OBJECT-SPACE PARALLEL POLYGON
RENDERING ON HYPERCUBE-CONNECTED
MULTICOMPUTERS

[ahsin M. Kurc, Cevdet Aykanat and Bulent Ozgic

BILKENT UNIVERSITY

Department of Computer Engineering
and
Information Science

Technical Report BU-CEIS-94-24

This work is partially supported by Intel Supercomputer Systems Division grant no.
SSD100791-2 and Turkish Scientific and Technical Research Council (TUBITAK)
grant no. EEEAG-5

Object-Space Parallel Polygon Rendering on
Hypercube-connected Multicomputers'

Tahsin M. Kurg, Cevdet Aykanat and Bulent 6zgﬁg

Department of Computer Engineering and Information Sciences

Bilkent University, Ankara, TURKEY.

Abstract

This paper presents algorithms developed for object-space parallelism for
polygon rendering on hypercube-connected multicomputers. In object-space
parallelism, each processor is given the respomnsibility to render a portion of
the input polygons. Each processor shades and z-buffers the locally generated
pixels. After this local rendering, the remaining pixels in each processor should
be globally z-buffered. Efficient parallelization of this pixel merging operation
is important. This is the only place where an overhead is incurred due to
parallelization. In this paper, efficient algorithms are presented to perform
local rendering and global pixel merging operations. A modified scanline based
z-buffer algorithm is proposed. This algorithm reduces the number of pixels
sent and received in the pixel merging operation and avoids the re-initialization
of the z-buffer for each scanline. Various algorithms are proposed for pixel
merging phase. These algorithms use different communication characteristics
of the hypercube multicomputers. Efficient algorithms for load balancing in the
pixel merging operation is also proposed and presented. Experimental results
obtained on a 16-processor Intel’s iPSC/2 hypercube multicomputer are also
presented.

1 Introduction

Fast image generation on computers has been a challenge for many years. A lot of
efforts have been put to develop faster algorithms to generate images on computers
in real-time or near real-time. However, along with the advances in image genera-
tion techniques, increased importance of more realism in computer generated images
has made the rendering process more and more complex and time consuming. In
addition, increased complexity of image databases (e.g. large number of polygons
that make up the scene) has required more and more memory space. Hence, efforts
have been put to build special purpose graphics hardware to render more complex
scenes in affordable times. However, one major drawback of special purpose graphics
hardware is their limited flexibility. Only hardwired algorithms can be used in such
graphics machines and it is very difficult to incorporate different techniques to such

!This work is partially supported by Intel Supercomputer Systems Division grant no. SSD100791-
2 and Turkish Scientific and Technical Research Council (TUBITAK) grant no. EEEAG-5

architectures. General purpose parallel computers, on the other hand, can provide a
cost-effective and flexible environment for fast image generation. Effective utilization
of parallel processing in computer graphics requires the subdivision and mapping of
data and computations to the processors. There are two approaches, in particular, for
the subdivision of data and computations; image-space parallelism and object-space
parallelism. In the image-space parallelism [3, 4, 5], image-space is divided among the
processors of the parallel computer. Each processor is responsible for rendering its
local portion of the screen. In object-space parallelism [6, 7], the objects or polygons
that make up the environment are partitioned among the processors. Each processor
is responsible for rendering its local portion of the object database.

This paper investigates the object-space parallelism on hypercube connected dis-
tributed memory multicomputers. A d-dimensional hypercube consists of P = 2¢
processors (nodes) with a link between every pair of processors whose binary ad-
dresses differ in one bit. Thus, each processor is connected to d other processors. The
channel i refers to the communication links between processors whose processor ids
differ in only the i** bit. The hypercube multicomputer has a recursive structure.
That is, two equal (d-1) dimensional hypercubes, or subcubes, can be generated by
dividing the hypercube along channel i. If a d-dimensional hypercube is divided into
two subcubes along channel (d—1), then nodes, whose ids in binary representation are
lzz...z, are said to be in the upper (d — 1) dimensional hypercube. Similarly, nodes,
whose ids are Ozz...z, are said to be in the lower (d — 1) dimensional hypercube, where
x is either 0 or 1.

2 Terms and Definitions

This section presents some terms and definitions used in this paper.

P : number of processors in the hypercube.

d : dimension of the hypercube, where d = logy(P).

z : distance of the generated pixel to the screen.

N : number of scanlines on the screen (assumed to be a multiple of P).

A : total number of pixels on the screen where A = NxN, i.e. a square screen is
assumed.

Definition 1: A location (x,y) on the image plane is said to be active, if at least
one pixel is generated for that location. Note that, different processors may generate
pixels for the same location.

Definition 2: A pixel is said to be a winning pixel, if it is the current pixel whose
z value is minimum for the active pixel location. At the end of the pixel merging
operation there remains only one winning pixel for each active pixel location.

2

Receive the local polygon information from the host processor.

Perform viewing transformations.

Reject the back facing polygons, and clip the polygons to the viewing volume.

Project the clipped polygons to screen coordinates.

Perform hidden-surface removal and shading on the local polygon set.

S O R W N

Perform pixel merging to obtain the final picture.

Figure 1: Basic steps of object-space parallel rendering.

3 Object-Space Parallel Rendering

In simple terms, rendering is the process of viewing three dimensional shaded objects
and scenes generated in the computer. This viewing process is a collection of oper-
ations to produce a realistic picture on the computer screen. These operations are
applied on the polygons that constitute the scene to be rendered. Coordinate trans-
formations, clipping and projection operations are performed to transform polygon
information in three dimensional world coordinates to two dimensional screen coor-
dinates. In order to produce realistic pictures, hidden surface removal and shading
operations are performed on the projected polygons. During hidden surface removal,
pixels are generated for screen coordinates that are covered by the projected polygon.
The z values of the pixels generated for the same active pixel location are compared
and pixel closest to the screen is stored into the frame buffer. More information on
rendering can be found in [1, 2].

In object-space parallel rendering, input polygons are partitioned among the proces-
sors of the multicomputer. Each processor, then, runs a sequential rendering algorithm
for its local polygons. In order to obtain the final picture, pixels generated in each
processor should be merged, because more than one processor may produce a pixel for
the same screen coordinate. This merge operation should be done in minimal time,
because this is the only place where an overhead is incurred due to parallelization.
The basic steps of the object-space parallel rendering executed in each processor is
given in Fig. 1.

At step 1, the host processor distributes polygons to node processors using scattered
assignment scheme. In the scattered assignment scheme, adjacent polygons on each
surface should be ordered consecutively. Then, successive polygons in the sequence
are assigned to the processors in a round-robin fashion. That is, the first polygon is
assigned to processor 0, the next to processor 1, etc. When P polygons are assigned,
the next polygon is assigned to processor 0 and this process continues. Step 5 of the
algorithm is expected to take almost equal amount of computation for adjacent poly-
gons due to similar view volume of adjacent polygons. Hence, scattered assignment
is expected to yield good load balance.

At step 5, each processor performs hidden surface removal and shading for its local
polygons. Hidden surface removal can be accomplished by z-buffer or scanline z-buffer
algorithm. The z-buffer algorithm is simple to implement, but it requires that whole
z-buffer be stored in the local memory of each processor. Hence, z-buffer algorithm
1s not suitable for parallelization on distributed memory architectures. A scanline

z-buffer, on the other hand, requires to store only a z-buffer of height one, hence
reduces the memory requirements. In this work, a scanline z-buffer algorithm is used
to perform local hidden surface removal.

At step 6, each processor exchanges and merges the local z-buffer results to obtain
the final picture. The global z-buffering operations during the pixel merge phase
can be considered as overhead to the sequential rendering. Furthermore, each global
z-buffering operation necessitates interprocessor communication. Hence, efficient im-

plementation of the pixel merging phase is a crucial factor for the performance of
object-space parallel rendering.

A straight-forward implementation of steps 5 and 6 can be done by using a con-
ventional scanline z-buffer algorithm to perform local hidden surface removal. Pixel
merging phase (step 6) can be performed by exchanging pixel information for all ac-
tive and inactive screen locations between processors. However, such a scheme will
not produce minimal execution time in pixel merging phase, because pixel informa-
tion for inactive pixel locations are also exchanged. This introduces an unnecessarily
large number of global z-buffering operations and hence large volume of interprocessor
communication due to inactive pixel locations. This overhead can be reduced by ex-
changing only winning pixels in each processor. Hence, during the local hidden surface
removal step, each processor should store only its local winning pixels to exchange
with other processors. In order to do this, a modified scanline z-buffer algorithm is
proposed. Note also that, in conventional scanline z-buffer algorithm, the scanline
z-buffer should be initialized for each scanline in the screen. The modified scanline
z-buffer algorithm avoids the re-initialization of scanline z-buffer for each scanline on
the screen.

4 Modified Scanline Z-buffer Algorithm

In this section a modified scanline z-buffer algorithm is presented. Each processor
executes the steps of this algorithm on the polygons in its local memory before pixel
merging operation. The steps of the algorithm is given below

1. Create a scanline span list for the local polygons.

2. Perform modified scanline z-buffer on the span list entries. Store the win-
ning pixels in Winning Pixel Array (WPA).

When polygons are projected to the screen, some of the scanlines intersect the edges
of the projected polygons. For simplicity, we will assume that polygons are convex

polygons. Hence, a scanline can intersect a polygon at most at two edges of the
polygon. Therefore, edge intersections occur in pairs. This pair of intersections is
also called a span. The scanline span lists involve a linked Iist for each scanline which
contains the respective polygon spans. Each span is represented by a bucket, which
contains the intersection pair and necessary information for z-buffering and shading.
The bucket structure can be represented as follows.

BucketStructure {
z; , x, (leftmost and right most x-axis intersections of the
polygon edges with the scanline)
21, 2y (2z values at intersections z; and z,)
I; , I, (intensity values at intersections z; and z,)

}

At step 1, span lists are constructed by inserting the spans of the projected polygons to
the appropriate scanline lists in sorted (increasing) order according to their z; values.
This sorting allows to perform local z-buffering without initializing the scanline array
for each scanline on the screen.

At step 2, spans in the scanline lists are processed, in scanline order, for local z-
buffering and shading. Two local arrays are used in order to store only winning
pixels. First array is called Winning Pizel Array (WPA) used to store the winning
pixels. Each entry in this array contains location information, z value, and shading
information about the respective local winning pixel. Since the z-buffering is done in
scanline order, the pixels in the WPA are in scanline order and pixels in a scanline
are stored in consecutive locations. Hence, for location information, only x value
of the pixel generated for location (x,y) needs to be stored in WPA. Second array,
called Scan_Arry of size N, is a modified scanline z-buffer. Each entry of this array
contains the index of the current winning pixel for that location in WPA. That is
Scan_Arry[x] gives the index of pixel generated for location “x” in WPA. The steps
of the modified z-buffer operation are given in Fig. 2. Initially each entry of the
Scan_Arry is initialized to zero. WPA _index points to the next available location in
WPA. The structure pixel[x] returns the necessary information about pixel generated
for location “x” to be stored in WPA.

Note that, in the local z-buffering operation Scan_Arry is initialized only once. If
a location “x” in Scan_Arry has a value less than the current value of “Index”, it
means that location “x” is generated by a span belonging to previous scanlines. Note
that, the value of the “Index” is set to “WPA _index” just before the next scanline is
processed. Hence, for the next scanline all the values in Scan_Arry will be less than
“Index”. Therefore, the Scan_Arry does not have to be initialized again. However,
due to comparison made with “Index” value, an extra comparison is introduced for
each pixel generated. These extra comparison operations can be reduced as follows.

The sorted order of spans in the scanline span lists assures that when a span “j” in

scanline “i” is rasterized, it will not generate a pixel location “x” which is less than
x; of previous spans. Hence, when a span is processed, first its left intersection point

(z;) in the Scan_Arry, i.e. Scan_Arry[z], is compared with “Index”. If Scan_Arry|[z)]

Initialize Scan_Arry to zero;
Index = 1; WPA _index = 1;
for (each scanline “i”) do
max_activex = 0;
for (each bucket “j” in span list for scanline “i”) do
if (Scan_Arry[z;] < Index) then
for (x = z; to z,) do /¥ store pixels without comparison */
WPA[WPA _index] = pixel[x];
Scan_Arry[x] = WPA _index;
WPA index = WPA_index + 1;
max_active_x = z,;
else
if (#, > max_active_x) then /* divide the span into two parts */
Zepnd = Max_active x;
max_active X = z,;
else

Tend = Tr3

for (x = z; to 2¢pg) do
k = Scan_Arry[x];
if (WPA[k].distance > pixel[x].distance) then

WPA[k] = pixel[x];

for (x = (zepgtl) to z,) do
WPA[WPA _Lindex| = pixel[x];
Scan_Arry[x] = WPA _index;
WPA index = WPA_index + 1;

Index = WPA Lindex;

endfor

Figure 2: Modified local z-buffer algorithm.

is less than the current value of “Index”, the pixel locations from x = z; to x = z, can
be updated and pixels generated for those locations are stored to WPA without any
distance comparisons. Note that, the variable “max_activex” holds the maximum
“x” location generated by previous spans in the same scanline “i”. If Scan_Arry[z] is
greater than the current value of “Index”, this means that a pixel has been generated
by a previous span in the current scanline “i”. In such a case, the span “” is divided
into two parts at location “max_activex”. For pixels generated for pixel locations
less than “max_active x”, distance comparisons are made with the pixels in WPA.
The pixels generated for pixel locations greater than “max_active_x” can be stored to
WPA without any distance comparisons.

5 Pixel Merging

This section describes parallel pixel merging algorithms. In the hypercube multicom-
puter, processors can communicate to neighbor and non-neighbor processors. In the

first algorithm for pixel merging only neighbor processors communicate. In the second
algorithm, processors send messages to non-neighbor processors as well.

5.1 Pixel Merging by Pairwise Exchange

In this scheme, only neighbor processors communicate with each other. The algorithm
is given in Fig. 3. At the first step, the processors in the upper (d-1) dimensional
subcube (whose processor ids are lzz...x) send their local winning pixels belonging
to scanlines in the upper half of the screen (scanlines from 1 to N/2) to neighbor
processors in the lower (d-1) dimensional hypercube. Similarly, processors in the
lower (d-1) dimensional hypercube (whose processor ids are 0zz...x) send their local
winning pixels belonging to scanlines in the lower half of the screen (scanlines from
(N/24+1) to N) to neighbor processors in the upper (d-1) dimensional hypercube.
Hence, after step 1, processors in the upper subcube will have the pixels below the

half of the screen, and processors in the lower subcube will have the pixels above the
half of the screen. Each processor then merges the pixels it receives with the local
pixels. The winning pixels after this merge operation is stored into the winning pixel
array. Note that, after first exchange step, the hypercube is divided into two subcubes
of dimensions d—1. Processors in the upper subcube have the pixels belonging to the
lower half of the screen. Processors in the lower subcube have pixels belonging to
the upper half of the screen. Then each subcube performs, independently form the
other subcube, the step 1 on winning pixels in the upper (pixels in processors Ozz...z)
or lower (pixels in processors lxz...z) half of the screen. At this step, processors
whose ids are 11z...xz exchanges messages with processors 10z...z for lower half of
the screen, and similarly processors whose ids are 0lz...x exchange messages with
processors 00z...x for the upper half of the screen. This operations are repeated until
subcube dimension becomes 0. Hence, at the end of the pairwise exchange and merge
operations, each processor has the winning pixels belonging to the N/P portion of the
screen. In this scheme number of communication steps is equal to the dimension of
the hypercube and only neighbor processors communicate with each other.

This scheme is also called store-and-forward scheme. At each exchange step, the
received pixels are stored into the local memory of the processor. These pixels are
compared and merged with the pixels stored before. After this merge operation, some
part of the winning pixels are sent at the next exchange step, i.e. they are forwarded
towards the destination processor through other processors at each concurrent com-
munication step. Note that, during this store-compare-and-forward steps, pixels may
be copied from memory of one processor to memory of the other processors more than
once. This memory-to-memory copy operations can be reduced by sending the pixels
directly to destination processors. The scheme that implements this strategy is given
in the next section.

m : this node’s id (m = bg_1bg_3...bg in binary representation).
Start = 1; Fnd = N;
fori=d - 1to0do

k:mEBQi;
if b; = 1 then

Send the winning pixels for scanlines from Start to (Start + End/2 —1) to node k;
Receive pixels for scanlines from (Start + End/2) to End from node k;
Start = (Start + End/2);

else
Send the winning pixels for scanlines from (Start + End/2) to End to node k;
Receive pixels for scanlines from Start to (Start + End/2 — 1) from node k;
End = (Start + End/2 — 1);

endif

Merge the pixels received and local pixels, and store the
winning pixels in winning pixel array;
endfor

Figure 3: Pixel merging by pairwise exchange scheme.

5.2 Pixel Merging by All-to-All Personalized Communica-
tion

In iPSC/2 hypercube multicomputer communication between processors is done by
Direct Connect Modules (DCMs). DCMs allow non-neighboring processors to com-
municate. Two non-neighbor processors can communicate through the DCMs of the
other nodes without store-and-forward overheads and without interrupting the nodes
on the route. In iPSC/2 hypercube multicomputer, with DCM technology, commu-
nication between two non-neighboring processors is almost as fast as neighbor com-
munications if all the links between two processors is not currently used by other
messages. The communication hardware uses the e-cube routing algorithm [9]. Using
DCMs, we can exchange messages between non-neighbor processors by the following
algorithm [10]. This algorithm ensures that at each exchange step the pixel data is
directed to destination processors with the pixel data following disjoint paths.

m : this node’s id
By : the pixel data belonging the partition of screen assigned to processor k.
fori=1to P-1do
k=m® i
send pixel data B}, to processor k;
receive pixel data from processor k;
sync;
endfor

In pixel merging by all-to-all personalize communication scheme, the screen is im-
plicitly divided into P equal-sized slices (partitions) each containing N/P scanlines.

Each partition is implicitly assigned to a processor. Then, node “i” sends the pixels

belonging to the partition of the processor “k” directly to processor “k”. Processors
after receiving the pixels wait for the synchronization (sync) so that no processor gets
ahead of the others and blocks the links to be used by others. This synchronization
operation can be executed in O(logy P) time. After P—1 exchange steps each pro-
cessor z-buffers the local pixels and the pixels it receives form other processors. For
this, each processor holds a z-buffer of size NxN/P. Local pixels are scattered onto the
z-buffer without any distance comparisons. Then, each received pixel’s “z” value is
compared with the “z” value in the pixel location in the z-buffer. After all the pixels
are processed z-buffer contains the winning pixels belonging to the final picture.

This scheme avoids memory-to-memory copy overhead incurred in the previous scheme.
However, number of communication steps is increased from logy(P) to P—1. Hence,
for lTarge number of processors with high communication setup time, this scheme may
give worse results than pairwise exchange scheme.

6 Load Balancing in Pixel Merging Step

The load balancing in parallel computers is a crucial issue. There are various studies
on load balancing [8]. In order to minimize the parallel execution time, an even
distribution of work load among the processors of the parallel computer should be
achieved. The overhead of the load balancing operation should also be minimized.

In the pixel merging operation, in fact, the screen is implicitly divided among the
nodes of the hypercube. In the naive implementations, the screen is divided into P
partitions, each of size equal to N/P scanlines. Each partition is implicitly assigned
to a processor. However, such a division may result in poor load balancing, because
number of active pixel locations may not be the same for each scanline. Hence,
during the merge operation some processors may have to merge more pixels than the
other processors. This imbalance in the load can be reduced by assigning scanlines to
processors adaptively. Two algorithms to implement this adaptive division of screen
to processors are given in the following sections.

6.1 Recursive Adaptive Subdivision

This scheme recursively divides the screen into two partitions such that number of
pixels in one partition is almost equal to the number of pixels in the other partition.
This scheme is well suited to the recursive structure of the hypercube, hence can be
done in parallel. The steps of the algorithm are given in Fig. 4.

This algorithm is executed by each processor in the hypercube. The global sum
operation at step 2 can be performed in logy(P) communication steps. At step 6
and 7, if a processor belongs to upper (D—1) dimensional subcube it sets Start =

1. Find the amount of winning pixels at each scanline after local z-buffering in each
processor. Store these amounts in a array, each entry of the array corresponds
to a scanline in the screen.

2. Perform a global vector sum operation on the array in each processor so that
the number of pixels to be merged at each scanline is found globally.

3. Perform a prefix sum on the resultant array to form the “prfx_arry[0...N]”. The
location “i”,wherei = 1, ... , N in the prfx_arry gives the number of pixels to
be merged between scanlines 1 and i, including the scanlines 1 and i. The last
location in this array (prfx_arry[N]) holds the total number of pixels to merged.

4. Set prfx_arry[0] = 0, Start = 1, End = N , D = d.

@
1

5. Find a location in the prfx_arry such that

prix_arry[i] = (prfx_arry[End] — prix_arry[Start-1])/2 4+ prfx_arry[Start-1]

@
1

This location divides the screen at scanline into two partitions such that each

partition has almost equal number of pixels.
Set Start = i+1 for processors in the upper (D—1) dimensional hypercube.
Set End = i for processors in the lower (D—1) dimensional hypercube.

Set D = D—1.

© 00 N O

Repeat steps 5-8 on the screen partition between scanlines Start and End until
D =0.

Figure 4: Recursive adaptive subdivision algorithm.

i+1, and if it belongs to lower (D—1) dimensional subcube it sets EFnd = i. Hence,
processors belonging to different subcubes run the algorithm on different partitions
of the screen. This algorithm is well suited to the communication scheme used in the
pairwise exchange scheme. Note that, in pairwise exchange scheme, at each exchange
step, processors in the lower/upper subcubes send lower/upper parts of the screen
and merges pixels in the upper/lower part of the screen. At each iteration step D, for
D =d,....1, of the recursive adaptive subdivision scheme, a division point is found for
subcubes of dimension D.

This algorithm can be modified to be used in the pizel merging by all-to-all personal-
ized communication scheme. Note that, at the end of the execution, each node actually
knows which partition of the screen is assigned to itself by the values of Start and
End. Each node, then, performs a global collect operation, which can be performed in
loga(P) concurrent communication steps, on these values to obtain the values in the
other nodes. Therefore, at the end of this global collect operation, each node knows
the partition of the screen among the nodes. Pixel merging by all-to-all personalized
communication scheme can be performed using this partitioning of the screen.

10

1. Find the amount of winning pixels at each scanline. Store these amounts in a

array (ScanPixelCount array), each entry of the array corresponds to a scanline
in the screen.

2. Perform a global vector sum operation on the array in each processor so that
the number of pixels to be merged at each scanline is found globally.

3. Sort the scanlines with respect to the number of pixels in decreasing order.
4. Seti=1

5. Assign the scanline i in the sorted array to processor “k” whose current work
load is minimum.

6. Update the work load of the processor “k” by incrementing its work load by the
number of pixels in scanline “i”.

7. Seti=i+1
8. Repeat steps 5-7 until all scanlines are assigned to processors.

9. Renumber the scanlines such that scanlines assigned to a processor are numbered
consecutively.

Figure 5: Algorithm for Heuristic Bin Packing

6.2 Heuristic Bin Packing

In the pizel merging by all-to-all personalized communication scheme, the load metric
of a node processor in pixel merging operation is the sum of the number of local
winning pixels and the winning pixels it receives from other processors after local
hidden surface removal step. A partitioning strategy that tries to achieve partition
such that this total number is almost equal in each processor, also achieves a good load
balancing. In the recursive partitioning scheme, this goal is achieved to some extent.
Note that, the division of the screen is done on scanline basis, i.e. scanlines are not
divided. For this reason, it is difficult to achieve exactly equal load in each partition.
In addition, when a division point is found and screen is divided into two partitions,
each partition is subdivided independent from the other one. As a result, at each
recursive subdivision, the load imbalance between the partitions may propagate and
increase. Therefore, at the end of recursive subdivision, some node processors may
still have substantially more work load than others. A more evenly distribution of
work load among the nodes can be achieved by using a different partitioning scheme,
called heuristic bin packing. In this scheme, the goal is to minimize the difference
between the loads of the maximum loaded processor and minimum loaded processor.
In order to realize this goal, a scanline is assigned to a processor with minimum work
load. In addition, scanlines are assigned in decreasing number of pixels they have, i.e.
scanlines that have large number of pixels are assigned at the beginning. In this way,
large variations in the processor loads due to new assignments are minimized towards
the end. The algorithm, which is executed by each processor, is given in Fig. 5.

11

At steps 1 and 2 of the algorithm, the total number of pixels at each scanline after
local hidden surface removal step is found. Then, scanlines are sorted with respect to
number of pixels in decreasing order. This sorting is done in parallel. Assume that
the size of the set of scanlines, which have non-zero number of pixels, is S. For parallel
sorting, each processor sorts a disjoint subset of size S/P of this set of scanlines in
parallel. Then, sorted arrays in each processor are merged to obtain the final sorted
array. This merge operation can be performed in logy(P) concurrent communication
steps. In this work, load balancing in parallel sorting operation is not considered.
Various parallel sorting algorithms can be found in [10, 11]. Through steps 5 - 8,
scanlines are assigned to processors. At step 5, the minimum work loaded processor
is found using a binary heap.

In iPSC/2 hypercube multicomputer, if a processor wants to send K bytes of data to
another processor, these K bytes should be stored in consecutive memory locations so
that data can be transmitted in one send operation. Note that, during local hidden
surface removal, the winning pixels are stored into winning pixel array in scanline
order in consecutive locations. However, the load balancing algorithm may assign
consecutive scanlines to different processors. Hence, non-consecutive scanline data in
the winning pixel array of a processor “I” can be assigned to a processor “k”. As
a result, in order processor “1” to send the pixels belonging to scanlines assigned to
processor “k”, it has to gather those pixels in another array so that they are stored
in consecutive memory locations. In order to avoid this extra gather operation, the
algorithm in Fig. 5 is executed before local hidden surface removal. At step 9, scanlines
are renumbered so that scanlines assigned to a processor are numbered consecutively.
Therefore, pixels generated for these scanlines will be stored in consecutive locations
in winning pixel array. However, the load metric in heuristic bin packing algorithm is
the number of pixels in each scanline after local hidden surface removal is performed.
In order to find the number of winning pixels after local hidden surface removal
without running local z-buffer operations, each processor executes the algorithm called
extended span algorithm given in Fig. 6 on spans in the span list structure.

In this algorithm, intersecting spans in scanline “i” are merged to form extended
spans. The number of pixels in these extended spans gives the number of winning
pixels after local z-buffering for scanline “i”. Note that, the number of pixels to be
generated for a single span is (z, — z; + 1). Remember that during scanline span list
creation, spans are sorted with respect to their x; values in increasing order. Because
of the sorting, there is no need to store the extended spans. In addition, checking the
intersection of a span “}” with the extended span can be done by only checking z; of
span)7 with extnd_span_z,.

7 Experimental Results

The algorithms proposed in this work were implemented in C language on a 16-node
Intel iPSC/2 hypercube multicomputer. Algorithms were tested for scenes composed

of 1, 2, 4, and 8 tea pots for screens of size 400x400, 640x640, and 800x800. Table 1

12

Initialize ScanPixelCount array to zero.
for (each scanline “i”) do
extnd_span_z, = -1;
extnd_span_x; = 0;
for (each span “j” in scanline “i”) do
if (2; < extnd_span_z,) then
if (z, > extnd_span_z,) then
extnd_span_z, = z,;
endi

else
ScanPixelCount[i] = extnd_span_z, — extnd_span_z; + 1;
extnd_span_z, = z,;
extnd_span_z; = z;
endif
endfor
ScanPixelCount[i] = extnd_span_z, — extnd_span_z; + 1;
endfor

Figure 6: Extended span algorithm.

Table 1: Scene characteristics in terms of total number of pixels generated (TPG),
number of polygons, and total number of winning pixels in the final picture (TWP)
for different screen sizes.

N=400 N=640 N=800
Scene Num. Of Polygons | TPG | TWP | TPG TWP TPG TWP
1 POT 3751 59091 | 43247 | 137043 | 110515 | 206949 | 172600
2 POT 7502 66802 | 37084 | 151881 | 94840 | 228170 | 148191
4 POT_1 15004 71578 | 26328 | 146468 | 66727 | 211730 | 103969
4 POT_2 15004 81735 | 35629 | 171480 | 90692 | 249524 | 141632
8 POT_1 30008 154187 | 52258 | 324464 | 133617 | 473417 | 208731
8 POT_2 30008 99589 | 36043 | 201829 | 91729 | 289389 | 143241

gives the characteristics of the scenes in terms of total number of pixels generated,
number of polygons and total number of winning pixels in the final picture for different
screen sizes. In this table, TPG represents the total number of pixels generated, and
TWP represents the total number of winning pixels in the final picture. Other abbrevi-
ations in the following tables are, AAPC-HBP: pizel merging by all-to-all personalized
communication scheme using heuristic bin packing for load balancing, AAPC-RS: pizel
merging by all-to-all personalized communication scheme using recursive adaptive sub-
division algorithm for load balancing, PAIR-RS: pizel merging by pairwise exchange
scheme using recursive adaptive subdivision for load balancing, ZBUF-EXC: straight-
forward implementation which exchanges pixel information for all active and inactive
pixel locations. All timing results in the tables are in milliseconds.

Table 2 illustrates the performance comparison of PAIR-RS scheme straight-forward
implementation (ZBUF-EXC) scheme. The timings for some scene instances for

13

Table 2: Relative execution times of straight-forward implementation and PAIR-RS
for N=400.

PAIR-RS ZBUF-EXC
Span List | Local Pixel Span List | Local Pixel
P | Scene Creation | z-buffer | Merging | Creation | z-buffer | Merging
1 POT 322 434 348 316 578 2015
2 POT 481 471 341 470 585 1940
16 | 4 POT_1 1038 520 323 1015 647 1930
4 POT-2 1124 579 408 1099 702 1958
8 POT_1 2142 1079 684 2104 1128 2043
8 POT_2 2087 701 451 2029 805 1958
1 POT 630 815 468 612 952 1941
2 POT 947 886 475 920 989 1882
8 | 4 POT_1 2037 989 419 1968 1093 1798
4 POT_2 2268 1109 545 2186 1191 1881
8 POT_1 4219 2030 861 * * *
- scheme could not be obtained due to insuflicient local memory. ose

cases are indicated by a “*” in this table. As is seen in Table 2 table, modified scanline
algorithm gives much better results than ZBUF-EXC scheme in pixel merging phase.
The pixel merging phase in ZBUF-EXC is similar to that of PAIR-RS scheme. The
only difference is that unlike PAIR-RS scheme, pixel information for inactive pixel
locations are also exchanged in ZBUF-EXC scheme. Since pixel information for inac-
tive pixel locations are also exchanged, the volume of communication in ZBUF-EXC
scheme is larger than that of PAIR-RS. As is also seen from the table, the PAIR-RS
scheme performs better than ZBUF-EXC scheme also in local z-buffer phase. There-
fore, we may conclude that overheads associated with local z-buffer phase in PAIR-RS
scheme is less than that of ZBUF-EXC scheme. In PAIR-RS scheme, the scanline z-
buffer is initialized only once. In ZBUF-EXC scheme, it is re-initialized for each
scanline on the screen.

Table 3 illustrates the performance comparison of AAPC-HBP, AAPC-RS, and PAIR-
RS schemes. The timing results for local z-buffer do not include the time spent on
span list creation, because all algorithms use the same span list creation algorithm.
The overheads associated with load balancing operations are incorporated into local
z-buffer operation. If we compare the pixel merging times, AAPC-HBP scheme gives
the best results among all schemes. This is because of the fact that the heuristic
bin packing scheme achieves better load balancing than recursive adaptive subdivision
scheme. As is also seen from the table, PAIR-RS scheme gives worst performance
results in pixel merging phase. This is because of the store-and-forward overhead
associated with this scheme. If performance of the algorithms are compared with
respect to execution time of local z-buffer operation, algorithms that use recursive
adaptive subdivision scheme performs better. This is due to the fact that recursive
adaptive subdivision scheme introduces less overhead to the execution. However, on
overall execution time (local z-buffer time + pixel merging time), the AAPC-HBP
scheme achieves almost %6 improvement over AAPC-RS scheme for 8 POT_2 scene

for P=16 and N=R&00.

14

Table 3: Comparison of execution times of several pixel merging schemes.

AAPC-HBP AAPC-RS PAIR-RS

Local | Pixel | Local | Pixel | Local | Pixel
N | P | Scene z-buff. | Merg. | z-buff. | Merg. | z-buff. | Merg.
4 POT_1 550 181 524 218 520 323
16 | 4 POT_2 608 200 583 247 579 408
8§ POT_1 | 1126 302 1083 376 1079 684
8 POT2 735 212 705 268 701 451
400 4 POT_1 | 1031 250 992 291 989 419
8 | 4POT2 | 1150 293 1112 351 1109 545
8 POT_1 | 2098 464 2034 543 2030 861
8§ POT2 | 1379 301 1334 374 1330 577
4 POT_1 | 1060 333 1016 418 1011 702
4 POT2 | 1213 388 1169 488 1164 879
16 | 8 POT_1 | 2238 611 2170 794 2165 1502
8§ POT 2 | 1412 404 1363 535 1358 976
640 4 POT_1 | 2013 540 1951 636 1947 936
8 | 4POT2 | 2318 627 2257 764 2253 1208
8 POT_1 | 4250 1050 | 4146 1242 | 4142 1957
8 POT2 | 2686 660 2615 818 2611 1303
4 POT_1 | 1500 475 1445 595 1439 1038
16 | 4 POT_2 | 1708 551 1656 704 1650 1305
800 8§ POT_1 | 3179 901 3096 1180 3090 | 2225
8§ POT2 | 1978 551 1918 776 1912 1421
8 | 4 POT_1 | 2842 791 2763 960 2758 1398
4 POT_2 | 3305 929 3229 1147 | 3224 1796

15

Table 4: Execution times of heuristic bin packing and recursive adaptive subdivision

heuristics.

Heuristic Bin Packing Recursive
Total | Extended | Parallel | Adaptive

P | N | Scene Time | Span Alg. Sort Subdivision
4 POT.1 60 15 15 20
400 | 4 POT_2 60 19 14 20
8 POT_1 75 25 17 20
8 POT2 64 19 14 21
16 4 POT_1 87 22 22 28
640 | 4 POT2 86 23 21 27
8§ POT_1 | 108 37 23 25
8 POT_2 90 28 19 27
4 POT_1 | 101 26 25 30
800 | 4 POT2 99 27 22 30
8§ POT.1 | 128 46 27 33
8§ POT2 | 107 34 23 30
4 POT_1 65 24 17 15
400 | 4 POT_2 65 24 15 17
8 POT_1 91 43 17 15
8 POT2 72 30 16 16
8 4 POT_1 94 35 25 20
640 | 4 POT_2 94 37 23 21
8§ POT.1 | 135 65 32 20
8§ POT2 | 104 47 23 23
800 | 4 POT_1 | 116 43 32 24
4 POT2 | 112 45 27 23

Table 4 illustrates parallel execution times of heuristic bin packing and recursive
adaptive subdivision schemes. As is seen from the table, recursive adaptive subdivision
scheme introduces less overhead than heuristic bin packing, because overheads of
parallel sorting and extended span algorithm in heuristic bin packing are not present
in recursive adaptive scheme. As is seen from the table, execution times of extended
span algorithm and parallel sorting operation almost take %50 of the total execution
time. Note that, the execution time of the recursive adaptive subdivision scheme
remains almost constant for a constant screen size, and increases with increasing
screen size. This is due to the fact that the execution time of the recursive adaptive
subdivision scheme depends on the number of scanlines in the screen. As is seen
from the table, as the number of processors increase, the execution time of extended
span algorithm decreases as is expected, because its execution time depends on the
number of spans in a processor. On the other hand, the execution time of the recursive
adaptive subdivision algorithm decreases with decreasing number of processors. For
smaller number of processors, screen is divided into smaller number of partitions,
hence steps 5-8 are repeated smaller number of times. Also global vector sum and
prefix operations take slightly less time for smaller number of processors.

16

8 Conclusions

In this paper, various algorithms for object-space parallel rendering on hypercube
multicomputer are proposed and presented.

A modified scanline z-buffer algorithm is developed to store only the winning pixels in
each processor to decrease the number of global z-buffering operations and volume of
communication in pixel merging phase. This algorithm also avoids the re-initialization
of scanline z-buffer for each scanline on the screen, hence reduces the overhead asso-
ciated with re-initialization of the scanline z-buffer.

Efficient algorithms are developed for pixel merging phase of the object-space par-
allel rendering. Two algorithms,which use different interprocessor communication
strategies, are developed. The pizel merging by all-to-all personalized communication
scheme gives better results than pizel merging by pairwise exchange scheme due to less
store-and-forward overhead. However, number of communication steps of the pixel
merging by all-to-all personalized communication scheme, which is P — 1 steps, is
more than that of pixel merging by pairwise exchange scheme, which is logy(P) steps.
Hence, for large number of processors with high set-up time pixel merging by pairwise
exchange scheme may be preferable.

In this paper, load balancing issues in pixel merging step is also discussed. Heuristic
algorithms are developed to achieve an even distribution of work load among pro-
cessors. From the experimental results, the heuristic bin packing scheme gives better
performance results in pixel merging phase, because of better load balancing achieved.
In addition, heuristic bin packing scheme achieves better performance results also in
total execution time (local z-buffer time + pixel merging time) in spite of the more
overhead for load balancing operation. Therefore, for object-space parallel rendering
on hypercube multicomputers, it is recommended to use pizel merging by all-to-all
personalized communication scheme along with heuristic bin packing load balancing
scheme.

References

[1] A. Watt, Fundamentals of Three-Dimensional Computer Graphics, Addison Wes-
ley, (1989).

[2] D. F. Rogers, Procedural Elements for Computer Graphics, McGraw-Hill, (1985).

[3] S. Whitman, Multiprocessor Methods for Computer Graphics Rendering, Jones
and Bartlett Publishers, Boston (1992).

[4] M. Kaplan and D. Greenberg, Parallel processing techniques for hidden surface
removal. SIGGRAPH 79, 13(2), 300-307 (Aug. 1979).

17

[5]

M. C. Hu and J. D. Foley, Parallel processing approaches to hidden-surface re-
moval in image space. Comput. & Graphics, 9(3), 303-317 (1985).

[6]

M. Cox and P. Hanrahan, Pixel merging for object-parallel rendering: A dis-
tributed snooping algorithm. In Proc. of 1993 Parallel Rendering Symposium,
San Jose, 49-56 (1993).

R. Scopigno, A. Paoluzzi, S. Guerrini, and G. Rumolo, Parallel depth-merge:
A paradigm for hidden surface removal. Comput. & Graphics, 17(5), 583-
592 (1993).

J. Xu and K. Hwang, Heuristic methods for dynamic load balancing in a message-
passing multicomputer. Journal of Parallel and Distributed Computing, 18, 1-
13 (1993).

S.F. Nugent, The iPSC/2 direct-connect communication technology. In Proc.
Third Conf. Hypercube Concurrent Comput. and Appl., 51-60 (Jan. 1988).

B. Abali, F. Ozgﬁner, and A. Bataineh, Balanced parallel sort on hypercube
multiprocessors. [FEFE Trans. on Parallel and Distributed Systems, 4(5), 572-
581 (1993).

C.G. Plaxton, Load balancing, selection and sorting on the hypercube. In Proc.

of 1989 ACM Symp. Parallel Algorithms and Architectures, 64-73 (1989).

18

