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Abstract. A new Mean Field Annealing (MFA) formulation is proposed
for the mapping problem for mesh-connected architectures. The proposed
MFA heuristic exploits the conventional routing scheme used in mesh in-
terconnection topologies to introduce an efficient encoding scheme. An
efficient implementation scheme which decreases the complexity of the
proposed algorithm by asymptotical factors is also developed. Experi-
mental results also show that the proposed MFA heuristic approaches the
speed performance of the fast Kernighan-Lin heuristic while approaching
the solution quality of the powerful simulated annealing heuristic.

1 Introduction

The mapping problem arises as parallel programs are developed for distributed
memory architectures. Various classes of problems can be decomposed into a set
of interacting sequential subproblems (tasks) which can be executed in parallel.
In these classes of problems, the interaction patterns among the tasks is static.
Hence, the decomposition of the algorithm can be represented by a static undi-
rected task graph referred here as Task Interaction Graph (TIG). Vertices of
this graph represent the atomic tasks and the edge set represents the interaction
pattern among the tasks. Vertices can be associated with weights which denote
the relative computational costs of the respective tasks. Each edge denotes the
need for the bidirectional interaction between the corresponding pair of tasks at
the completion of the execution of those two tasks. Edges can also be associated
with weights which denote the amounts of bidirectional information exchanges
involved between the respective pairs of tasks. In a distributed-memory archi-
tecture, a pair of processors communicate with each other over a shortest path
of links connecting them. Hence, communication between each pair of processors
can be associated with a relative unit communication cost (communication cost
per unit information). Unit communication cost between a pair of processors
can be assumed to be linearly proportional to the shortest path distance be-
tween those two processors. Hence, the communication topology of the parallel
architecture can be modeled by an undirected complete graph, referred here as
Processor Communication Graph (PCG). The nodes of the PCG represent the
processors and the weights associated with the edges represent the unit commu-
nication costs between processor pairs.
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The objective in mapping TIG to PCG is the minimization of the expected
execution time of the parallel program on the target architecture. Thus, the
mapping problem can be modeled as an optimization problem by associating the
following quality measures with a good mapping : (¢) interprocessor communica-
tion overhead should be minimized, (i) computational load should be uniformly
distributed among processors in order to minimize processor idle time.

A mapping problem instance can be formally represented with two undi-
rected graphs; TIG and PCG. The TIG G (T, 1), has |[T| = N vertices, labeled
as (1,2,...,1,4,...,N), which represents the atomic tasks of the parallel pro-
gram. Vertex weight w; denotes the computational cost associated with task ¢ for
i=1,2,...,N. Edge weight ¢;; denotes the volume of interaction between tasks i
and j connected by edge (¢,j) € I. The PCG Gr(R,D), is a complete graph
with |[R| = K nodes and |D| = C(K,2) edges where C(-,-) denotes the com-
binational operator. Nodes of the Gz, labeled as (1,2,...,k,1,..., K), represent
the processors of the target multicomputer. Edge weight dy;, for k,1=1,2,..., K
and k # [, denotes the unit communication cost between processors £ and [.
Given an instance of the mapping problem with the TIG G (T, I) and the PCG
GRr(R,D), the question is to find a many-to-one mapping function M : T — R,
which assigns each vertex of the graph Gt to a unique node of the graph G,
and minimizes the total interprocessor communication cost

C= Z eijdnm(i),M(5)
©,7)EI, M(0)#M(J

while maintaining the computational load of each processor k

We= Y wi, for k=12...K
iET,M(3)=k

balanced. Here, M(i) = k denotes the label of the the processor that task i
is mapped to. Each edge (¢,7) of the G contributes to the communication
cost, only if vertices ¢ and j are mapped to two different nodes of the Ggr,
ie., M(i) # M(j). The amount of contribution is equal to the product of the
volume of interaction e;; between these two tasks and the unit communication
cost dpr(i),m(j) between processors M (i) and M (j). The computational load of a
processor is the summation of the weights of the tasks assigned to that processor.
Perfect load balance is achieved if Wi = (3.7 w;)/K for each processor k.

Since the mapping problem is NP-hard [8, 10], heuristics giving suboptimal
solutions are used to solve the problem [2, 3, 12]. Kernighan-Lin (KL) [7] and
Simulated Annealing (SA) [8] heuristics are two attractive algorithms widely
used for solving the mapping problem [3]. In a recent work [1], we have success-
fully formulated a recently proposed algorithm, called Mean Field Annealing
(MFA) for solving the mapping problem. MFA merges collective computation
and annealing properties of Hopfield neural networks [6] and SA [8], respectively,
to obtain a general algorithm for solving combinatorial optimization problems.
MFA can be used for solving a combinatorial optimization problem by choosing
a representation scheme in which the final states of the spins can be decoded as
a solution to the target problem. Then, an energy function is constructed whose
global minimum value corresponds to the best solution of the target problem.
MFA is expected to compute the best solution to the target problem, starting
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from a randomly chosen initial state, by minimizing this energy function. Steps
of applying MFA technique to a problem can be summarized as follows.

1) Choose a representation scheme which encodes the configuration space of
the target optimization problem using spins. In order to get a good perfor-
mance, number of possible configurations in the problem domain and the spin
domain must be equal, i.e., there must be a one-to-one mapping between the

configurations of spins and the problem.
2) Formulate the cost function of the problem in terms of spins, i.e., derive the

energy function of the system. Global minimum of the energy function should

correspond to the global minimum of the cost function.

3) Derive the mean field theory equations using this energy function, i.e., de-
rive equations for updating averages (expected values) of spins.

4) Minimize the complexity of update operations.

5) Select the energy function and the cooling schedule parameters.

We propose an efficient encoding scheme which asymptotically reduces the num-
ber of variables used in the representation for mesh-connected architectures.
Section 2 presents the proposed MFA formulation for the mapping problem for
mesh-connected architectures using the proposed encoding. An efficient imple-
mentation scheme is also described in this section. The proposed formulation
is asymptotically faster than the general formulation as discussed in Section 2.
Section 3 presents the experimental performance evaluation of mesh-topology
specific MFA algorithm proposed for the mapping problem in comparison with
the well-known mapping heuristics KL, SA and the general MFA formulation.

2 MFA formulation for Mesh-Connected Architectures

Consider a P by Q two-dimensional mesh-connected architecture with P rows
and @ columns. The encoding in the general MFA formulation in [1] necessitates
N x K = N x Px@Q variables for the problem representation. In this section, we
propose a MFA formulation for mesh-connected architectures which exploits the
conventional routing scheme in mesh interconnection topologies to introduce a
much more efficient encoding scheme. Each processor in a 2D-mesh can be iden-
tified with a two tuple (p,q) where 1<p< P and 1< ¢ < Q denote its row and
column indices, respectively. The communication distance between any two pro-
cessors is equal to the Manhattan distance between those two processors on the
processor grid. Hence, the unit communication cost between any two processors
can be expressed as the sum of two components: horizontal and vertical com-
munication costs. Horizontal and vertical unit communication costs are equal to
the column and row distances between the processor pairs, respectively. Thus,
any edge (7,7) € I with weight e;; of the TIG will contribute

Cij = C’f; + C’Z} = e;; X |col(i) — col(j)| + eij x |row(i) — row(j)| (1)

to the total communication cost, where row(i) and col(i) denote the row and
column indices of the processor that task 7 is mapped to and |- | denotes the
absolute value function. That is, M(i) = (row(i),col(i)). Here, C; and C}:
denote the horizontal and vertical communication costs due to edge (, ) € I.
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2.1 Encoding

The MFA is derived by analogy to Ising and Potts models which are used to
estimate the state of system of particles (spins). In Ising model, spins can be in
one of the two states, whereas in Potts model they can be in one of the K states.
In the proposed encoding, we use two Potts spins of dimensions P and Q to
encode the row and column mappings, respectively, of each vertex (task) of the
TIG. Spins with dimensions P and @ are called row and column spins which are

labeled as ST = [shy,...,8,,...,s.p) and Sf = [s§,...,s5,, ..., s{g’, respectively,
for:=1,2,..., N. Each spin vector is allowed to be equal to one of the principal
unit vectors ey, ..., e, ...,ex, and cannot take any other value, where K = P

and K = @ for row and column spin vectors, respectively. Principal unit vector
e is defined to be a vector which has all its component equal to 0 except its
kth components which is equal to 1. Spins S} and S{ are said to be in states
p and ¢ if S} = e, and S{ = e, respectively, which means that M(¢) = (p, ¢).
This encoding is much more efficient since it uses a total of N x(P + Q) two state
variables instead of N x Px @ two state variables of the general encoding [1].

2.2 Energy Function Formulation

The following spin average vectors are defined for energy function formulation.
t t
Vi= [Vl 0, vip] = (ST = [(sT), - (sh), - (sTp)]

t t
Vi=[oi, vl vig) = (80 = [(sih) - (si), - (siq)]

Note that si,, s7, € {0,1} are discrete variables taking only two values 0 and 1

whereas v[,,v{, € [0,1] are continuous variables taking any real value between

and 1. We have the following constraints for Potts spins;
P Q

vapzl and vaqzl

p=1 q=1
These constraints guarantee that each Potts spin S7 (S{) is in one of the P
(Q) states at a time, and each task is assigned to only one row (column) for
the proposed encoding. In order to construct an energy function it is helpful to
associate the following meanings to the vj, and vf, values,

vf, = P(row(i) = p) and  vf, = P(col(i) = q)

That is, v}, (v{,) denotes the probability of finding row (column) spin 7 in row p
(column ¢). Formulation of horizontal and vertical communication costs due to
edge (7, J) of the TIG as energy terms are:

R-1 Q@

By =ei . 3 (1= k[P (colli) = k ncol(y) = 1) + P (col() = k Acol(i) = 1)
k=1 l=k+1
Q-1 Q
=iy Y Y (1= k) (wivsi + v5iof) 2)
k=1 l=k+1
P—1 P
E(ij) = e (I = k)(vixvfi + vjxvir) (3)
k=1 l=k+1
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The derivation of the mean field theory equations using the formulation of the
energy terms E(hl ;y and Ef; .y given in Egs. (2) and (3) results in substantially
) and Ef; ;) in
order to get more suitable expressions for the mean field theory equations. A close
examination of Egs. (2) and (3) reveals the symmetry between the expressions
for E(’QJ) and Ef; ;) terms. Hence, algebraic simplifications will only be discussed
for the Ef; ;) term. Similar step can be followed for the Ef; ;; term. We introduce
the following notation for the simplification of the communication cost terms:

complex expressions. Hence, we simplify the expressions for E

k Q k P

c c c c T T T T
Fiy = E CH] Liy = E v, Fip= E V41 Liy = E V41 (4)

=1 =k =1 =k

Here, F5 (F}) and Lf, (Lf,) denote the probabilities that task ¢ is mapped

to one of the processor in the first k£ columns (k rows) and the last Q—k+1

columns (P—k+1 rows), respectively. Using this notation and thru some algebraic
. . . h v . . .

manipulations the expression for E(Z. i) and E(Z. i) simplifies as:

Q-1 @ Q-1 Q
Bl =eidd) S (I—kobosi+ > Y (- k)ofros)

k=1 l=k+1 k=1 l=k+1
Q-1 k Q Q-1 k Q

LHM D VTS I o
k=1 l=1 m=k+1 k=1 l=1 m=k+1
Q-1

=iy 3 (FiLjpes + FpLina) (5)
k=1
P—1

Efigy = eis 3 (Fixlypen + FeLipgr) (6)

k=1

We formulate the energy term corresponding to the imbalance cost using the
same inner product approach adopted in the general formulation as follows:

%ZN:ZN: w,'ij(M(i) = M(j))

=1 j#e

QZZ“”“’JZZP( P, ))XP(M(j)Z(p,Q))

=1 j#i p=1 g=1

3 Zzwle szwvlq%p”]q (7)

=1 j#i p=1 g=1

EB

Total energy term can be defined in terms of the communication cost terms and
the imbalance cost term as

E(V",V®) = E"V) 4+ E° (V") + BEP(V",V©) (8)

Here, V' =[V1,..., V] ..., Vp]* and V° =[V{,..., V¢, ..., V3] denote the row
and column spin-average matrices consisting of N P and () dimensional vectors
as their rows, respectively.
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2.3 Derivation of the Mean Field Theory Equation

The expected values V7 and V7 of each row and column spins S} and S{ are
iteratively updated using the Boltzmann distribution as
., e®in/T” . e®ia/T°
@ s B s (9)
for p=1,2,...,Pand ¢ = 1,2,...,Q, respectively. Here, T” and T denote the
temperature parameters used for annealing. Recall that, the number of states
of the row and column spins are different (P and @ for row and column spins,
respectively) in the proposed encoding. As the convergence time and the tem-
perature parameter of the system depends on the number of states of the spins
we interpret the row and column spins as different system. Note that Eqgs. (9.a)
and (9.b) enforce each row and column Potts spins SI and S§ to be in one of
the P and @Q states, respectively, when they converge. In the proposed MFA for-
mulation, row and column spins are updated in an alternative manner, i.e., each
row spin update follows a column spin update and vice versa.
In the proposed formulation, row and column mean field vectors @} and &;
are to be computed in row and column iterations, respectively. Each element
ip and ¢f, of the row and column mean field vectors &} = [¢7, ..., dip, .- -, éTp]
and & = [¢G,..., 65, ...,0io]" experienced by row and column Potts spins ¢
denote the decrease in the energy function by assigning S} to e, and S{ to
ey, respectively. Hence, —¢7, (- fq) may be interpreted as the decrease in the
overall solution quality by mapping task ¢ to row p (column ¢). Then, in Eq. (9.a)
(Eq. (9.b)), vf, (vf,) is updated such that the probability of mapping task i to
row p (column ¢) increases with increasing mean field value ¢7, ( ¢5,). Using the
simplified expressions for the proposed energy functions in Egs. (5), (6) and (7)

r OH(V",V*© r o
o1y = =TGN = 0 4 e
ip
N Q p—1
=—Ze¢jZ;p—ﬂrwi wjv;pz'u,qv]q where Zj, = Z k+z L7, (10)
JEAdj(4) J=1,#1 q=1 k=1 k=p+1
c OH(V",V* ¢ c e
biqg = —% = ¢i¢§c> + 8 ¢i<(;B)
iq
N P q—1
=—Ze,‘ijq_ﬂCwi wjvquvzpvjp where Zj, = Z k-l-z L, (11)
JEAdj(4) J=1,#1 p=1 k=1 k=g+1

As seen in Egs. (10) and (11), different balance parameters 8" and 3¢ are used in
the mean field computations of row and column iterations since row and column
spins are interpreted as different systems.

2.4 An Efficient Implementation Scheme

As mentioned earlier, the proposed MFA algorithm is an iterative process. The
complexity of a single MFA iteration is due mainly to the mean field computa-
tions. As is seen in Egs. (10) and (11), calculation of mean field values is compu-
tationally very intensive. In this section, we propose an efficient implementation

825



scheme which reduces the complexity of mean field computations, and hence
the complexity of the MFA iteration, by asymptotical factors. Mean field the-
ory equations given in Section 2.3 reveals the symmetry between the mean field
vector computations in row and column iterations. Hence, the proposed imple-
mentation scheme will only be discussed for computing the mean field vector
D7 = [¢ph,.. .y Plpy--.,¢ip]" in row iterations. Similar discussion applies to the
computation of the &¢ = [¢5,..., ¢5,, ..., 5] vector in column iterations.
Assume that row Potts spin ¢ is selected at random in a row iteration for
updating its expected value vector Vi. We will first discuss the mean field compu-
tations corresponding to the vertical communication cost. As is seen in Eq. (10),

these computations require the construction of the Zj = [Z];,...,Z],,..., Z]p]"
vector for each vertex j adjacent to ¢ in TIG. The computation of an individ-
ual Z7 vector necessitates the construction of ¥} = [Fh,..., F},,..., Fip]" and
L} = [L},...,L},,...,Lip]" vectors. These two vectors can be constructed in
O(P) time using the recursive equation

Fh=F 1 +vj, for k=2,3,...,P where Fj; =v} (12)

Liy =L s 1+ vj, for k=P—-1,P-2,...,1 where Lip =v)p (13)

The computation of an individual Z}, value takes @(P) time. Hence, the
complexity of computing an individual Z} vector becomes O(P?). However, in

the proposed scheme the elements of the Zj vector are computed in only O(P)

time by exploiting the recursive equation
P

Zg =5 g1 = Ljg+ Figy for k=1,2,...,P where Zj; =Y Ly  (14)
=2

Hence, the complexity of mean field computations corresponding to the ver-
tical communication cost term is @(d;P) in a row iteration since the first sum-
mation term in Eq. (10) requires the computation and weighted addition of d;
such Z7 vectors. Here, d; denotes the degree of vertex ¢ in the TIG. Similarly,
the complexity of mean field computations corresponding to the horizontal com-
munication cost term is @(d;Q)) when column spin ¢ is selected at random in a
column iteration.

As is seen in Eq. (10), the complexity of computing an individual mean field
value corresponding to the imbalance cost term is @(NQ). Since P such values
are computed in a row iteration, the total complexity of mean field computa-
tions corresponding to the imbalance cost term becomes @(N PQ). However, the
complexity of these computations can be asymptotically reduced as follows. The
second summation term in Eq. (10) can be re-written by interchanging the order
of summations as

N Q Q N
. A L - . < .t €
w; W;5Vj5p VigUjq = Wi Vig W;jV;5pVjq
7=1,5%#1 q=1 q=1 J=1,3#i
Q
c T c
= w; E 0ig(Wpq — wivi,v7y) (15)
g=1
N
where Wpe = E WiV, (16)
=1
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Here, W, denotes the total computational load of processor (p, ¢) for the current
row and column spin values. In Eq. (15), Wpq — wiv},v§, denotes the weight of
processor (p, q) excluding task ¢. Hence, Eq. (15) represents the increase in the
imbalance cost term if task ¢ is assigned to row p (i.e.,, VI is set to e,). In
the proposed implementation scheme, we maintain a P by Q processor weight
matrix W consisting of Wy, values. The entries of this matrix are computed
using Eq. (16) only at the beginning of the algorithm. Then, while updating the
expected value vector VT of an individual Potts spin ¢, the W matrix is updated
in O(PQ) time using

new 0 ¢ r(new r(old
Wzgq )= Wzgqld) + wiviq(vz’é ) - “z’;g ))

forp=1,2,...,Pand ¢ = 1,2,...,Q. Hence, computing Eq. (15) for each ¢},
value takes ©(Q) time. Since P such values are to be computed to construct the
mean field vector, the total complexity of mean field computations corresponding
to the imbalance cost term reduces to @(PQ) in a row iteration.

It should be noted here that, column iterations also use and update the same
weight matrix W as is used and maintained in row iterations. The complexity of
mean field computations corresponding to the imbalance cost term is also @(Q P)
in column iterations. Thus, the proposed scheme reduces the overall complexity
of mean field computations to @(dayy P + PQ) and O(dawyQ + PQ) in row and
column iterations, respectively. Here, d4,, denotes the average vertex degree
in TIG . After computing the mean field vectors @] and &7, expected value
vectors VI and V7 of row and column Potts spins ¢ and j can be updated using
Eq. (9.a) and Eq. (9.b) in O(P) and ©(Q) times, in a row and column iteration,
respectively.

Therefore, the proposed implementation scheme reduces the complexity of
an individual row and column iteration to ©(dqy P + PQ) and O(day Q@ + PQ),
respectively. The proposed MFA scheme asymptotically reduces the complexity
of a single MFA iteration from ©(dg,PQ + (PQ)?) of the general MFA for-
mulation to @(dayg(P+Q)+ PQ) for a P by @ mesh. For a square mesh with
K processors, this corresponds to an asymptotical complexity reduction from
O(dgygK + K?) to O(day VK + K).

3 Performance Evaluation

This section presents the performance evaluation of the efficient MFA formu-
lation proposed for the mapping problem for mesh-connected architectures in
comparison with the well known mapping heuristics: Simulated Annealing (SA),
Kernighan-Lin (KL) and the general MFA formulation. The following paragraphs
briefly present the implementation details of these algorithms.

The MFA algorithm proposed for the mapping problem for mesh topology
is implemented efficiently as described in Section 2.4. At the beginning of the
algorithm row and column spin averages are initialized to 1/P and 1/Q plus a
random disturbance term, so that the initial spin averages are uniformly dis-
tributed in the range 0.9/P < v[{™"*) < 1.1/P and 0.9/Q < »2™"*) < 1.1/Q
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for s = 1,2,...,N, p = 1,2,...,P and ¢ = 1,2,...,Q respectively. Note that
limrr oo vf, = 1/P and limre .o v, = 1/Q. The initial temperatures and balance
parameters used in the mean field computation of row and column iterations are
estimated using these initial random spin average values. As is seen in Eq. (10)

(Eq. (11)), the parameter 8" (5°) determine a balance between the terms ¢T(C)

and ¢T(B) (¢f§c) nd ¢E§B)) in the mean ﬁeld computations of row (column)
iterations. We compute these averages as (/%)) El 1 Ep L ¢r(c) /NP and

lp

T(B) El L Ep L6 T(B) )/NP, respectlvely, using the initial v}, values. Av-
erages (¢f§c)> and (¢°(B)> are computed similarly using the 1n1t1a1 vi, values.
Then, balance parameters are computed as g7 = CB(¢;£C)>/<¢T(B)> and B¢ =

P

CB(¢ng)>/(¢ng)>, where constant Cp is chosen as 20. Our experiments show

that computing 8" and ¢ using this method is sufficient for obtaining balanced
partitions.

Selection of initial temperature parameters 77 and 7 is crucial for obtaining
good quality solutions. In previous applications of MFA [8, 11], it is experimen-
tally observed that spin averages tend to converge at a critical temperature. We
prefer an experimental way for computing 7] and 7§ which is easy to implement
and successful as the results of experiments indicate. After the balance param-
eters /" and (¢ are fixed, average row and column mean fields are computed
as (g1,) = (617 + B7(#1() and (95,) = (677) + B(¢:(™) . Then, T§ and Tg
are computed using Ty = Cr(¢%,)/P and T5 = Cr(¢{,)/Q where constant Cr is
chosen as 20.

The same cooling schedule is adopted for row and column iterations as fol-
lows. At each temperature, row and column iterations proceed in an alternative
manner for randomly selected unconverged row and column spin updates until
AE" < e and AE° < ¢ for M consecutive iterations, respectively, where M = N
initially and € = 0.05. Average spin values are tested for convergence after each
update. If one of the v;;, terms of a row or column spin average vector is detected
to be greater than 0.95, that spin is assumed to converge to state k. The cooling
process is realized in two phases, slow cooling followed by fast cooling, similar
to the cooling schedules used for SA [11]. In the slow cooling phase, row and
column temperatures are decreased using o = 0.9 until 7' < Ty /1.5 for both row
and column iterations. Then, in the fast cooling phase, M is set to M/4, « is
set to 0.7 and cooling for row and column iterations are continued until 90%
of the row and column spins converge, respectively. At the end of this cooling
process, the maximum element in each unconverged spin average vector is set to
1 and all other elements in that vector are set to 0. Then, the result is decoded
as described in Section 2.1, and the resulting mapping is found.

The general MFA formulation is implemented efficiently as described in [1].
The initialization of spin averages, the selection of the balance parameter 8 and
the initial temperature Ty are performed as is described for the mesh-specific
MFA implementation. The parameters Cr and Cg are chosen as 0.5. The same
cooling schedule described for mesh-specific MFA implementation is used in the
implementation of the general MFA formulation.
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Two-phase approach is used to apply KL to the mapping problem. KL heuris-
tic is implemented efficiently as described by Fiduccia and Mattheyses (FM) [5]
for the clustering phase. The recursive bisection scheme implemented for the first
phase recursively partitions the initial TIG into two clusters until K = Px @
clusters are obtained. In the KLFM heuristic, computational load balance among
clusters is maintained implicitly by the algorithm. Vertex moves causing intoler-
able load imbalance are not considered. The one-to-one mapping heuristic used
in the second phase is a variant of the KL heuristics. In this heuristic, communi-
cation cost is minimized by performing a sequence of cluster swaps between the
processor pairs after an initial random mapping of K clusters.

The SA algorithm implemented in this work implicitly achieves the load bal-
ance among processors by setting a neighborhood configuration consisting of
all configurations which result from moving one task from the processor with
maximum load to any other processor. Randomly selected possible moves which
decrease the communication costs are realized. Acceptance probabilities of ran-
domly selected moves increasing the communication cost are controlled with
a temperature parameter 7' which is decreased using an automatic annealing
schedule [9]. Hence, as the annealing proceeds acceptance probabilities of uphill
moves decrease.

3.1 Experimental Results

The mapping heuristics are experimented by mapping some test TIG’s onto
various size meshes. Test TIG’s correspond to the undirected sparse graphs as-
sociated with the symmetric sparse matrices selected from Harwel Boeing sparse
matriz test collection [4]. Weights of the vertices are assumed to be equal to their
degrees. These test TIG’s are mapped to 8 x8, 8 x16 and 16 x 16 2D-meshes.
Table 1 illustrates the performance result of the KL, SA, general and mesh-
specific MFA heuristics for the generated mapping problem instances. In this
table, “Gen” and “Mesh” denote the general and mesh-specific MFA formula-
tions, respectively. Each algorithm is executed 5 times for each problem instance
starting from different, randomly chosen initial configurations. Averages are il-
lustrated in Table 1. Total communication cost averages of the solutions are
normalized with respect to the results of the mesh specific MFA heuristic devel-
oped in this work. Percent computational load imbalance averages of solutions
displayed in this table are computed using 100 X (Wiap — Wavg)/Wavg. Here,
Winar denotes the maximum processor load and Wy,, denotes the computa-
tional loads of processors under perfect load balance conditions. Execution time
averages are measured on a SUN SPARC 10 workstation. Execution time aver-
ages are normalized with respect to those of mesh-specific MFA heuristic. Table 2
is constructed for a better illustration of the overall relative performances of the
heuristics. Percent load imbalance averages of the solutions are also normalized
with respect to the results of the mesh-specific MFA heuristic. Then, the overall
averages of the normalized averages of Table 1 are displayed in Table 2. Tables 1
and 2 confirm the expectation that mesh-specific MFA formulation is signifi-
cantly faster (7.26 times on the average) than the general MFA formulation
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while producing solutions with considerably better qualities. As seen in these

tables, the mesh specific MFA heuristic produces significantly better solutions
than the KL heuristic whereas the MFA heuristic is slightly slower.

Table 1. Total communication cost and execution time averages normalized with re-
spect to mesh-specific MFA | and percent computational load imbalance averages of the

solutions found by SA, KL, general MFA and mesh-specific MFA for various mapping

problem instances. Here, N and M denote the number of nodes and edges in the TIGs,

respectively.
Problem Communication Cost|| % Load Imbalance Execution Time
Mesh MFA MFA MFA
TIG PxQ| KL | SA [Gen.| Mesh || KL| SA|Gen.|Mesh||KL| SA|Gen.[Mesh
DWT758 8x8 {(1.79(0.95(2.02| 1.00 9.4| 5.3| 5.7 4.2 [|0.2]16.0| 3.4| 1.0
N=758 8x16 ||2.85(1.10(2.75| 1.00 ({12.3|14.4| 9.3| 7.7 ||0.3| 5.7| 1.6 1.0
M=1332 [16x16(|3.34(1.38{4.03| 1.00 ([16.5|26.3| 15.0| 9.0 [|1.7| 5.4| 2.7| 1.0
DWT1242 | 8x8 |[1.42]1.00/2.01| 1.00 8.9] 3.9| 6.3 2.6 [|0.2]25.4] 7.8| 1.0
N=1242 8x16 ||2.53(1.05(2.62| 1.00 ({12.1| 5.3| 8.2| 5.3 ||{0.2| 8.7| 2.7[ 1.0
M=4592 [16x16(|2.91(1.08{2.94| 1.00 ([16.3|11.5| 10.3| 9.4 [|0.8] 7.0| 3.8| 1.0
JAGMESH7| 8x8 |(1.40{0.95/1.89| 1.00 8.1] 2.9 6.4| 2.8 |{0.2]26.6| 19.4| 1.0
N=1138 8x16 ||2.74(1.06(3.25| 1.00 ({11.1| 7.7| 5.9| 4.4 |{0.3|11.0| 4.2| 1.0
M=3156 [16x16(|3.48(1.20{3.77| 1.00 ([13.8]|18.8| 12.6| 9.1 [|1.2] 9.6] 6.8] 1.0
BSCPWRO09| 8x8 [[1.87]/0.90(2.43| 1.00 |[10.6| 1.4| 8.0| 4.1 ||0.2|59.6] 8.2| 1.0
N=1723 8x16 |(2.33(1.01|3.13| 1.00 ({12.4| 2.7| 10.8| 4.0 |{0.2|23.5| 6.6 1.0
M=2394 |16x16(|4.75(1.80|5.06 | 1.00 (|17.3| 5.6| 18.9| 4.0 [|1.3]|32.1| 14.9| 1.0
LSHP2233 | 8x8 ||1.37({0.81|1.88| 1.00 8.1 1.3| 5.4 2.3 [|0.2(34.5| 17.3| 1.0
N=2233 8x16 {(2.20(0.97|3.63 | 1.00 9.5 3.0 3.9 2.4 [|0.3[17.5] 7.2| 1.0
M=6552 [16x16(|3.31(1.12]2.68| 1.00 ([10.2| 7.9| 12.0| 3.7 [|0.7|14.0{ 2.2| 1.0

Table 2. Average performance measures
MFA and mesh-specific MFA for mapping problem instances in Table 1.

of the solutions found by SA, KL, general

MFA
KL SA Gen. | Mesh.
Communication Cost|| 2.55 1.08 2.94 1.00
Load Imbalance 2.34 1.5 1.85 1.00
Execution Time 0.5 19.7 7.26 1.00

The qualities of the solutions obtained by the mesh-specific MFA heuristic
are comparable with those of the SA heuristic. However, the mesh-specific MFA
heuristic is faster (19.7 times on the average). Hence, the proposed MFA heuristic
approaches the speed performance of the fast KL heuristic while approaching the
solution quality of the powerful SA heuristic.
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4 Conclusion

In this paper, we have proposed an efficient mapping heuristic for mesh-connected
parallel architectures based on Mean Field Annealing (MFA). We have also devel-
oped an efficient implementation scheme for the proposed mapping formulation.
The performance of the proposed mapping heuristic is evaluated in comparison
with the well-known heuristics Kernighan-Lin (KL), Simulated Annealing (SA)
and general MFA formulation for a number of mapping problem instances gen-
erated using Harwell-Boeing sparse matriz test problems. The proposed mesh-
specific MFA formulation is found to be significantly faster than the general MFA
formulation as is expected. The proposed MFA heuristic is slightly slower than
the fast KL heuristic. However, it always produces significantly better solutions
than the KL heuristic. The qualities of the solutions obtained by the proposed
MFA heuristic are comparable to those of the powerful SA heuristic. However,
the proposed MFA heuristic is significantly faster than the SA heuristic.
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