFGs
contain the ‘wait-for’ relationships among the transactions. For the detection of global deadlocks
a global WFG is used which is constructed by merging local WFGs. One of the sites is employed
for periodic detection/recovery of global deadlocks. A deadlock is recovered from by selecting the
lowest priority cohort in the deadlock cycle as a victim to be aborted. The master process of the
victim cohort is notified to abort and later restart the whole transaction.

Priority Inheritance Protocol (PI): The priority inheritance method, proposed in [8], makes
sure that when a transaction blocks higher priority transactions, it is executed at the highest
priority of the blocked transactions; in other words, it inherits the highest priority. The idea is to
reduce the blocking times of high priority transactions.

6 As the participant.



In our distributed system model, when a cohort is blocked by a lower priority cohort, the latter
inherits the priority of the former. Whenever a cohort of a transaction inherits a priority, the sched-
uler at the cohort’s site notifies the transaction’s master process by sending a priority inheritance
message, which contains the inherited priority. The master process then propagates this message
to the sites of other cohorts belonging to the same transaction, so that the priority of the cohorts
can be adjusted.

High Priority Protocol (HP): This protocol resolves data conflicts always in favor of high-
priority transactions [1]. At the time of a data lock conflict, if the lock-holding cohort has higher
priority than the priority of the cohort that is requesting the lock, the latter cohort is blocked.
Otherwise, the lock-holding cohort is aborted and the lock is granted to the high priority lock-
requesting cohort. Upon the abort of a cohort, a message is sent to the master process of the
aborted cohort to restart the whole transaction. The master process notifies the schedulers at all
relevant sites to cause the cohorts belonging to that transaction to abort. Then it waits for the
abort confirmation message from each of those sites. When all the abort confirmation messages are
received, the master can restart the transaction.

Since a high priority transaction is never blocked by a lower priority transaction, this protocol is

deadlock-free’.

No Priority Protocol (NP): This protocol resolves lock conflicts by blocking a cohort that
requests a lock that is already held. The cohort remains blocked until the conflicting lock is
released. The real-time priority of the cohorts is not considered in processing the lock requests.
Inclusion of this protocol aims to provide a basis of comparison for studying the performance of
the priority-based protocols.

3.2. Priority Assignment Policies

Earliest Deadline First (EDF): A transaction with an earlier deadline has higher priority than
a transaction with a later deadline. If any two of the transactions have the same deadline, the one

that has arrived at the system earlier is assigned a higher priority (i.e., First Come First Served
(FCFS) policy).

Least Slack First (LSF): The slack time of a transaction can be defined as the maximum length
of time the transaction can be delayed and still satisfy its deadline. Between any two transactions,
the one with less slack time is assigned higher priority by the LSF policy.

For this experiment, the static version of the LSF policy was implemented. This policy assigns
the priority of a transaction based on its slack time when it is submitted to the system as a new
transaction or when it is restarted. (The dynamic version of this policy evaluates the transaction
priorities continuously. We did not implement it because of the considerable overhead incurred
by continuous calculation of the priorities whenever needed.) The LSF policy assumes that each
transaction provides its processing time estimate. Similar to the EDF policy, the tie breaker in the
case of equal slack times is the FCFS policy.

Random Priority Assignment (RPA): Each transaction obtains a priority on a random basis.
The priority assigned to a transaction is independent of transaction’s deadline.

Table 2 specifies the default values of the system parameters used in the simulation experiment.
The values of cpu_time and ‘o_teme were chosen to yield a system with almost identical CPU and
IO utilizations. Neither a CPU-bound nor an I0-bound system is intended. (It would be possible

"The assumption here is that the real-time priority of a transaction does not change during its lifetime and that
no two transactions have the same priority.



n 10 || priassign_cost (msec) | 1
local db_size 200 || lookup_cost (msec) 1
mem_size 500 || ¢at (msec) 400
cpu_time (msec) 8 tr _type_prob .50
io_time (msec) 18 || access_mean 6
comm_delay (msec) 5 data_update_prob .50
mes_proc_time (msec) | 2 slack_rate 5

Table 2: Distributed RTDBS Model Parameter Values
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Figure 1: Swuccess-ratio vs iat with EDF priority assignment policy.

to have a CPU-bound or an I0-bound system by simply having different settings of the parameters
cpu_time and io_time.) The experiment was conducted to evaluate the performance of various
concurrency control protocols and priority assignment methods under different levels of transaction
load. Mean time between successive transaction arrivals at a site (i.e., at) was varied from 300 to
460 mseconds in steps of 40. This range of iat values corresponds to a CPU utilization of .94 to .61,
and IO utilization of .91 to .60 at each data site. The performance metric used in the experiment
is success-ratio; i.e., the fraction of transactions that satisfy their deadlines.

3.3. Simulation Results

Figures 1, 2, and 3 display comparative real-time performance results of the concurrency control
protocols for priority assignment policies EDF, LSF, and RPA, respectively. To check the reliability
of the results obtained, we calculated the variances and generated confidence intervals of data points.
Table 3 provides the variance and the width of confidence interval obtained for each data point
displayed in Figure 1. The mean values of 100 independent runs were used as final estimates.
The width of the confidence interval of each data point is always within 4% of the point estimate.
Confidence intervals obtained with the other performance results (i.e., those displayed in Figures 2
and 3) also verified this observation.

Protocol NP exhibits the worst performance under varying levels of transaction load with priority

10



NP PI HP
po ot [CIl | p o |CI[|{p o |CI]
50 00316 .0185 | .61 .00270 .0171 | .57 .00347 .0194
66 00330 .0189 | .75 00351 .0195 | .73 .00504 .0234
76 00653 .0266 | .85 .00727 .0280 | .84 .00892 .0311
87 00672 .0270 | .92 .00958 .0322 | .92 .00529 .0239
93 00979 .0325 | .97 01255 .0369 | .97 .00782 .0291

Table 3: The mean (u), the variance (¢?) and the width of the confidence interval (]CI]) obtained
with each data point in Figure 1.
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Figure 2: Swuccess-ratio vs tat with LSF priority assignment policy.

assignment methods EDF and LSF. Furthermore, its performance is not affected by a change in the
priority assignment policy implemented. These results are not surprising since protocol NP does
not include real-time priorities of transactions in data access scheduling decisions. Concurrency
control protocols PI and HP both provide a considerable improvement in real-time performance
over protocol NP when the EDF or LSF method is used in assigning priorities.

The performance of protocol PI is somewhat better, in general, than that of protocol HP for a
wide range of mean interarrival time. Remember that protocol HP aborts low priority transactions
whenever necessary to resolve data conflicts. The overhead of transaction aborts in a replicated
database system leads to the performance difference against protocol HP. Aborting a transaction
which has already performed some write operations causes a considerable waste of 10/CPU re-
sources at all the sites storing the copies of updated data. Especially under high transaction loads,
protocol PI is preferable to protocol HP.

Comparing the performance results obtained with EDF and LSF priority assignment policies, a
small difference is observed in the performance of the concurrency control protocol PI. The LSF
policy results in an increase in the number of satisfied deadlines for this protocol. Since the restart

11
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Figure 3: Success-ratio vs iat with random priority assignment policy (RPA).

ratio in this protocol is quite low®, most of the transactions keep the static priority assigned at
the beginning of their execution. As a result, as is not the case in the EDF policy, the priority
of a tardy transaction is not always higher than the priority of a nontardy transaction. Thus, a
nontardy transaction can get a better chance to satisfy its deadline. The difference between the
performance obtained with the two priority assignment policies is not striking for protocol HP,
which employs transaction restart as well as transaction blocking in resolving the data conflicts.
Since the LSF policy updates priority of a transaction each time it is restarted, tardy transactions
with adjusted priority are more likely to be scheduled before the nontardy transactions, which is
always the case with the EDF policy.

With the random priority assignment policy (RPA), the performance of concurrency control proto-
cols PI and HP is worse compared to their performance with the other priority assignment methods.
Furthermore, their performance characteristics are not distinguishable from what is obtained with
the No Priority (NP) concurrency control protocol. Since the timing constraints of the transactions
are not considered in determining the transaction priorities, they have no effect on the data access
scheduling decisions of the protocols PI and HP. Thus, these two protocols cannot benefit from
involving transaction priorities in access scheduling.

The conclusion that can be drawn from the performance experiment described in this section is
that, under the parameter ranges explored, the best combination of concurrency control protocol
and priority assignment technique seems to be the Priority Inheritance (PI) protocol with the Least
Slack First (LSF) policy.

4. Discussion

A performance evaluation model was proposed which enables the users to analyze distributed
transaction scheduling algorithms in RTDBSs. The performance model was developed in two
steps. At the first step a mathematical analysis was performed to focus on the processing and 10
cost of executing a distributed transaction in the system. The second step was the implementation

8Blocking deadlock is the only source of transaction restarts in protocol P
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of the distributed system model by using simulation. The ranges of parameter values used in the
simulations were guided by the mathematical analysis to provide a high level of utilization of CPU
and IO resources at each data site.

In the performance experiment presented here as an example, our RTDBS model was used to
evaluate the performance of some concurrency control protocols and priority assignment methods.
The performance results were provided in terms of the rate of transactions satisfying their deadlines.
Besides the concurrency control and priority assignment, the other components of a transaction
scheduling algorithm (i.e., the CPU/disk scheduling algorithm, the deadlock detection/recovery
method, the transaction restart policy, etc.) can also be studied by using the proposed model. The
example experiment investigated only the effects of transaction load on real-time performance. It
is also possible to involve each of other system parameters in the evaluation process.
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Appendix: Probabilistic Variables

P,: Probability that an operation is a read.

P, =1 — tr_type_prob * data_update_prob (1)

P,: Probability that an operation is a write.

P, = tr_type_prob * data_update_prob (2)

t,: Average IO cost of reading a data item.

. = { 0 if db_size < mem_size
. =

(1 — mgm=2i2¢ ) & jo_time otherwise

db_size specifies the average size of database stored at a site. Based on our data replication
model presented in Section 2, the value of this variable was derived in [14] in terms of parameter
local_db_size as:

db_size = (n 1) * local db_size

t,: Average 10 cost of writing a data item on the disk.

tw = to_time

Pr: Probability that a data item D accessed by an operation has a local copy.

PL = ZPZ * PL|2’

=1

P;: Probability that the data item has ¢ copies in the system.
Pr;: Probability that one of the ¢ copies of the item is local.

Assumption (Section 2)



y= 211 (5)

3| =
§|@.

PR

P,cqq,: Probability that a read operation of a transaction originated at a remote site
is performed at site k.

n—1
Preaty = D Pip* Pz * Po i T (6)
=

P, 7: Probability that the data item accessed by the operation has i copies and none of the copies
is Tocal.

Pk|z'f: Probability that site k stores a copy of the data item given that none of the ¢ copies of the
item 1s local.

P el i Tk Probability that the item copy stored at site k is selected to be read, given that among

S
7 copies of the item there is no local copy while site & has one.

P;: Probability that the data item has ¢ copies in the system (see Eqn. 3).
Pf|z': Probability that none of the ¢ copies of the item is local.

Using Equation 4, .
i
Pry=1-~

n

Pselﬂi,f,k = 7 (9)
Combining Equations 6, 7, 8, and 9, we obtain

Prowy = S - fy )L L (10)
ready = n n'n—1"4%" 2n

=1

Pyrite,: Probability that site £ stores a copy of the data item to be accessed by a write
operation of a transaction originated at a remote site.

Pyrite, = Pr, because the probability of finding a copy of a data item at the local site or at a
remote site is the same due to the uniform distribution of data over the sites.
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Thus, using Equation 5,
n+1
Pwritek = 7 (11)

Psuymit;» Probability that a transaction originating at site ¥ submits at least one oper-
ation to site j.

Psubmitj =1- Psubmit7

Psubmit7: Probability that no operation is submitted to site 7.

access_mean

Psubmit; = H Pi,submit; (12)

i=1

Pi,submit7: Probability that the ¢th operation of the transaction does not access site j.

P@submit; =P x PMW7 + P, * Pwmej_ (i=1,2,...,access_mean) (13)

P,: Probability that the operation is a read (see Eqn. 1).
Pread7: Probability that the data is not read from site j.

P,: Probability that the operation is a write (see Eqn. 2).
Pwm-te7: Probability that the data is not written at site j.

Pread7 =1- Preadj

Preqq,;: Probability that the data item is read from site j; from Equation 10:

1
Preadj— =1- % (14)

Pwm'te7 =1- Pwritej

Pyyrite;: Probability that site j stores a copy of the data item that is going to be accessed by the
write operation; from Equation 11:

n+1
Pwritej = m (15)
n+1
Pwritej— =1- m (16)
Using Equations 13, 1, 14, 2, and 16

1 1

Pmubmitj_ =(1- 2—) ~3 * tr_type_prob * data_update_prob (17)
n
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Substituting Equation 17 into 12,

1 1

—) — = x tr_type_prob x data_update_pro
5 5 tr_t b * dat dat b
n

access_mean __ [( _ ]G.CCSSS_T)’LSG.TL

Psubmit]— = [Pi,submitj—]

1 1
Poupmit; = 1= [(1 - %) — 5% tr_type_prob * data_update_prob

]G.CCSSS_T)’LSG.TL

Niem—copy: Average number of remote copies of each data item accessed.

Nrem—copy = (n - 1) * Pwrite]

Using Equation 15,
(n—1)(n+1)

o (18)

Nrem—copy =

Nop—submit: Average number of operations each transaction submits to remote sites.

Nop—submit = NT + Nw (19)

N, (N,) is the average number of read (write) operations submitted to remote sites by each
transaction.

N, = (1 —tr_type_prob) x N, g + tr_type_prob* N, s (20)

N, g: Average number of remote read operations submitted by a query.

N, u: Average number of remote read operations submitted by an update transaction.

N, = (1 — Pr) * access_mean

Using Equation 5 for Pr,

-1
N.g = (nQ ) * access_mean (21)
n

N, = (1 — data_update_prob) * (1 — Pr,) * access_mean

n—1)

N, v = (1 — data_update_prob) * ( * access_mean (22)

Equations 21 and 22 can be combined into Equation 20:

(n—1)
2n

N, = * access_mean * (1 — tr_type_prob x data_update_prob)

N, = tr_type_prob * data_update_prob + access_mean * Nyepm—copy

Remember that N,cm,—copy is the average number of remote copies of each data item accessed.
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Using Equation 18,

(n—1)(n+1)

Ny, = tr_type_prob x data_update_prob * access_mean * 5
n

Equation 19, i.e., the average number of operations each local transaction submits to the remote
sites, becomes

-1
Nop—submit = (nQ—) * access_mean * (1 + n x tr_type_prob x data_update_prob)
n
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