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Abstract: A real-time database system (RTDBS) is designed to provide timely response to the
transactions of data-intensive applications. Processing a transaction in a distributed RTDBS en-
vironment presents the design choice of how to provide access to remote data referenced by the
transaction. Satisfaction of the timing constraints of transactions should be the primary factor to
be considered in scheduling accesses to remote data. In this paper, we describe and analyze two
different alternatives to this fundamental design decision. With the first alternative, transaction
operations are executed at the sites where required data pages reside. The other alternative is based
on transmitting data pages wherever they are needed. Although the latter approach is characterized
by large message volumes carrying data pages, it is shown in our experiments to perform better than
the other approach under most of the workloads and system configurations tested. The performance
metric used in the evaluations is the fraction of transactions that satisfy their timing constraints.
Keywords: Real-time database systems, distributed transaction processing, performance evalua-
tion.

1. Introduction

Transactions processed in a real-time database system (RTDBS) are associated with timing con-
straints typically in the form of deadlines. Computer-integrated manufacturing, the stock market,
banking, and command and control systems are several examples of RTDBS applications where the
timeliness of transaction response is as important as the consistency of data. In processing RTDBS
transactions it is very difficult to provide schedules guaranteeing all transaction deadlines. This
difficulty comes from the consistency requirement of the underlying database. The performance
goal in RTDBS scheduling is to minimize the number of transactions that miss their deadlines.

Processing a transaction in a distributed RTDBS environment presents the design choice of how
to provide access to remote data referenced by the transaction. In this paper, we analyze two
different alternatives to this fundamental design decision. The first alternative is the distributed
transaction architecture, in which, transaction operations are executed at the sites where required
data pages' reside. The other alternative is the mobile data architecture, so named because in
this case, remote data pages required by a transaction are moved to the site of the transaction.
A potential disadvantage of this approach is the communication overhead due to transmission of
data pages between sites. However, the availability of new communication techniques that provides
high speed, large volume data transfer reduces the communication overhead [Frieder 1989]. In both
architectures, the primary factor considered in scheduling data accesses is the timing constraints
of transactions.

The paper presents a comprehensive simulation study that compares the performance of distributed
RTDBSs under those two different transaction processing architectures. A detailed performance
model of a distributed RTDBS was employed in the evaluation of the architectures. The perfor-
mance model captures the basic characteristics of a distributed database system that processes

'In both design approaches, a page is considered as the unit of buffering and data access.



transactions, each associated with a timing constraint in the form of a deadline. A unique pri-
ority is assigned to each transaction based on its deadline. The transaction scheduling decisions
are basically affected by transaction priorities. Various simulation experiments were carried out
to study the relative performance of transaction processing architectures under different workloads
and system configurations. We also tried to find out how the locality of data references affects the
performance of each architecture. The performance metric used in the evaluations is success_ratio,
which gives the fraction of transactions that satisfy their deadlines.

To the best of our knowledge, no detailed investigation of transaction processing architectures in
RTDBSs has been performed so far. As described in the following paragraphs, there have been
some performance studies related to transaction scheduling in RTDBSs; however, these studies were
not specifically concerned with the performance of underlying transaction processing architectures.

The first attempt to evaluate the performance of transaction scheduling algorithms in RTDBSs
was provided in [Abbott and Garcia-Molina 1988, 1989]. The authors described and evaluated
through simulation a group of real-time scheduling policies based on enforcing data consistency by
using a two-phase locking concurrency control mechanism. Huang et al developed a new lock-based
concurrency control protocol by combining some existing schemes to capitalize on the advantages
of each of those schemes [Huang et al 1991]. Haritsa et al studied, by simulation, the relative
performance of two well known classes of concurrency control algorithms (locking protocols and
optimistic techniques) in a RTDBS environment [Haritsa et al 1990, 1992]. Agrawal et al proposed
a new locking approach, referred to as ordered sharing, which attempts to eliminate blocking of read
and write operations in RTDBSs [Agrawal et al 1992]. Son et al examined a priority-driven locking
protocol which decomposes the problem of concurrency control into two subproblems, namely
read-write synchronization and write-write synchronization, and integrates the solutions to two
subproblems considering transaction priorities [Son et al 1992]. In [Kim and Srivastava 1991], new
multiversion concurrency control algorithms were proposed to increase concurrency in RTDBSs.
In [Ulusoy and Belford 1993], we described several real-time concurrency control protocols and
reported their relative performance in a single-site RTDBS.

The remainder of the paper is organized as follows. The next section describes the transaction pro-
cessing architectures studied. Section 3 provides the structure and characteristics of a distributed
RTDBS model used in the evaluation of the architectures. Section 4 describes a set of experiments
together with our initial findings. Finally, Section 5 summarizes the conclusions of our work.

2. Two Alternative Transaction Processing Architectures

Two different architectures for processing RTDB transactions are studied: distributed transaction
and mobile data. In the distributed transaction architecture, a transaction executes a cohort at each
site that stores one or more data pages required by the transaction. This architecture was already
studied for traditional distributed database management systems by a number of researchers (e.g.,
[Kohler and Jeng 1986], [Garcia-Molina and Abbott 1987], [Carey and Livny 1988]). A distributed
transaction was modeled as a collection of cohort processes to be executed at various data sites. As
to be detailed in the next subsection, we extend this transaction model to a real-time environment
in which the timing constraints of transactions are involved in scheduling local and remote data
access requests of transactions.

The mobile data architecture, on the other hand, is based on transmitting data pages to wherever
they are needed. This method is typically used in client/server database management systems.
In a client/server system, the database resides on the server site and items in the database are
accessed by application programs running on client sites ([Wang and Rowe 1991], [Franklin et al



1992]). Data items required by the programs are shipped to the clients running the programs. We
generalize this model to a distributed database system where each site can have its own database
and data items can be transferred among sites as needed. Timing constraints of transactions again
play the major role in data access scheduling decisions.

Both transaction processing architectures described in the following subsections assume that there
exists exactly one copy of each data page in the system.

2.1. Distributed Transaction (DT) Architecture

Each distributed transaction in this architecture exists in the form of a master process that executes
at the originating site of the transaction and a collection of cohort processes that execute at various
sites where the required data pages reside. Fach transaction is assigned a globally unique priority
based on its real-time constraint. This priority is carried by all of the cohorts of the transaction
to be used in scheduling cohorts” executions. There can be at most one cohort of a transaction at
each data site. If there exists any local data in the access list of the transaction, one cohort will
be executed locally. The operations of a transaction are executed in a sequential manner, one at
a time. For each operation executed, a global data dictionary is referred to find out which data
site stores the data page referenced by the operation. A cohort process is initiated at that site (if
it does not exist already) by the master process by sending an ‘initiate cohort’ message to that
site. If a cohort of the transaction already exists at that site, it is just activated to perform the
operation. Before accessing a data page, the cohort needs to obtain a lock on the page. In the case
of a lock conflict (i.e., the lock has already been obtained by another cohort), if the lock-holding
cohort has higher priority than the priority of the cohort that is requesting the lock, the latter
cohort is blocked. Otherwise, the lock-holding cohort is aborted and the lock is granted to the high
priority lock-requesting cohort. There is no possibility of blocking deadlock since a high priority
transaction is never blocked by a lower priority transaction. After the successful completion of
an operation, the result of the operation is sent to the master process and the next operation of
the transaction is executed by the appropriate cohort. When the last operation is completed, the
transaction can be committed.

Upon the abort of a cohort, a message is sent to the master process of the aborted cohort to restart
the whole transaction. The master process notifies the schedulers at all relevant sites to cause the
cohorts of that transaction to abort. Then it waits for abort confirmation message from each each
of these sites. When all the abort messages are received, the master can restart the transaction.

The effects of a distributed transaction on the data must be made visible at all sites in an all or
nothing fashion. The so called atomic commitment property can be provided by a commit protocol
which coordinates the cohorts such that either all of them or none of them commit. We used
the centralized two-phase commit protocol [Bernstein et al 1987] for the atomic commitment of
the distributed transactions. For the commitment of a transaction 7', the master process of T is
designated as coordinator, and each cohort process executing 1’s operations acts as a participant
at its site. Following the execution of the last operation of transaction 7', the coordinator (i.e., the
master process of T') initiates Phase 1 of the commit protocol by sending a ‘vote-request’ message
to all participants (i.e., cohorts of T') and waiting for a reply from each of them. If a participant
is ready to commit, it votes for commitment, otherwise it votes for abort. An abort decision
terminates the commit protocol for the participant. After collecting the votes of all participants,
the coordinator initiates Phase 2 of the commit protocol. If all participants vote for commit, the
coordinator broadcasts a ‘commit’ message to them; otherwise, if any participant’s decision is abort,
it broadcasts an ‘abort’ message to the participants that voted for commit. If a participant, waiting
for a message from the coordinator, receives a ‘commit’ message, the execution of the cohort of



T at that site finishes successfully. Following the successful commit of T', each cohort can write
its updates (if any) into the local database of its site. An ‘abort’ message from the coordinator
causes the cohort to be aborted. In that case the data updates performed by the cohort are simply
ignored.

The blocking delay of two-phase commit (i.e., the delay experienced at both the coordinator site
and each of the participant sites while waiting for messages from each other) is explicitly simulated
in conducting the performance experiments.

2.2. Mobile Data (MD) Architecture

This architecture is characterized by the movement of data pages among the sites. With this
approach each transaction is executed at a single site (the site it has been originated). Whenever a
remote data page is needed by a transaction, the page is transferred to the site of the transaction.
Besides the global data dictionary which shows the origin of each data page in the system, each
data site also maintains a relocation table to keep track of the pages transferred from/to that site.
More specifically, for each data page P whose origin is site 5; and the current location is site 5},
a record is maintained in the relocation table of each of the sites 5; and S;. The record in the
relocation table of 5; shows that P has been sent to 5, and the record in the relocation table of
S; shows that P has been transferred from .5;.

Similar to the DT architecture, the operations of a transaction are executed one at a time. For each
operation of a transaction T’ executed at site S, the data dictionary of S; is referred to find out
the origin of the required data page P. If page P has been originated at site S; but currently being
resided at another site, a request message is sent to that site. If P has a remote origin, say site 5},
and its current location is not S;, then a request message is sent to 5;. The message includes the
id of transaction T, its priority, the id of originating site S;, and the id of the requested data page
P. If P has been shipped to another site S%, the request message is forwarded to Sj.

Similar to DT, access to a data page is controlled on the basis of transaction priorities. Transaction
T can obtain a lock on a page only if either the page is not being accessed by any other transaction
or T’s priority is higher than the priority of the transaction currently accessing the page 2. If the
lock is granted, the reply message contains both the grant and the requested page; otherwise, the
message will cause the transaction to become blocked until the requested lock becomes available.
When the execution of a transaction finishes successfully, it can be committed locally. All updates
performed by the transaction are stored on the local disk.

2.2.1. Management of Relocation Tables

Whenever a data page P with originating site 5; is transmitted to site .5;, the relocation tables
at both sites are updated to keep track of the relocation information. A record is inserted into
the relocation table of S; to store the current location of P (i.e., S;). The corresponding record
inserted into the relocation table of §; stores the origin of P (i.e., S;). If page P later needs to
be transmitted to another site Sy, the related record is removed from the relocation table of 5
and the id of originating site 5; is sent to S within the message containing data page P. Upon
receiving that message, a new record is inserted into the relocation table of S;. Another message
from site S; is sent to site S; containing the new location of P so that the related record of the
relocation table of §; can be updated appropriately. It is ensured that the current location of a
data page can always be found out by communicating with the originating site of that page.

3. Distributed RTDBS Model

2This leads to a priority abort; the low priority transaction currently accessing the page is aborted.




This section provides the model of a distributed RTDBS that we used in evaluating the transaction
processing architectures described in the preceding section. In the distributed system model, a
number of data sites are interconnected by a local communication network. Each site contains a
transaction generator, a transaction manager, a resource manager, a message server, a scheduler,
and a buffer manager.

The transaction generator is responsible for generating the workload for each data site. The arrivals
at a data site are assumed to be independent of the arrivals at the other sites. Each transaction in
the system is distinguished by a globally unique transaction id. The id of a transaction is made up
of two parts: a transaction number which is unique at the originating site of the transaction and
the id of the originating site which is unique in the system.

Each transaction is characterized by a real-time constraint in the form of a deadline. The transaction
deadlines are soft; i.e., each transaction is executed to completion even if it misses its deadline.
The transaction manager at the originating site of a transaction assigns a real-time priority to
the transaction based on the earliest deadline first priority assignment policy; i.e., a transaction
with an earlier deadline has higher priority than a transaction with a later deadline. If any two
transactions originated from the same site carry the same deadline, a scheduling decision between
those two transactions prefers the one that has arrived earlier. To guarantee the global uniqueness
of the priorities, the id of the originating site is appended to the priority of each transaction. The
transaction manager is responsible for the implementation of any of the transaction processing
architectures (i.e., DT or MD) described in the preceding section. With the MD architecture, the
management of relocation table at each site is also the responsibility of the transaction manager.

There is no globally shared memory in the system, and all sites communicate via message exchanges
over the communication network. A message server at each site is responsible for sending/receiving
messages to/from other sites.

With the DT architecture, when a cohort completes its data access and processing requirements,
it waits for the master process to initiate two-phase commit. The master process commits a trans-
action only if all the cohort processes of the transaction run to completion successfully, otherwise
it aborts and later restarts the transaction. A restarted transaction accesses the same data pages
as before. The MD architecture, on the other hand, does not need to use an atomic commitment
protocol since each transaction is executed locally.

I0 and CPU services at each site are provided by the resource manager. 10 service is required
for reading or updating data pages, while CPU service is necessary for processing data pages, per-
forming various page access control operations (e.g. conflict check, locking, etc.) and processing
communication messages. Both CPU and 10 queues are organized on the basis of real-time priori-
ties, and preemptive-resume priority scheduling is used by the CPU’s at each site. The CPU can
be released by a transaction (or a cohort with the DT architecture) either due to a preemption, or
when the transaction commits or it is blocked /aborted due to a data conflict, or when it needs an
IO or communication service. Communication messages are given higher priority at the CPU than
other processing requests.

Reliability and recovery issues were not addressed in this paper. We assumed a reliable system, in
which no site failures or communication network failures occur. Also, we did not simulate in detail
the operation of the underlying communication network. It was just considered as a switching
element between sites with a certain service rate.

Data transfer between disk and main memory is provided by the buffer manager. The FIFO page
replacement strategy is used in the management of memory buffers.



Configuration Parameters
NrOfSites Number of sites in the system
DBSize Database size at each site (pages)
MemSize Size of the memory buffers used to hold data pages at each site (pages)
PageSize Page size (bytes)
CPU Rate Instruction rate of CPU at each site (MIPS)
InstrProcessPage | Number of instructions to process each page
DiskSeekTime Average disk seek time (msec)
DiskTransTime Disk transfer time of one page (msec)
InstrinitDisk CPU cost of initializing a disk access (instructions)
NW Bandwidth Network bandwidth (Mbps)
CtriMesSize Size of a control message (bytes)
InstrinitMes CPU cost to initialize sending/receiving a message (instructions)
InstrPerMesByte | CPU cost of sending/receiving each byte of a message (instructions)
LocalitySetSize Size of the set of the most recently accessed pages at a site
LocalityProb Probability of accessing a page in the locality set

Transaction Parameters

IAT Mean interarrival time of transactions at each site
XactSize Average number of pages accessed by a transaction
UpdateRate Probability of updating the accessed page
RemoteAccessRate | Probability of accessing a page with a remote origin
InstrStart X act Number of instructions to initialize a transaction
InstrEndXact Number of instructions to terminate a transaction
Slack Rate Average rate of slack time of a transaction to its processing time

Table 1: Distributed RTDBS Model Parameters

3.1. Distributed RTDBS Model Parameters

The set of parameters described in Table 1 is used in specifying the configuration and workload of
the distributed RTDBS. It is assumed that each site has one CPU and one disk. The seek time
at each disk access is chosen randomly between 0.5 * DiskSeekTime and 1.5 * DiskSeekTime.
Parameters LocalitySetSize and LocalityProb are used to study the impact of locality of data
pages on the performance of the system. Section 4.3 is devoted to evaluating the effects of locality.
The mean interarrival time of transactions to each of the sites is determined by the parameter
TAT. Arrivals are assumed to be Poisson. The number of pages to be accessed by a transaction is
determined by using parameter XactSize. The distribution of the number of pages is exponential.
SlackRate is the parameter used in assigning deadlines to new transactions (see the next section).

3.2. Deadline Calculation

The slack time of a RTDB transaction specifies the maximum length of time the transaction can
be delayed and still satisfy its deadline. In our system, the transaction generator chooses the slack
time of a transaction randomly from an exponential distribution with a mean of SlackRate times
the estimated minimum processing time of the transaction. Although the transaction generator
uses the estimation of tramsaction processing times in assigning deadlines, we assume that the
system itself lacks the knowledge of processing time information. The deadline of a transaction T’
is determined by the following formula:

deadline(T) = start_time(T) + minimum_processing_time_estimate(T) + slack_time(T)
where

slack_time(T) = expon(Slack Rate x minimum_processing_time_estimate(T'))



The estimated minimum processing time formula actually determines the processing time of a
transaction under an ideal execution environment in which the system is unloaded (i.e., no data
and resource conflicts occur among transactions), and the transaction does not require any data
page that is remotely placed. To satisfy the deadline, the delay that will be experienced by the
transaction due to conflicts and remote accesses should not exceed the slack time included in the
deadline formula.

minimum_processing_time_estimate(T) = CPU _delay(T) + 10 delay(T)

Let Pages(T) denote the actual number of pages accessed by transaction T,

10-°
CPU _delay(T) = CPU Rt (InstrStartX act+(1+Update Rate)* Pages(T )+ Instr ProcessPage
+InstrEndX act)
10 delay(T) = [(1—%)*Pages(T)*(%*10_3-I—DiskSeekTime-l—DiskTmnsTime)]
InstrinitDisk

+[UpdateRate x Pages(T') * ( %1072 + DiskSeekTime + DiskTransTime)]

CPU Rate
The expression contained in the second pair of square brackets corresponds to the delay experienced
while writing updated pages back into the disk. The unit of both C'PU _delay(T") and I0 _delay(T)

is msecond.
4. Performance Evaluation

The details of the distributed RTDBS model and the transaction processing architectures described
in previous sections were captured in a simulation program. The values of configuration and
workload parameters common to all simulation experiments are presented in Table 2. All data
sites in the system are assumed identical and operate under the same parameter values. The
settings used for resource-related parameters were basicly taken from the experiments of [Franklin
et al 1992].> Those values can be accepted as reasonable approximations to what can be expected
from today’s systems. The workload parameters were selected to provide a transaction load and
data contention high enough to bring out the differences between the performances of transaction
processing architectures. The high transaction load was obtained by setting the average interarrival
time parameter (i.e., I AT') to a relatively small value that leads to CPU and IO utilizations of more
than 90%. High levels of data contention were obtained by considering a relatively small database
size at each site (i.e., DBSize). This small database can be considered as the most frequently
accessed fraction of a larger database. Under low transaction loads or when data conflicts among
transactions were few, both architectures were observed to be equally successful in satisfying the
timing constraints of almost all transactions.

The performance metric used in the evaluation of the architectures is success_ratio; i.e., the fraction
of transactions that satisfy their deadlines. The other important performance metrics that helped us
analyze the results are the average number and volume of messages required to execute a transaction
and the average network delay and 10 delay experienced by each transaction. In simulating the
MD architecture, it is assumed that each data message contains only one data page.

The simulation program was written in CSIM [Schwetman 1986], which is a process-oriented simu-
lation language based on the C programming language. For each configuration of each experiment,

®There are a few differences between their values and ours since their simulator was designed for a client/server
DBMS architecture.



NrOfSites 10

DBSize 1250 pages
MemSize 200 pages
PageSize 4 Kbytes

CPU Rate 30 MIPS
InstrProcessPage | 30000 instructions
DiskSeekTime 20 msec
DiskTransTime 2 msec
InstrInitDisk 5000 instructions
NW Bandwidth 10 Mbps (e.g., Ethernet), 100 Mbps (e.g., FDDI)
CtriMesSize 256 bytes
InstrinitMes 20000 instructions
InstrPerMesByte | 3 instructions
IAT 400 msec
XactSize 10 pages
UpdateRate 0.5
RemoteAccessRate | 0.5
InstrStartXact 30000 instructions
InstrEndXact 40000 instructions
Slack Rate 10

Table 2: Distributed RTDBS Model Parameter Values

the final results were evaluated as averages over 25 independent runs. Each configuration was exe-
cuted for 500 transactions originated at each site. 90% confidence intervals were obtained for the
performance results. The width of the confidence interval of each data point is within 4% of the
point estimate.

4.1. Varying Remote Data Access Rate

In this experiment, we investigated various performance characteristics of transaction processing
architectures under different levels of remote data accesses issued by transactions. The level of
remote data accesses is determined by the parameter RemoteAccessRate, and corresponds to the
fraction of data pages of remote origin in the set of all data pages accessed by a transaction. It is
assumed that remote data accesses are uniformly distributed among all remote sites (i.e., site of
the remote data is chosen randomly).

The first set of results that will be examined in this section is the resource requirements experienced
by each transaction under each of architectures DT and MD. Those results help us in analyzing the
relative performance of the studied architectures. Figures 1 and 2 present respectively, the average
values of the number and the total volume (in bytes) of messages exchanged between sites for each
transaction. With architecture DT, more messages are involved in controlling the execution of
a transaction. As detailed in Section 2.1, the master process of a transaction needs to send an
‘initiate cohort’ message to each site where a cohort of the transaction is executed. The execution
of a transaction operation at a remote site is started on receiving an ‘activate’ message from the
master process of the transaction and the result of the operation is sent back to the master process
within an ‘operation complete’ message. The atomic commitment of a transaction also requires a
couple of messages to be exchanged between the master process and each of the remote cohorts of
the transaction. With architecture MD, a request message is generated for each operation accessing
a remote page? and the reply message contains the requested page. There is no need to execute an

If the requested page is not residing at its originating site, the message is forwarded to the current site of the
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Figure 1: Average number of messages sent per transaction as a function of the level of remote
ata accesses.

atomic commitment protocol with MD; transactions can be committed locally without requiring
communication with other sites.

Another factor that has a considerable influence on the relative number of messages generated with
both architectures is the priority abort of transactions due to priority-based page access control.
With DT, when a cohort of a transaction is aborted, the master process of the transaction should
send control messages to the sites executing the cohorts of the transaction to notify them about
the abort decision. Also, when the aborted transaction is restarted, the master process again
requires to communicate with other sites to perform remote accesses although it might already
have communicated with them before being aborted. With MD, on the other hand, a restarted
transaction can find the previously accessed data pages in local buffers, thus it does not require to
generate new request messages.

Although more messages need to be exchanged with DT for the execution of each transaction, the
total volume of those messages is less than the message volume of a transaction with MD approach
(Fig. 2). All messages associated with DT are control messages (256 bytes), while with MD both
control messages and data messages (containing 4 Kbyte pages) are exchanged between sites.

The overhead of messages (in terms of both network delay and CPU time used for processing
messages) per transaction was also measured with each of the architectures DT and MD. It was
observed that if a slow network is employed, the overall message cost of a transaction does not
show much difference under different architectures. Fig. 3 displays the average values of the
network delay, the CPU delay and the overall (network + CPU) delay of messages issued for a
transaction with both DT and MD. The network delay values were obtained for a slow network
(i.e., with NW Bandwidth = 10 Mbps). The primary CPU cost of a message is the initialization
time experienced at the source (destination) site for transmitting (receiving) the message. Since
more messages are generated with the DT architecture, the CPU cost of the messages are higher.
On the other hand, higher volume of messages with the MD architecture results in greater network

page.
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Figure 2: Average message volume (Kbytes) per transaction as a function of the level of remote

data accesses.
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Figure 4: Average delay (mseconds) of messages for a transaction with the fast network
(NW Bandwidth = 100 Mbps).

delay for each transaction. The overall overhead of messages with MD was shown to be comparable
to that of DT; however, when the experiment was repeated with a faster network (i.e., by setting
NW Bandwidth to 100 Mbps), MD was observed to provide lower message delay (Fig. 4). With a
fast network, the CPU cost of messages plays the major role in determining the average delay of
messages for a transaction.

Another resource requirement of transactions is the disk access to read/write data pages. The
impact of the overhead of disk accesses on the relative performance of transaction processing ar-
chitectures was also investigated. Examining Fig. 5, one can see that employing MD considerably
reduces the disk access delay of a transaction experienced with DT. The values presented in the
figure include both the delay of transferring data from/to disk and waiting times at the disk queues.
If all accesses are local, then there is no difference between disk access delays of DT and MD. As
the fraction of remote data accesses increases, MD produces lower disk access times for transac-
tions. Remember that, all the updates of a transaction are written to the local disk together at the
commit time of the transaction. With DT, each remote data page updated by the transaction is
restored to the disk of data page’s site. A separate disk access is required at each site storing the
pages updated by the transaction. With MD, on the other hand, the updated remote pages can
be consecutively placed on the local disk preventing the delay of separate seek time for each stored
page. The seek time constitutes the major delay of a disk access (the value used in our experiments
is DiskSeekTime = 20 msec).

With the resource requirement results in mind, we now turn to resulting real-time performance
of the transaction processing architectures. The success_ratio results with both a slow network
(NW Bandwidth = 10 Mbps) and a fast network (NW Bandwidth = 100 Mbps) are presented in
Fig. 6. When all the pages accessed by each transaction are local, there is no difference between
the performances of the architectures. Since the remote accesses are handled in different ways
by the architectures, the difference between their performances appears when remote accesses are
also considered for the transactions. As more remote pages are accessed, more transactions miss

11
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their deadlines) under both a slow and a fast network.
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Figure 7: Average response time (seconds) of transactions in a nonreal-time environment.

their deadlines with both architectures due to the involvement of communication messages. If the
underlying network is slow, the real-time performances of DT and MD are comparable to each
other. Under high levels of remote data accesses, MD provides a slight improvement over DT.
Although each transaction is characterized by lower resource requirements (in terms of disk access
delay and the number of messages exchanged among sites to control transaction execution) with
MD, the higher volume of messages due to the transmission of data pages prevents MD to become
the clear winner. However, if the slow network is replaced by a faster one, the message delay
won’t be a bottleneck anymore. As displayed in the figure, with a fast network, DT cannot reach
the real-time performance level attained by MD. The difference between the number of satisfied
deadlines provided with each architecture becomes more as the fraction of remote accesses increases.
This observation directly follows the message and 10 delay results obtained with a fast network.
The relative real-time performance of the architectures is primarily determined by the resource
requirements of processed transactions.

4.2. Evaluating Architectures Under a Nonreal-Time Environment

It was shown in the previous section that architecture MD is preferable to DT in processing trans-
actions with real-time constraints (i.e., deadlines). The performance of the architectures was eval-
uated in terms of the fraction of satisfied transaction deadlines. To see whether there might be any
differences in the performance results if the transactions processed are not characterized by timing
constraints, we repeated the experiments in an environment where no real-time priority information
is involved in scheduling data accesses of transactions. The two-phase locking scheme is used in
controlling concurrent accesses to data pages. The performance metric used in the evaluations is
the average response time of transactions.

The results obtained with architectures DT and MD are displayed in Fig. 7. Again two different
networks with VW Bandwidth = 10 and 100 Mbps were employed in the evaluations. With the
slow network, DT performs a little bit better (i.e., produces lower average response time) than MD.
With the fast network, on the other hand, MD achieves better performance; however, if we compare
the results to those presented in the previous section, the performance improvement provided by
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Figure 8: Real-time performance in terms of success_ratio (the fraction of transactions that satisfy
their deadlines) as a function of the locality of page references.

MD over DT, in this case, is very limited. It can be concluded that MD is not superior to DT
anymore as in a real-time environment. One reason can be the fact that no priority aborts occur
in a nonreal-time environment which was leading to much more message overhead with DT than
with MD as explained before. Also, since with MD, the updates of a transaction are written to
disk together, another transaction in the IO queue has to wait until all those writes are completed.
On the other hand, in processing real-time constrained transactions, IO queues are organized on
the basis of transaction priorities. Thus, a high priority transaction can preempt a lower priority
transaction writing its updates. The preemption can help the high priority transaction terminate as
soon as possible while the low priority transaction can still have enough time to satisfy its deadline.
This might be another factor leading to the different results in two different environments with
separate performance metrics.

4.3. Sensitivity to the Page Access Locality

So far the locality concept was not considered in the experiments and data pages accessed by
each transaction were chosen on a random basis. In the experiment of this section, we tested
the sensitivity of real-time performance results to the locality of page references. To model page
reference locality, we used the locality set concept introduced in [Wang and Rowe 1991]. Parameters
LocalitySetSize and Locality Prob are used to model locality. The locality set of a site is defined as
the last x pages accessed by the most recent transactions originated at that site and z is the value
of the parameter LocalitySetSize. The parameter LocalityProb specifies the probability that a
page accessed by an active transaction is in the locality set.

The results displayed in Fig. 8 were obtained by setting LocalitySetSize to 30 pages. The ex-
periment was performed assuming a slow network (NW Bandwidth = 10 Mbps) and setting the
probability of accessing a page with a remote origin (RemoteAccessRate) to 0.5. The value of
Locality Prob was varied from 0.1 (corresponding to a low locality) to 0.9 (very high locality) in
steps of 0.2. Increasing the locality of page accesses results in better performance with both archi-
tectures DT and MD. For high values of locality, since each page referenced by a transaction has
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Figure 9: Real-time performance in terms of success_ratio (the fraction of transactions that satisfy
their deadlines) as a function of PageSize (Kbytes).

most probably been accessed recently, it is likely that the page can be found in memory buffers.
This prevents the disk access delay which is a substantial overhead in transaction execution. As can
be seen from the figure, MD benefits more from increasing locality. This result is due to the fact
that, with MD, recently accessed pages with remote origin, as well as the local ones, can be found
in local memory buffers. As a result, when such a page needs to be reaccessed, no communication
with remote sites will be required. With DT, on the other hand, each remote data page should
be processed at its site; thus, the locality cannot prevent the overhead of messages exchanged to
control the execution of remote operations.

The relative performance results obtained with some other settings of LocalitySetSize were very
similar to those just discussed; thus, they are not displayed here.

4.4. Varying the Page Size

In this experiment, we studied the impact of the page size on the real-time performance of the
system. The values of parameters InstrProcessPage (i.e., number of instructions to process a
page) and DiskTransTime (i.e., disk transfer time of a page) were assumed to be proportional
to the page size and determined on the basis of the current value of PageStize. The values of
XactSize (i.e., average transaction size in pages) and DBSize (i.e., number of pages stored in the
database of each site) were kept constant while the performance was being measured with different
page sizes.

The performance obtained with architectures DT and MD under various page sizes are presented
in Fig. 9. Similar to the previous experiment, the results were obtained by operating the system
with a slow network (NW Bandwidth = 10 Mbps) and with the remote data access probability
(RemoteAccessRate) of 0.5. Since the average number of pages accessed by each transaction
remains the same, the resource requirements of transactions (in terms of the CPU time, disk and
network accesses) increase as the size of a page is increased. The higher resource contention among
transactions results in a decrease in the performance; i.e., less number of transactions can satisfy
their deadlines as the accessed pages become larger. The page size has a greater impact on the
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performance with architecture MD. Large page sizes lead to more communication overhead for MD
because data messages containing pages as well as short control messages need to be exchanged
among sites in controlling transaction execution. MD performs well under small page sizes, however,
DT seems to be preferable if the system is characterized with a large page size.

5. Conclusions

In this paper, we described two different transaction processing architectures for distributed real-
time database systems (RTDBSs) and evaluated their performance under various workloads and
system configurations. The primary performance consideration in a RTDBS (i.e., a database system
that processes transactions with timing constraints) is to provide schedules that maximize the
number of satisfied timing constraints. We investigated how successful each transaction processing
architecture is in achieving that performance goal.

The first architecture analyzed, which is called distributed transaction (DT), distributes the execu-
tion of each transaction onto the sites that store the data pages required by the transaction. The
other architecture, called mobile data (MD), moves the remote data pages requested by a trans-
action to the site of the transaction. The main drawback of DT is the large number of messages
required to control the execution of a distributed transaction, while the primary overhead of MD is
the large-sized messages carrying data pages between sites. Both architectures consider the timing
constraints of transactions in scheduling accesses to data and hardware resources.

To analyze the effectiveness of the transaction processing architectures in satisfying timing con-
straints, we built a performance model of a distributed RTDBS. Various experiments were con-
ducted using a simulation program developed on the basis of the performance model. The main
conclusions of the experiments are as follows:

e The relative performance of the architectures is primarily determined by the resource re-
quirements of transactions processed under each of the architectures. The results obtained in
resource requirement experiments (in terms of the average number and volume of messages
required to execute a transaction and the average network delay and IO delay experienced
by each transaction) helped explain the behavior of the architectures under various levels®
of remote data accesses. With a slow network, the overhead of messages for each transac-
tion did not show much difference under two different architectures. Although the average
message volume with MD was much higher, DT was not able to outperform MD due to the
fact that the cost of transferring a message is primarily due to the CPU time to initiate
sending/receiving the message and not the transmission time; and DT was characterized by
the larger number of messages (compared to MD) issued for each transaction.

When a fast network was used, MD demonstrated superior performance especially under high
levels of remote data accesses. The average volume of messages did not have any influence
on the performance.

o To see how the performance results are affected when transactions have no timing constraints,
the experiments were repeated by processing nonreal-time transactions and using the average
response time of transactions as the performance metric. In this case, no considerable perfor-
mance improvement was provided by MD. The primary reason for that result is the fact that
no priority aborts (due to timing constraints) occur in a nonreal-time environment which was
shown to lead much more message overhead with DT than with MD.

5The level of remote data accesses corresponds to the fraction of remote data pages accessed by a transaction.
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o We also investigated the effects of the locality of data references on the performance of each
architecture. Increasing the locality resulted in better performance with both architectures
DT and MD. However, MD was shown to benefit more from high locality due to storing
recently accessed remote pages in local memory buffers.

o While large page sizes affected both architectures negatively, the page size appeared to have
a greater impact on the performance for MD when the system was operated with a slow
network.

In summary, our results suggest that mobile data (MD) architecture should be preferred in dis-
tributed RTDBSs unless the underlying network is very slow or the the system is characterized by
very large data pages.
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