An Evaluation of the Validity of the Dexter
Hypertext Reference Model: A Case Study

ilge Karal Say and Fazli Can

BILKENT UNIVERSITY

Department of Computer Engineering
and
Information Science

Technical Report BU-CEIS-94-25

An Evaluation of the Validity of the Dexter
Hypertext Reference Model: A Case Study

Bilge Karal Say and Fazlhi Can!
Department of Computer Engineering
and Information Science
Bilkent University
Bilkent, Ankara 06533, Turkey
say@bilkent.edu.tr and fean@bilkent.edu.tr

Abstract:

Various formal models have been proposed for defining hypertext systems. Among them, the Dexter
Hypertext Reference Model is gaining wide acceptance as a base for the design of future hypertext
systems and interoperability tools. However, this model has yet to be extended and validated against the
hypertext systems it took as its basis. This paper is an attempt in the latter aspect, namely considering a
widely used hypertext system and validating it against the original model. For this purpose, HyperCard,
which was indeed one of the Dexter Hypertext Reference Model’s “reference” systems, is chosen. For
validation, we use the concept of refinement with Z, a formal specification language.

1 Introduction

Hypertext? is gaining world-wide usage throughout the computer users. Builders of the next
generation of hypertext tools will certainly benefit from models bringing together current hyper-
text concepts. Existence of sufficiently formal models will facilitate the comparison of different
hypertext systems and building interoperability tools to enhance multi-hypertext collaborative
environments. This concept can be viewed as a common semantic representation where world’s
languages can be translated to each other by first converting into this common form. Moreover,
the usage of formal specification languages in comparing models of hypertext systems may be
subject to automation via reasoning tools. This paper aims to serve such a purpose by making
an attempt to compare a specific hypertext system, HyperCard® with the Dexter Hypertext
Reference Model (referred to as the Dexter model for brevity from here onwards).

The design of the Dexter model was initiated with a series of workshops bringing together a
number of hypertext system designers. It is gaining popularity as a unifying framework and
several researchers have either extended the model or built experimental systems based on it
[Comms. ACM 94]. The model is specified formally in Z, as well as being attributed a clear
informal definition [Halasz and Schwartz 90]. Z is a formal specification language based on set
theory and logic [Spivey 89]. It also allows the usage of refinement and proof techniques, that
makes it suitable for a validation study.

1On sabbatical leave from Department of Systems Analysis, Miami Univ., Oxford OH, 45056, USA.
2The term hypertestis used interchangeably with hypermedia within this paper.
SHyperCard is a trademark of Apple Computer,Inc.

Presentation Anchoring

Specifications

Runtime layer Storage

Layer

Within-component

ayer

Figure 1. Layers of the Dexter Model.

Several other researchers have tried using formal notations including 7 for modelling hypertext
systems, but their models are not at the moment as generic as the Dexter model [Garg 88,
Afrati and Koutras 90, Hitchock and Wang 92]. By taking the Dexter model as our generic
model and building a validation specification for HyperCard, we aim to see how naturally and
closely the Dexter model represents HyperCard, one of its “reference” models. Moreover, we
want to see whether there can be some extensions for the model itself. We think that a validation
specification will be valuable in both validating the power of the Dexter model and seeing how
such a comparison works.

2 The Prequisites

2.1 An Overview of the Dexter Model

The Dexter model organizes the process and data information held about a hypertext system
into three layers. It specifically concentrates on the storage layer which describes the general
structure of the components that contain text, images, sound etc. and the network of links that
characterize a hypertext system by making the browsing structure of a document non-sequential.
The second layer is the within-component layer, which can accommodate the various forms a
single component can take. The specification of this layer is left open to a great extent in
the Dexter model, as there are implementation-dependent models that can describe the inside
structure of a component. The interface of this layer with storage layer is realized in the form of
an anchoring mechanism which give information about how components in general are related to
their specific parts such as buttons or individual words. This mechanism facilitates the building
of links between components.

The third layer is oriented to the dynamics of a hypertext system as the applications on it are
run by users. A user can be presented with a hypertext application in several ways, as well as
changing the contents of the hypertext application during a session, such as making annotations
while reading a document. These features are incorporated into a runtime layer, which is again
generically defined as the within-component layer. The storage layer presents information to the
runtime layer in the form of presentation specifications, which are encodings of how the user is
to be presented specific components, such as a special visual effect. The layer structure of the
Dexter model is summarized in Figure 1.

We will benefit from concentrating on the structure of a component briefly for purposes of our

validation study. A component can be in various forms. An atomic component in the Dexter
model is what is commonly known as a node in most hypertext systems, as the basic unit
of information presented to the user. An atomic component is uniquely identifiable as well
as having different attributes, contents, presentation specification and anchoring information.
Anchors are uniquely identifiable within a component pointing to a specific value such as part
of a screen, or a word in the text. Link components differ from atomic components in having
no contents but various specifiers. Specifiers denote which components are linked by a link
component. Finally, components can be composed of other components to form hierarchical
composite structures. A more detailed description can be found in the Dexter model papers
[Halasz and Schwartz 90, Halasz and Schwartz 94].

2.2 An Overview of the HyperCard Building Blocks

HyperCard is a hypertext authoring system working on Apple Macintosh computers, first re-
leased in 1987 [Michel 89]. Tt was made popular by the fact that it was for a long time distributed
free with Macintosh operating system software.

A HyperCard application is called a stack and consists of cards which correspond to atomic
components in Dexter terminology or nodes in general. Only one card is visible to the user at
a time. A card can contain images and text, and be related with sound or animation. Fields
are basic units for entering and displaying text. Buttons are the basic visual devices which are
“pushed” by mouse clicks or keyboard keys and they are the basis for creating links to navigate.
If several cards share same layout, buttons etc. these can be put on a background card for ease
of programming. Buttons, fields, cards or stacks can be associated with different properties such
as text size for fields, highlighting for buttons. They can also have their own scripts which are
procedures written in HyperCard’s scripting language, Hypertalk. Hypertalk can be used to
create links among other things such as chunking expressions in fields, making calculations. A
script is composed of message handlers which intercept events such as clicking of the mouse, and
specify a set of commands for that event. Functions or commands can also be imported from
other programming languages. There is a message passing hierarchy such that if, for example,
a message can not be handled at a button level, it is passed to the higher level in the hierarchy,
then a card, and higher to the stack if it is not handled at card level neither. Some more
information will be given about HyperCard in the next section.

3 The Validation Specification

3.1 The Limits of the Specification

The purpose of what we call the validation specification is to develop an understanding of
the degree of conformance of the design principles of HyperCard against the Dexter model as
explained in the introduction section. It can also be seen as a formal attempt to check the
validity of the Dexter model and propose ways to extend it. In this report, we try to keep
the Z specification as complete as possible giving the emphasis to underlying the methods and
concentrating on representative examples. More specifically, we choose to leave out:

e the run-time layer as it is generic enough to cover a HyperCard session easily,
e most of the within-component layer as it is left open in the Dexter model anyway,

e several aspects of the Hypertalk scripting language which are too procedural and away
from the main philosophy of a hypertext system,

Dexter Model

Specification ‘\
/- Retrieve

Functions

Adequacy

Conditions

HyperCard

Specification

Figure 2: An Informal Description of the Refinement Process.

We also assume familiarity with 7Z and the availability of the original Dexter model paper
[Halasz and Schwartz 90].

Thus, we are mainly taking a data-oriented approach concentrating on the storage layer of the
Dexter model.

3.2 The Method

When making a formal specification of a system —usually from scratch—, one is encouraged
to think in abstract terms first, for representing data and operations. Only when taking de-
sign decisions, we would rather start to think on more concrete, implementation-specific terms.
Thinking of this procedure in reverse may help us compare the Dexter model with HyperCard,
or any other hypertext system. The Dexter model is an abstract model of what hypertext
systems are supposed to do and we want to show that HyperCard forms a concrete example
of this model. The Dexter model is justifiably more powerful than HyperCard, but we ideally
want to see which Dexter model constructs are expressible in HyperCard. Also in theory, every
data type or operation actually realized in HyperCard should be traced back to a Dexter model
construct for conformance to the model. Mappings between abstract specifications and concrete
design structures are called reification [Jones 86] or more commonly in Z-related terminology
refinement [Woodcock 91].

Let us explain the requirements of refinement more concisely before using the technique. We
must be able to retrieve the original abstract data and constraints from the concrete structures
by means of a retrieve relation?. This function (or relation) must be total, as it must be defined
for each concrete structure. In 7, where the unit of specification is a schema, we would have the
retrieve relation as a separate schema relating abstract and concrete states and data types of
the system. In other words, this relation must provide an interpretation of the concrete design
in terms of abstract specifications. The complementary condition for retrieve relation is the fact
that there should be at least one concrete representation for any abstract value. This property is
called adequacy condition and can be stated as several proof obligations or by informal argument.
The refinement concept can be summarized as in Figure 2.

The argument above is basically related to data refinement rather than operation refinement.

*Usually, a function since a concrete representation has only one corresponding abstract representation.

We can simplify the operation refinement concept as a relation refinement process since useful
operations are rather like relations between states as depicted fully in [Woodcock 91]. When a
relation Absis refined by relation Conc, domain of Concis at least as big as that of Abs. Within
the domain of Abs, Conc respects Abs, that is the relation that is deemed to be a refinement
of the abstract one does not introduce further nondeterminism. When viewed as Z schemas,
this concept can be defined as concrete operations having weaker preconditions and stronger
postconditions than their abstract counterparts.

These refinement concepts give us several opportunities for proving statements made between
abstract and concrete states and operations.

e Each possible initial concrete state must represent a possible initial abstract state.

e The concrete operation must terminate whenever the abstract operation is guaranteed to
do so.

o If abstract operation is guaranteed to terminate then the state after concrete operation has
ended must represent a possible abstract state in which abstract operation could terminate.

This technique briefly summarized here is mainly intended for refining specifications to design,
though there is no reason why it should not be used for comparing whether a specific design
(such as that of HyperCard) conforms to a generalized specification (such as Dexter model).

3.3 The Specification

We concentrate on the representative constructs of the storage layer of the Dexter model. We
give the related data types and schemas of the HyperCard related constructs prefixed with a
“HC'”. Non-prefixed data types and schemas are as taken from the original Dexter model paper
[Halasz and Schwartz 90] unless they are retrieve schemas or otherwise specified.

A component in the Dexter model is characterized by a unique identifier, which is unique over
the whole component space. There is a similar identifier number in HyperCard called “Card
Id” but that number is only unique within a stack whereas an application may contain multiple
stacks.

[HCCARDID]
UID == HCCARDID

__Constrainty
stacky, stacky : P HCCARDID
c1,¢c9 : HCCARDID

= ((e1 € stacky N ¢z € stacky) =

o1 # ¢2)

In HyperCard a link’s direction is usually from a button or a card to a card. The Dexter model
also allows bidirectional or non-directional link end-points®.

HCDIRECTION := NONE | TO
DIRECTION ::= FROM | TO | NONE | BIDIRECT

5In HyperCard, the NONE endpoint of a HyperCard link is actually a FROM endpoint that always points to
the whole card.

In HyperCard, anchors can either be only in the form of buttons.

[HCBUTTON , HCBUTTONID]

ANCHORID == HCBUTTONID
ANCHORVALUE == HCBUTTON
ANCHOR == ANCHORID x ANCHORVALUE

In HyperCard a component specification is either a card name or a card number denoting its
sequence in the stack.

[HCCARDNAME, HCCARDNO]

A L) —_—— A) U A

A presentation specification, on the other hand, is denoted by a series of values for visual effects.

HCPRESENTSPEC == {BarnDoor, ZoomIn, . ., Iris}

The Dexter model relevant types can be instantiated to these definitions.

COMPONENTSPEC == HCCOMPONENTSPEC
PRESENTSPEC == HCPRESENTSPEC

A specifier specifies one end-point of a link.

SPECIFIER
componentspec : COMPONENTSPEC
anchorspec : ANCHORID

presentspec : PRESENTSPEC
direction : DIRECTION

A similar schema may be defined for HyperCard prefixing all components by HC. Now, let
us think of how to retrieve the original Dexter model schema components from the schema
components of HyperCard:

— RETRIEVE;
SPECIFIER
HCSPECIFIER

direction = hcdirection V direction = FROM
V direction = BIDIRECT

hcanchorspec = anchorspec
hepresentspec = presentspec

hedirection = direction

We can see that retrieval process is trivial except for denoting that in the Dexter model, direction
can have value of FROM or BIDIRECT.

A link in the Dexter model is a sequence of specifiers, of which there can be 2 or more (this
denotes allowance for multiarity links). At least one of the specifiers must have a TO end-point.

—_LINK
specifiers : seq SPECIFIER

#specifiers > 2

d s € ran specifiers e s direction = TO

A similar link schema for HyperCard must explicitly denote that links only with arity of 2 are
allowed and their end-points are restricted.

_ HCLINK
hespecifiers : seq SPECIFIER

#hespecifiers = 2
hespecifiers 1 o direction = NONE

hespecifers 2 o direction = TO

A second retrieve schema would state how the links of the Dexter model and HyperCard are
related.

— RETRIEVE,
LINK
HCLINK

specifiers = hespecifiers

We can now define what a component is, given the definitions above and the following types.

[ATOM)],[HCCARD]

BASECOMPONENT ::= atom{(ATOMY) | link({(LINK)) |
comp((seqBASECOMPONENT))

HCCOMPONENT ::= atom{(ATOM)) | link{{ LINK))
BASECOMPONENT = HCCOMPONENT U {comp((b)) | b € BASECOMPONENT}

We can observe that though the definition of a BASEFCOMPONENTin the Dexter model allows
for composite components, such recursive types are not allowed in HyperCard.

In the Dexter model additional information relating to a component is called component in-
formation and includes attributes, all related anchor identifiers and presentation specifiers. In
HyperCard this information is included in the script which in form of several statements corre-
sponding to an event.

HCEVENT == {MouseUp, MouseDown, . ., OpenStack}
HCSTATS = PRESENTSPEC U ATTRIBUTES U ANCHOR

HCCOMPINFO
lihcscm'pt : HOCSTATS - HCEVENT

The retrieve schema must map these two constructs.

— RETRIEVE;
COMPINFO
HCCOMPINFO

dom hescript = attributes U presentspec U anchor

The Dexter model Z specification [Halasz and Schwartz 90] defines several functions for read-
ability which we skip here. Operations such as creating a new component are trivially refined
by using the fact that there are no composite components in HyperCard. Extending the vali-
dation specification to include proof opportunities as explained in the previous subsection is at
the moment seen to lengthy and detailed to be worthy. They might be rather worthwhile when
developing a new hypertext tool conforming to the Dexter specification.

4 Conclusion

As can be seen from the previous specification, the validation process is quite straightforward
in basic cases. We observe the points where the adequacy condition is broken in favor of the
generality of the Dexter model, such as no multiarity links or composite structures being allowed.
We also observe and document more subtle points such as the discrepancy between the Dexter
model and HyperCard, in HyperCard having unique card identities only within a stack whereas
this uniqueness is universal in the Dexter model.

As to possible extensions to the Dexter model, we have two points to make. First of all,
although scripting is left open as a part of the within-component structure in the Dexter model,
some commands in the HyperCard are closely related with other layers of the Dexter model.
Anchors are not adequate since these commands do include important static features other than
establishing links only. Another extended mechanism may be specified to create such a mapping.
Second point is the specification of the message passing hierarchy in HyperCard. This hierarchy
is not only limited to within-component layer but also affects other layers. It can, for example,
cause creation of a new anchor. We think that this message passing hierarchy should be specified
separately. Such a specification may as well be done in an object oriented version of Z, such as
Object-Z [Carrington et al. 90].

References

[Comms. ACM 94] Communications of the ACM. Special issue on Hypermedia. 37(2).
February 1994.

[Afrati and Koutras 90] F. Afrati and C.D. Koutras. A Hypertext Model Supporting Query
Mechanisms. Proceedings of First European Conference on Hypertext.
A. Rizk et. al (eds). pp. 53-65.

[Carrington et al. 90] D. Carrington, D. Duke, R. Duke, P. King, G. A. Rose and G. Smith.
Object-Z: An object-oriented extension to Z. In S.Vueng, ed. For-
mal Description Techniques II (FORTE ’89), North-Holland:1990.
pp.281-296.

[Garg 88] P. Garg. An Abstraction Mechanism on Hypertext. Communications
of the ACM. 31(7). 1988.

[Halasz and Schwartz 90] F. Halasz and M. Shwartz. The Dexter Hypertext Reference Model.

roceedings of the Hypertext Workshop, pecial Publication
500-178, 1990. pp. 95-133.

[Halasz and Schwartz 94] F. Halasz and M. Shwartz. The Dexter Hypertext Reference Model.

[Hitchock and Wang 92]

[Jones 86]

[Michel 89]

[Spivey 89]
[Woodcock 91]

Communications of the ACM. 37(2). February 1994. pp. 30-39.

P. Hitchock and B. Wang. Formal Approach to Hypertext System
Based On Object-Oriented Database System. Information and Soft-
ware Technology. 34(9). 1992. pp. 573-592.

C.B. Jones. Systematic Software Development Using VDM. Prentice-
Hall International, 1986.

S. Michel. HyperCard: The Complete Reference. Osborne Mc-Graw-
Hill, 1989.

J.M. Spivey. The Z Notation. Prentice-Hall International, 1989.

J.C.P. Woodcock. An Introduction to Refinement in Z. In Prehn and
Toetenel,eds. Proceedings of VDM ’91: Formal Software Development
Methods. Vol 2. Springer-Verlag, 1991. pp. 96-117.

