MAPPING
AND
FPGA GLOBAL ROUTING

MEAN FIELD ANNEALING

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER
ENGINEERING AND INFORMATION SCIENCE
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

By
Ismail Haritaoglu

September, 1994

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Cevdet Aykanat (Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Omer Benli

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Asst. Prof. Mustafa Pinar

Approved for the Institute of Engineering and Science:

Prof. Mehmet Baray
Director of the Institute

ABSTRACT

MAPPING
AND

USING
MEAN FIELD ANNEALING

[smail Haritaoglu
M.S. in Computer Engineering and Information Science
Advisor: Asst. Prof. Cevdet Aykanat
September, 1994
Mean Field Annealing algorithm which was proposed for solving combinatorial
optimization problems combines the properties of neural networks and Simu-
lated Annealing. In this thesis, MFA is formulated for mapping problem in
parallel processing and global routing problem in physical design automation
of Field Programmable Gate Array (FPGAs) A new Mean Field Annealing
(MFA) formulation is proposed for the mapping problem for mesh-connected
and hypercube architectures. The proposed MFA heuristic exploits the conven-
tional routing scheme used in mesh and hypercube interconnection topologies
to introduce an efficient encoding scheme. An efficient implementation scheme
which decreases the complexity of the proposed algorithm by asymptotical fac-
tors is also developed. Experimental results also show that the proposed MFA
heuristic approaches the speed performance of the fast Kernighan-Lin heuris-
tic while approaching the solution quality of the powerful simulated annealing
heuristic. Also, we propose an order-independent global routing algorithm for
SRAM type FPGAs based on Mean Field Annealing. The performance of the
proposed global routing algorithm is evaluated in comparison with LocusRoute
global router on ACM/SIGDA Design Automation benchmarks. Experimen-
tal results indicate that the proposed MFA heuristic performs better than the

LocusRoute.

11

v

Keywords: Mapping, Global Routing, Field Programmable Gate Arrays, Mean

1€ nnealing

OZET

ORTA ALAN TAVLAMA METODU KULLANILARAK
PROBLEMLERININ COZUMU

Ismail Haritaoglu
Bilgisayar ve Enformatik Mihendisligi, Yiksek Lisans
Danigsman: Yrd. Do¢. Dr. Cevdet Aykanat
Eylul, 1994
Birlegsimsel eniyileme problemlerini ¢6zmek i¢in 6nerilen Ortak Alan Tavlama
(Mean Field Annealing) algoritmasi, sinir aglari ve benzetimsel tavlama (Sim-
ulated Annealing) yontemlerinin 6zelliklerini tagir. Bu c¢aligmada, Ortak
Alan Tavlama algoritmasi Alan Programlamali Kapi Devrelerinin (Field Pro-
grammable Gate Arrays) kaba rotalama problemine (Global Routing) ve par-
alel programlamadaki egleme (Mapping) problemlerine uyarlanmigtir. Tezin
ilk boliimiinde Ortak Alan Tavlama algoritmasi Alan Programlamali Kap:
Devrelerinin (Field Programmable Gate Arrays) kaba rotalama problemi-
ninin ¢6zimiinde kullanilmigtir. Onerilen algoritmalarinin bagarimlar Locus-
Route kaba rotalama algoritmasi ile kiyaslanarak degerlendirilmigtir. Deneyler
algoritmalar kargilagtirmak i¢in kullanilan standart devreler (Benchmarks)
tizerinde yapilmigtir. Elde edilen sonuglar Ortak Alan Tavlama algoritmasinin
kaba rotalama problemini ¢6zmek i¢in iyi bir alternatif algoritma olarak kul-
lanilabilecegini goéstermektedir. Tezin ikinci boliimiinde Mesh ve Hiperkip
tipindeki paralel bilgisayarlarindaki egleme problemi i¢in daha 6nce onerilen
algoritmalardan daha hizli olan bir algoritma geligtirilmis ve bu énerilen algorit-
manin bagarimlar1 Kernighan-Lin, Simulated Annealing ve daha 6nce 6nerilen

ortak alan tavlama metotlar: ile kiyaslanarak degerlendirilmigtir.

Anahtar Sozcikler: Orta Alan tavlama algoritmasi, Egleme problemi, Kaba

rotalama algoritmalar1, Alan programlamli kap1 devreleri

v

ACKNOWLEDGEMENTS

[would like to express my deep gratitude to my supervisor Dr. Cevdet Aykanat
for his guidance, suggestions, and invaluable encouragement throughout the
development of this thesis. I would like to thank Dr. Omer Benli for reading
and commenting on the thesis. I would also like to thank Dr. — —- for
reading and commenting on the thesis. I owe special thanks to Dr. Mehmet
Baray for providing a pleasant environment for study. I am grateful to my

family and my friends for their infinite moral support and help.

Bu calismamu,
hergeyimi bor¢lu oldugum anneme, babama,
ve

Fsin’e

adiyorum.

Vi

Contents

1 INTRODUCTION

2 MEAN FIELD ANNEALING
2.1 Mean Field Annealing
2.1.1 Ising Model
2.1.2 Potts Model oo

2.1.3 MFA Algorithm

3 FPGAs & GLOBAL ROUTING
3.1 Introduction to Field Programmable Gate Arrays
3.1.1 Logic Blocks
3.1.2 Programming Technologies
3.1.3 Routing Architectures
3.2 Physical Design Automation of FPGAs
3.2.1 Partitioning oL oo
3.2.2 Placement oo
3.23 Routing

3.3 Global Routing Problem in Design Automation of FPGAs

vii

10

10

11

15

15

15

15

16

CONTENTS

viii

3.4 Model of FPGA for Global Routing 17
4 MFA SOLUTION FOR GLOBAL ROUTING IN FPGA 22
4.1 MFA Formulation of Global Routing 22
4.2 Implementation 25
4.3 Experimental Results, 27
THE MAPPING PROBLEM 33
5.1 The Mapping Problem 33
5.2 The Model of Mapping Problem 35
MFA SOLUTION FOR MAPPING 39
6.1 General MFA Formulation for Mapping Problem 39

6.2 Interconnection-Topology Specific MFA Formulation for Mapping 42

6.2.1 MFA formulation for Mesh-Connected Architectures . . .
6.2.2 MFA Formulation For Hypercube Architecture
6.3 Performance Evaluation

6.4 Experimental Results

7 CONCLUSION

42

69

List of Figures

2.1 Mean Field Annealing Algorithm 8
3.1 The Architecture of General FPGA 11
3.2 Example of flexibilities of FPGA (a) flexibility of switch block
(b) flexibility of connection block 12
3.3 The Architecture of Xilinx 3000 FPGA 13
3.4 The Architecture of Actel FPGA 14
3.5 General approach to FPGA routing a) Global routing b) De-
tailed routing Lo 16
3.6 Sample two bends routes Lo L 17
3.7 The FPGA model used for Global Routing 18
3.8 (a) The routing area of the two-pin net and its subnets, (b) The
possible routes for each subnets, 19
3.9 The Cost Graph for FPGA model 20
4.1 Channel density distribution obtained by MFA for the circuit
C1355 . . . e 32
4.2 Channel density distribution obtained by LocusRoute for the
circuit C1355 32
4.3 SEGA detailed router results of the circuit C'1355 for the global
routing solutions obtained by (a) MFA (b) LocusRoute 32

X

LIST OF FIGURES X

5.1 An example of mapping problem 38

6.1 The proposed efficient MFA algorithm for the mapping problem

for mesh-connected Architectures. 48

6.2 Three different ways for dividing 3-dimensional hypercube to 2

2-dimensional subcubes 52

6.3 The Mean field value calculation of given spin i of subcube H™ . 56

List of Tables

4.1

4.2

4.3

4.4

4.5

6.1

6.2

6.3

6.4

6.5

MCNC benchmark circuits used in experiments
The Global Router results
The SEGA detailed routing results in area optimization mode
The SEGA detailed routing results in speed optimization mode .
Minimun Channel Width for 100% routing
Total communication costs averages normalized with respect to
mesh-specific MFA of the solution found by SA,KL,general MFA

and mesh-specific MFA for randomly generated mapping prob-

lem instances for various mesh size

Percent computational load imbalance averages of the solution
found by SA,KL,general MFA and mesh-specific MFA for ran-

domly generated mapping problem instances for various mesh

Execution time averages of the solution found by SA,KL,general
MFA and mesh-specific MFA for randomly generated mapping

problem instances for various mesh size

Average performance measures of the solution found by SA, KL,
general MFA and mesh-specific MFA for randomly generated

mapping problem instances.

The Benchmark Sparce Matrix data used in experiments

xi

29

30

LIST OF TABLES

6.6

Total communatication cost averages, normalized with respect
to mesh-specific MFA, of the solution found by SA,KL, genera
MFA and mesh-specific MFA for some bechmark mapping prob-

lem instances for various mesh size

6.7

Load Imbalanced averages,of the solution found by SA KL, gen-
eral MFA and mesh-specific MFA for some bechmark mapping

problem instances for various mesh size

6.8

6.9

6.10

6.11

6.12

Total execution time, normalized with respect to mesh-specific
MFA, of the solution found by SA,KL, general MFA and mesh-

specific MFA for some bechmark mapping problem instances for

various mesh size

Average performance measures of the solutions found by SA,
KL, general MFA and mesh-specific MFA for mapping problem

INSEANCES. . . . o o e e e e

Total communication costs averages normalized with respect to
hypercube-specific MFA of the solution found by SA,KL,general
MFA and hypercube-specific MFA for randomly generated map-

ping problem instances for various hypercube size

Percent computational load imbalance averages of the solution
found by SA,KL,general MFA and hypecube-specific MFA for
randomly generated mapping problem instances for various hy-

percube size e e

Execution time averages of the solution found by SA,KL,general
MFA and hypercube-specific MFA for randomly generated map-

ping problem instances for various hypercubesize.

xii

Chapter 1

INTRODUCTION

A common property of both domain mapping problem in parallel processing
and global routing in VLSI is that both problems are combinatorial optimiza-
tion problems. As many problems in VLSI, parallel processing and other areas,
these algorithms involve a finite set of configuration from solutions satisfying
a number of rigid requirement are selected. The objective of combinatorial
optimization algorithm is to find a solution of the optimum cost provided that
a cost can be assigned to each solution. Many combinatorial optimizations
problems are hard in the sense that they are NP-hard problems. There are no
known deterministic polynomial time algorithms to find the optimal solution
to any of those hard problems. The algorithms using the complete enumeration
techniques are usually exponential in the size of problem, therefore they require
a great amount of time to find the optimal solution. As a result, heuristics that
run in a low order polynomial time have been employed to obtain good solu-
tions to these hard problems. Disadvantage of heuristics is that they may get

stuck in local minima.

A powerful method for solving combinatorial optimization problem used in
previous research is called Simulated Annealing. This method is the applica-
tion of a successful statistical method, which is used to estimate the results of
annealing process in statistical mechanics, to combinatorial optimization prob-
lems. Simulated Annealing is a general method that guarantees to find the
optimal solution if time is not limited. But time needed for Simulated Anneal-
ing is too much and exact solution of NP-hard problems are still intractable.
Properties of Simulated Annealing are that, it can be used as a heuristic to ob-

tain near optimal solutions in limited time, and as the time limit is increased,

CHAPTER 1. INTRODUCTION 2

quality of the obtained solutions also increase. An important property of Sim-

ulated Annealing is the ability to escape from local minima if sufficient time is

given. Simulated Annealing has been applied to various NP-hard optimization

problem and for most problem it gives good results.

The subjects of this thesis is a recent algorithm, called Mean Field An-

nealing (MFA) was originally proposed for solving the traveling salesperson

problem. MFA is general strategy and can be applied to various problem with

suitable formulations. Work on MFA showed that, it can be successfully ap-

plied to combinatorial optimization problems. Mean Field Annealing (MFA)

merges collective computation and annealing properties of Hopfield Neural Net-
works (HNN) and Simulated Annealing (SA), respectively, to obtain a general

algorithm for solving combinatorial optimization problems. MFA can be used

for solving a combinatorial optimization problem by choosing a representation

scheme in which the final states of the spins can be decoded as a solution
to the target problem. Then, an energy function is constructed whose global
minimum value corresponds to the best solution of the problem to be solved.
MFA is expected to compute the best solution to the target problem, starting
from a randomly chosen initial state, by minimizing this energy function. In
this thesis, MFA is formulated for the mapping problem in parallel processing
and global routing problem in design automation of Field Programmable Gate

Arrays.

The first combinatorial optimization problem, that is solved by MFA in this
thesis, is global routing problem in design automation of field programmable
gate arrays. This study investigates the routing problem in Static RAM Field
Programmable Gate Arrays (FPGA’s) implementing the non-segmented (Xil-
inx based) network [27]. As the routing in FPGA’s is a very complex combina-
torial optimization problem, routing process can be carried out in two phases
: global routing followed by detailed routing [11]. Global routing determines
the course of wires through sequences of channel segments. Detail routing
determines the wire segment allocation for the channel segment routes found
in the first phase which enable feasible switch box interconnection configura-
tions [25, 14]. Global routing in FPGA can be done by using global routing
algorithm proposed for standard cells [25]. LocusRoute global router is one of
this type of router used for global routing in FPGA’s [24] which divides the
multi pin net’s into two-pin net’s and considers only minimum distance routes
for these two-pin nets. The objective in the LocusRoute is to distribute the

connections among channels so that channel densities are balanced. In this

CHAPTER 1. INTRODUCTION 3

thesis, we propose a new approach the solution of global routing problem in

FPGA’s by using Mean Field Annealing technique.

Second problem that is solved by MFA is the Mapping problem [4, 8, 29].

The mapping problem arises as parallel programs are developed for distributed

memory architectures. Various classes of problems can be decomposed into a

set of interacting sequential subproblems (tasks) which can be executed in par-

allel. In these classes of problems, the interaction patterns among the tasks is

static. In a distributed-memory architecture, a pair of processors communicate
with each other over a shortest path of links connecting them. Hence, commu-
nication between each pair of processors can be associated with relative unit
communication cost. Unit communication cost between a pair of processors can

be assumed to be linearly proportional to the shortest path distance between

those two processors. The objective in mapping subproblems to processors of

multicomputers is the minimization of the expected execution time of the par-
allel program on the target architecture. Thus, the mapping problem can be
modeled as an optimization problem by associating the following quality mea-
sures with a good mapping : (7) interprocessor communication overhead should
be minimized, (#) computational load should be uniformly distributed among
processors in order to minimize processor idle time. The mapping problem
has been solved by using Simulated Annealing, Kernighan-Lin type heuristic
before. Also the MFA has been formulated in [6, 5]. But this formulation was a
general formulation for any type of multicomputer whose intercommunication
topologies are known. In this thesis we propose an efficient MFA formulation
for topology-specific mapping for 2D-mesh and hypercube. For each intercon-
nection topology, the efficient MFA formulation is given instead of using one

general formulation as in [6].

In Chapter 2 the theory of the Mean Field Annealing heuristic and its en-
coding models are explained. The Field Programming Gate arrays, its design
automation and Global Routing problem are introduced in Chapter 3. Also the
FPGA model for global routing problem are proposed in this chapter. Chap-
ter 4 gives the MFA formulation of global routing problem in FPGAs design
automation. The mapping problem are introduced in Chapter 5. Chapter 6
presents general MFA formulation the topology-specific MFA formulation for

Domain Mapping problem. Finally, conclusion of thesis are stated in ChapterT.

Chapter 2

MEAN FIELD ANNEALING

In this chapter the Mean Field Annealing (MFA) heuristic is introduced and

its models are given.

2.1 Mean Field Annealing

Mean Field Annealing (MFA) merges collective computation and annealing
properties of Hopfield Neural Networks (HNN) and Simulated Annealing (SA),
respectively, to obtain a general algorithm for solving combinatorial optimiza-
tion problems. HNN is used for solving various optimization problems and
reasonable results are obtained for small size problems. However, simulations
of this network reveals the fact that it is hard to obtain feasible solutions for
large problem sizes. Hence, the algorithm does not have a good scaling prop-
erty, which is a very important performance criterion for heuristic optimization
algorithms. MFA is proposed as a successful alternative to HNN. In the MFA
algorithm, problem representation is identical to HNN, but iterative scheme
used to relax the system is different. MFA can be used for solving a combi-
natorial optimization problem by choosing a representation scheme in which
the final states of the spins can be decoded as a solution to the target prob-
lem. Then, an energy function is constructed whose global minimum value
corresponds to the best solution of the problem to be solved. MFA is expected
to compute the best solution to the target problem, starting from a randomly
chosen initial state, by minimizing this energy function. Steps of formulating
MFA technique for a combinatorial optimization problem can be summarized

as follows :

CHAPTER 2. MEAN FIELD ANNEALING 5

e Choose a representation scheme which encodes the configuration space

of the target problem using spins. In order to get a good performance,

number of possible configurations in the problem domain and the spin

domain must be equal, 1.e., there must be a one-to-one mapping between

the configurations of spins and the problem.

e Formulate the cost function of the problem in terms of spins, i.e., de-

rive the energy function of the system. Global minimum of the energy

function should correspond to the global minimum of the cost function.

e Derive the mean field theory equations using this energy function, i.e.,

derive equations for updating expected values of spins.

e Minimize the complexity of update operations in order to get an efficient

algorithm.

e Select the energy function and the cooling schedule parameters.

The MFA algorithm is derived by analogy to Ising and Potts model which
are used to estimate the state of a system of particles, called spins, in thermal

equilibrium.

2.1.1 Ising Model

In Ising model spins can be in one of two states represented by 0 and 1. In the

Ising model, the energy of a system with S spins has the following form:

S S

H(s) = % YD Busksi+ Y hisy (2.1)
k=1 I#£k k=1

Here, 3y indicates the level of interaction between spins k and [, and s, € {0,1}

is the value of spin k. It is assumed that 8y, = B and By, = 0for 1 < k, 1, < S.

At thermal equilibrium, spin average (sg) of spin k can be calculated using

Boltzmann distribution as follows

1

(s6) = T =T (2.2)

Here, ¢ = (H(s))|s,=0 — (H(8))|s,=1 represents the mean field effecting on spin
k, where the energy average (H(s)) of the system is

CHAPTER 2. MEAN FIELD ANNEALING 6

Z > Bulsksi) + Z hi(sk) (2.3)

=T 1Zk

The complexity of computing ¢ using Eq.2.3 is exponential. However, for

large number of spins, mean field approximation can be used to compute the

energy average as

ZZﬁki (%) (s1) + th (k) (2.4)

2 i
Since (H(s)) is linear in (sx), mean field ¢; can be computed using the following

equation.

br = (H(8))|ssmo — (H(8))|spm1 = —agi(;» = - (Z Bra(s1) + hk) (2.5)

I£k

2.1.2 Potts Model

In the Potts model, spins can be in one of the K states. In K state Potts model
of S spins, the states of spins are represented using S K-dimensional vectors
Si = [Si1y. vy Siky -, 8ik)', 1 <1 < S, where “t” denotes the vector transpose

operation.

The spin vector S; is allowed to be equal to one of the principal unit vectors
€1,...,€xk,...,eK, and can not take any other value. Principal unit vector ey
is defined to be a vector which has all its components equal to 0 except its £’th
component which is equal to 1. Spin Sj is said to be in state k if it is equal

to ex. Hence, a K state Potts spin S; is composed of K two state variables

Sily -« +ySiks -+, Sik, Where s; € {0,1}, with the following constraint
K
Yosau=1, 1<i<S8§ (2.6)

In the Potts model, the energy of a system with S K-state Potts spin has the

following form:

ZZ@JSS —}—ZeS (2.7)

=1 j#¢
Here, 3;; indicate the level of interaction between spms ? and 7, and interaction

between Potts spins S;S; is formulated as 1/22 siksji. Therefore we

CHAPTER 2. MEAN FIELD ANNEALING 7

can formulate the energy of the system as

K K

S S K
E(S) = %ZZﬂijl/QZZSikSﬂ—}— eiZSik (28)

=1 j#¢ k=11=1 1=

Here, s;x € 0,1 is the value of kth state of the Potts spin :. At thermal

equilibrium, spin average (s;;) of spin ¢ can be calculated using Boltzmann

distribution as follows

{‘;1 edbu/T (2'9)

(sik) =

Here, (six) € [0,1]. Note that s;z can be 0 or 1 but (s;z) can be any real value

between 0 and 1. ¢;; represents the mean field effecting on state k of spin 1.

The mean field value for Potts spin ¢ can be formulated as

Sir = (L(s))]s,=0 — (H(s))]s,=, (2.10)
_OHE) _ (Z ﬁiji%’l + h) (2.11)
I(sik) j#i =1

At each temperature, starting with initial spin averages, the mean field
effecting on a randomly selected spin is found using Eqs. (2.5) and (2.10).
Then, spin average is updated using Eq. (2.2) and Eq. (2.9) This process is
repeated for a random sequence of spins until the system is stabilized for the
current temperature. MFA algorithm tries to find equilibrium point of a system
of S spins using annealing process similar to SA. The state equations used in
MFA are isomorphic to the state equations of the neurons in the HNN. A
synchronous version of MFA, can be derived by solving N difference equations
for N spin values simultaneously. This technique is identical to the simulations
of HNN done using numerical methods. Thus, evolution of a solution in a
HNN is equivalent to the relaxation toward an equilibrium state affected by
the MFA algorithm at a fixed temperature [9]. Hence MFA can be viewed
as an annealed neural network derived from HNN. HNN and SA methods
have a major difference: SA is an algorithm implemented in software, whereas
HNN is derived with a possible hardware implementation in mind. MFA is
somewhere in between, it is an algorithm implemented in software, having
potential for hardware realization [8, 9]. In this work, MFA is treated as a
software algorithm as SA. Results obtained are comparable to other software

algorithms, conforming this point of view.

CHAPTER 2. MEAN FIELD ANNEALING 8

1.Get the Initial temperature Tp, and set "= Ty
2.Initialize spin averages
Ising spin : [{u1), (u2),..]
Potts spins :[{S1), (S2), ..]
3.WHILE temperature T is in the cooling range DO
4 WHILE system is not stabilized for the current temperature DO
Select a spin ¢ at random
4.1Compute mean field affecting on spin ¢
Ising spin : compute ¢; = E(U)|y,=0 — E(U)|u,=1
Potts spins : compute ¢; = [¢;1, @2, .. ., dik]’ such that
¢ir = E(S)lg,_g — £(S)Is;=e, for k=1,2,.. K
4.2Update the average value of spin ¢
Ising spin: (u;) = e?/T /(1 4 e%/T)
Potts spin : (s;5) = eqt’”e/T/Z:lIi1 e®t/T for k=1,2,..., K
5.Update T" according to the cooling schedule

Figure 2.1. Mean Field Annealing Algorithm

2.1.3 MPFA Algorithm

The Mean Field Annealing algorithm are summarized in Figure 2.1.2. Begin-
ning of the algorithm, the initial temperature are initialized and the current
temperature is set to that initial value (step 1). After that Ising and Potts
spins are initialized (step 2). Then, the annealing property of MFA are begin.
In cooling schedule, the system tries to reach a stable state for each tempera-
ture until most of spins converges a stable state. For each temperature, while
the system is not in stable state, a spin is selected randomly (step 4.1), and
mean field values of spins are calculated (step 4.2) in order to update the spin
values (step 4.3). When the system reaches the stable state, the temperature
decreased by cooling schedule (step 5). At the end of algorithm, when most of

spins converge, spins are decoded for a solution of target problem.

Chapter 3

FPGAs & GLOBAL ROUTING

This chapter introduces the Field Programmable Gate Arrays and its physical
design automation steps briefly. Routing architectures of FPGA’s are men-
tioned in this chapter and global routing problem and its previous solutions
are given at the end of this chapter. Also the global routing problem in FPGAs

is modeled in this chapter.

3.1 Introduction to Field Programmable Gate Arrays

Field Programmable gate arrays (FPGAs) are new electrically programmable
integrated circuits that provide high integration and rapid turnaround time.
In VLSI design automation, the fabrication time is important problem. In
order to reduce time to fabricate interconnects, programmable devices have
been introduced. FPGA is very popular programmable devices used in ASIC

design market.

FPGA can reduce manufacturing turnaround time and cost. In its simplest
form, an FPGA consists of an array of programmable logic blocks and routing
network to interconnect the logic blocks. The programmable logic blocks can
be programmed by the user to implement a small logic function. An important
property of FPGA is re-programmability by using electrically programmable
switches. Commercial FPGA’s differ in the type of programming technology
used, in architecture of logic blocks and their routing architectures. An FPGA

logic blocks can be as simple as transistor or as complex as a microprocessor.

CHAPTER 3. FPGAS & GLOBAL ROUTING 10

It is typically capable of implementing many different combinational and se-

quential logic functions. FPGA’s logic blocks can be classified as transistors

pairs, basic small gates (such as two-input NAND’s), multiplexes and Look-up
tables.

3.1.1 Logic Blocks

FPGAs logic blocks differ greatly in their size and implementation capability.
The two transistor logic block can only implement an inverter but is very small

in size, while look-up table logic blocks used in Xilinx FPGAs can implement

any five-input logic function but they are significantly larger. Logic blocks
can be classified in terms of granularity. Granularity can be defined in various
ways, for example, as the number of boolean function that the logic block can
implement, the number of equivalent two input NAND gates, total number
of transistors, number of inputs and outputs. But generally, the commercial
logic blocks can be classified into two categories: fine-grain and coarse-grain.
Main advantage of using fine grain logic blocks is that the use-able blocks are
fully utilized. However the main disadvantage of fine-grain blocks is that they

require a relatively large number of wire segments and programmable switches.

3.1.2 Programming Technologies

An FPGA is programmed using electrically programmable switches. Accord-
ing the properties of these programmable switches such as, on-resistance and
capacitance, programming technologies can be classified into three main types.
These three types are SRAM | antifuse and EPROM programming technolo-

gies.

The SRAM programming technologies uses static RAM cells to control the
gates and multiplexes. In SRAM, the switch is a pass transistor controlled by
the state of a SRAM bit. Therefore, SRAM is volatile. Hence The FPGA must
be loaded and configured at the time of chip power-up, it requires external per-
manent memory to provide the programming bits such as PROM or EPROM.
A major disadvantage of SRAM programming technology is its large area (its
takes at least five transistors to implement an SRAM cell). However, SRAM

programming technology has fast re-programmability as an advantage of it.

CHAPTER 3. FPGAS & GLOBAL ROUTING 11

Architecture of FPGA

L L H L H L
s [| [| 2
| S | | S | | S | v
{ b 1 b 1 b -~ Wiring Segments
L L L L
T
e e I [= =
= enl S | 0 | S 1 1S TS
e — e Track
L L L L
1 ! f ! f ! -
i S i i S i ‘_%* S i :Rputmg Channel
EEREE - T l\.””’
L ; . L s L ; L
T SEEdTE ~_,1,,, \s,,_
Logic Block Connection Block Switch Block

Figure 3.1. The Architecture of General FPGA

An antifuse is a two terminal device with an unprogrammed state presenting
a very high resistance between its terminals. When a high voltage is applied
across its terminals, the antifuse will blow and create low resistance link. This
link is permanent. Programming an antifuse requires extra circuitry to deliver
the high programming voltage and a high current. A major advantage of the
antifuse is its small size. This advantage is reduced by the large size of the

necessary programming transistors.

The floating gate programming technology uses technology found in ultra-
violet erasable EPROM and electrically erasable EEPROM. Major advantage
of EPROM technology is its fast reprogrammability. Also it does not require
extra permanent memory to program the chip on power-up. However this tech-

nology increase the number of processing steps and high resistance transistors.

3.1.3 Routing Architectures

The routing architecture of an FPGA is the manner in which the programmable
switches and wiring segments are positioned to allow the programming inter-
connection of the logic. Figure 3.1 illustrates a typical routing architecture
model. Before giving some commercial FPGA routing architecture, giving

some definition is helpful for understand routing problem in FPGA. A wire

CHAPTER 3. FPGAS & GLOBAL ROUTING 12

Wiring
Segments
| — Logic |- Logic
— Block | —| Block
‘ K =5
F=3
C
(a) (b)

Figure 3.2. Example of flexibilities of FPGA (a) flexibility of switch block
(b) flexibility of connection block

segment is a wire unbroken by programmable switches. One or more switches
may attach to the wire segment. Each end of wire segment has a switch at-
tached.

A track is sequence of one or more wire segments in a line.
A routing channel is group of parallel tracks as in Figure 3.1.

As shown in Figure 3.1, the model contains two basic structures: Connec-
tion blocks and switch blocks. A connection block provides connectivity from
the input and output of logic blocks to the wire segments in the channels. A
switch block provides connectivity between the horizontal as well as the vertical

wire segments.

As in Figure 3.2, The general routing structure of FPGA has two impor-
tant interconnection block. These are connection blocks which are used to make
connections between logic block pin and routing segments, and switch blocks
where connections are switched at the intersection of horizontal and vertical
channels. The number of switching in connection and switch blocks is impor-
tant for good routability. Large number of switching increase the routability

but it causes poor performance and large delay and also large area.

The number and distribution of switches used in interconnection called
flexibility of an FPGA. Flexibility of switch blocks (F) and flexibility of con-
nection block (F.) can be defined as the number of choices offered to each wire
enter a switching block or a connection block, respectively. The flexibility of

switch block F, is defined to be total number of possible connection offered

CHAPTER 3. FPGAS & GLOBAL ROUTING 13

o o
RN I
RN i
RN N
o I
RN I
Switch—
lock [E E
[eledabedebebedubetal u FE2333722222— Long Lines
- - (Horizontal)
iuat o 4LB£
L] " Direct
T " Interconnect

Switchrr— Switch—-

Block P Block H————— | \ \ |]
___ — —
——————————————————————————————————————— | L

o R -
N o
RN iy
! N [TTT]
General Purpose L\?ng'Li{les Routing
Interconnect (Vertical) Switch
(@

(b)

Figure 3.3. The Architecture of Xilinx 3000 FPGA

to each wire segment. The flexibility of connection block F, is defined as the
number of wires that each logical pin of logic block can connect. Next section

describes the important routing architecture of commercial FPGA’s such as
Xilinx and Actel.

The Xilinx Routing Architecture

Figure 3.3 illustrates the routing architecture used in the Xilinx 3000 series
FPGA. Connections are made from the logic block into the channel through
a connection block. Since each connection site is large because of the SRAM
programming technology, the Xilinx 3000 connection blocks connects each pin
to only two or three out of five tracks passing by a block . On all four sides
of the logic block there are connection blocks that connect a total of 11 dif-
ferent logic block pins to the wire segments. Once the logic pin is connected
via the connections block makes connections between segments in intersecting
horizontal and vertical channels. Each wire segment can connect to five or six
out of a possible 15 wire segments on the opposites sides. There are four types

of wire segments provided in the Xilinx 3000 architecture:

-General-purpose interconnect consisting of wire segments that pass
through switches in the switch block.

CHAPTER 3. FPGAS & GLOBAL ROUTING 14

1B | 1B | 1B|| LB|| LB
Antifuse
Input Segment__/ﬂ/’ -+ Output Segment
‘LB‘LB‘LB‘LB LB|
4_\ .
Vertical Track
Wiring Segment‘T
‘LB‘LB‘LB‘LB|LB|

Figure 3.4. The Architecture of Actel FPGA

-Direct interconnect consisting of wire segments that connect each
logic block output directly to four nearest neighbors.

-Long lines, which span the length or width of the chip, providing
high-fanout uniform delay connections.

-Clock line, which is a single net that spans the entire chip and is

driven by a high-drive buffer.

The Actel Routing Architecture

The Actel routing architecture has a asymmetric architecture because there
are more general purpose tracks in horizontal direction than vertical direction.
The connection block of the Actel routing architecture is shown in Figure 3.4.
The connectivity of ACTEL FPGAs is different in input and output pins. For
input pins, each pin can connect to all of the tracks in the channel that are on
the same side as the pin. The output pins extend across two channels above the
logic block and two channels below it. Output pins can connect to every track
in all four channels that is crosses. There is no separable switch block in the
Actel architecture. Instead, the switching is distributed throughout the hori-
zontal channels. All vertical tracks can make a connection with every incident
horizontal tracks. Each horizontal channel consists of 22 routing tracks, and
each track is broken up into segments of different lengths. There are three type
of vertical segments: input segments, output segments and freeways that either
travel the entire height of chip, or some significant portion of it. This allows

signal to travel longer vertical distance than permitted by output segments.

CHAPTER 3. FPGAS & GLOBAL ROUTING 15

3.2 Physical Design Automation of FPGAs

The physical design automation of FPGAs involves mainly three steps which

include partitioning, placement and routing.

3.2.1 Partitioning

Partitioning is the separation of the logic into Logic blocks. Partitioning has

both a logical and physical component. The connections within a logic blocks
are constrained by the limited routing architecture and limited number of

blocks outputs. However, the quality of the resulting partitioning depends

on how well the placement can be done. The logical component has been

investigated in the context of technology mapping in logic optimization.

3.2.2 Placement

Placement starts with logic blocks and input-output blocks in partitioned
netlist and decides which corresponding blocks on the chip should contain
them. The FPGA placement problem is very similar to traditional standard
cell and gate array placement problems. Many of existing algorithm place-
ment algorithms are applicable, such as simulated annealing, force directed

relaxation and min-cut.

3.2.3 Routing

After placement of all circuit, each pin of any multipoint net have to be con-
nected. There are several routing algorithms for different kind of FPGA ar-
chitectures and routing problem in FPGA’s is very complex as in standard
cells and gate arrays designs. Because of simplicity, the routing problem can
be divided into two step as in traditional routing problem: global routing and

detailed routing.

Global routing in FPGA’s can be done by using a global router for standard
cell design. In general such a global router divides the multipoint nets into two

terminal nets and routes them with minimum distance path. While doing so it

CHAPTER 3. FPGAS & GLOBAL ROUTING 16

0 0O O olllolll o
I ;

0 O|lo O olllolll olll o
0 O|lo O olllolll olll o
0O O O olllolll o

(@) (b)

Figure 3.5. General approach to FPGA routing a) Global routing b) Detailed
routing

also tries to balance the density of channels. The global route defines a coarse
route for each connection by assigning it a sequence of channel segments. After
the paths are defined in terms of channel between two-pin connection detailed
router chose specific wiring segments to implement the channel segment as-

signed during global routing.

3.3 Global Routing Problem in Design Automation of
FPGAs

A global router chooses channels for each net and leaves the task of allocating
specific wiring segments and switches to detailed router. The global routing
in FPGA’s decides for each net to determine which pins are actually to be
connected. The objective of global router is to minimize the sum of the channel
densities of all channels. As in many studies, the routing problem in FPGA
is solved by directly allocating the segments and ignore the global routing
phase. There are unique global router for FPGA: PGAroute. This global
router similar the global router for standard cells and use the LocusRoute

global routing algorithm.

In the LocusRoute algorithm, the following three steps are executed for

each multi pin nets.

1) Net’s Division: Each multi-pin net is divided into a set of two-pin con-

nections using a minimum spanning tree algorithm.

CHAPTER 3. FPGAS & GLOBAL ROUTING 17

)

Ti

N

S1

T3

Figure 3.6. Sample two bends routes

2) Route Generation and Evaluation: In this steps, the possible paths be-

tween each pin of two-pin nets are considered and evaluate this paths in terms

of cost value and chose the lowest cost value path.

The method of choosing routes is based on paths that have two or less bends.
LocusRoute evaluates a subnet of all two bend routes between the two physical
pins and chose the one with the lowest cost. The cost function is defined in
terms of the channel densities. Each wire segments and switch blocks are
represented as elements of an array which is called as cost array. Each element
of cost array H;; contains the number of routes that pass through the wire

segment of (7, 7). The cost of path(P) is calculated as

COSt(P) = ZHZ'J’ (31)

3)Reconstruction: This step joins all two-pin connections back together,
performs assigns unique numbers to distinct segments of some nets in each

channel.

Locus routes uses the iterative technique, that after the first time all nets
are routed, each is sequentially ripped up and rerouted. Iterations reduces the

order dependency and also it improves the routing quality.

3.4 Model of FPGA for Global Routing

The form of commercial FPGA consists of a two dimensional regular array

of programmable logic blocks (LB’s), a programmable routing network and

CHAPTER 3. FPGAS & GLOBAL ROUTING 18

2 3 4 5 6
|| I |
' sB S8 S8 SB |SB L
UL gl [al ol [ol \ -
EE LB LB LB &ﬂ Ch;ﬁ:lcglegmem
! 1 I] 1 | .
fsBi s —sB——sp——|sB—— s§
RS RS RS S| Sl
SB43
3en] - - Merd Ferd Fer
[S,,J |SB |SB | SB |SB L§ﬂ
LB
43
T TR S R
H HH - = = - SB: Switch Box
{SBI— SB——{SB——{SB—— SB——SB LB LogicBlocks

Horizontal
Channel Segment

Figure 3.7. The FPGA model used for Global Routing

switch boxes (SB’s) [3, 1, 2]. Logic blocks are used to provide the function-
ality of a circuit. Routing network makes connections between LB’s and in-
put/output pads. Routing network of FPGA consists of wiring segments and
connection blocks. Wiring segments have three type of routing resources in
the commercial SRAM based FPGA [1]: channel segments, long lines and
direct-interconnections. A horizontal (vertical) channel segment consists of a
number of parallel wire segments connecting two successive SB’s in a horizontal
(vertical) channel. The SB’s allow programmed interconnection between these
channel segments. Direct-interconnection provides the connections between
neighbor LB’s. Long lines cross the routing area of FPGA vertically and hor-
izontally. Connection blocks provide the connectivity from the input/output
pins of LB’s to the wiring segments of the respective channel segments. Each
pin can be connected to a limited number of wiring segments in a channel and
this is called as flexibility of connection block [16]. In this work, it is assumed
that each LB pin can be connected to all wiring segments in the respective

channels. Therefore, we can omit the connection block in our FPGA model.

Since the direct-interconnections are used by neighbor LB’s to provide min-
imum propagation delay and the long lines are used by signals which must
travel long distances (i.e., global clock), these interconnection resources are
not considered in the global routing. Hence, our FPGA model for global rout-
ing considers only the LB’s, SB’s and channel segments. An FPGA can be
modeled as a two dimensional array of LB’s which are connected to the verti-

cal and horizontal channel segments, and SB’s which make connections between

CHAPTER 3. FPGAS & GLOBAL ROUTING 19

]

1 :
l I T T T T
[SB—F{SB— {SB—+ S| sB LS-subnet

Source LB 7 N
¥ /SS—subnet
R

' r

&

1L/

Source SB—17

AL

2 I\,,J

[y
=
[

[

[R

1
[
[

.
T LQ‘;J

3[551,7

IS
|
|
Lt

[y
|

T\

=l

Target SB V

L
=
==l

I
i

LR p— _EL#Target LB
[SL-subnet

1
—t
[

-

(a) (b)

Figure 3.8. (a) The routing area of the two-pin net and its subnets, (b) The
possible routes for each subnets

the horizontal and vertical channel segments (Fig. 3.7).

In this work, we divide all multi-pin nets into two-pin nets using minimum

spanning tree algorithm [19] as in LocusRoute. Hence, a net refers to a two-
pin net here, and hereafter. Consider the possible routings for a two-pin net
with a Manhattan distance of dj+d, where d;, and d, denote the horizontal
and vertical distances, respectively, between the two pins of the net on the
LB grid. The routing area of this net is restricted to a (d,+1) x(d,+1) LB
grid as shown in Fig. 3.8.a. Then, the shortest distance routing of this net
can be decomposed into three independent routings as follows. Each pin of
this net has only one neighbor SB in the optimal routing area. Hence, each
pin can be connected to its unique neighbor SB either through a horizontal
or a vertical channel segment (Fig. 3.8). Meanwhile, the optimal routing area
for the connection of these two unique SB’s is restricted to a dj xd, SB grid
embedded in the LB grid (Fig. 3.8). Hence, by exploiting this fact, we further
subdivide each net into three two-pin subnets referred here as LS, S5 and
SL subnets (Fig. 3.8.b). Here, LS and SL subnets represent the LB-to-SB
and SB-to-LB connections, respectively, and SS subnets represent the SB-to-
SB connection for a particular net. Therefore, we consider only two possible
routings for both LS and SL subnets and dj,+d,—2 possible one or two bend

routings for S5 subnets for routing the original net.

We define an FPGA graph F(L, S, C) for modeling the global routing prob-
lem in FPGAs. This graph is a P x () two-dimensional mesh where L, S5 and

CHAPTER 3. FPGAS & GLOBAL ROUTING 20

FPGA Graph

6@
R1: A possible route for SS-subnet (S43 s S75)

R2: Two possible routes for the LS-subnet (L34 ,S45)

R3: Two possible routes for the SL-subnet (S73 ,L73)

Figure 3.9. The Cost Graph for FPGA model

(' denote the set of LB’s, SB’s and channel segments, respectively. Here, P
and () is the number of horizontal and vertical channels in the FPGA. Each
grid point (vertex) s,, of the mesh represents the SB at horizontal channel p
and vertical channel ¢. Each cell L,, of the mesh represents the LB which is
adjacent to four SB’s S,4, Spg+1s Spt1,0+1 and Spy1,4. Edges are labeled such
that the horizontal (vertical) edge ¢?, (c%,) corresponds to the channel segment
between the two consecutive SB’s s,, and s, 441 (Spt1,4) on the horizontal (ver-
tical) channel p (¢), respectively. Figure 3.9 displays a 8 x 6 sample FPGA
graph. Then, the pins of the LS/SL and SS type subnets are assigned to the
respective cell-vertex and vertex-vertex pairs of the graph as is in mentioned

earlier.

The global routing problem reduces to searching for most uniform possible
distribution of the routes for these subnets. The uniform distribution of the
routes is expected to increase the likelihood of finding a feasible routing in
the following detailed routing phase. Hence, we need to define an objective
function which rewards balanced routings. We associate weights with the edges

of FPGA graph in order to simplify the computation of the balance quality

v
pq

(cp,) denotes the density of the respective channel segment. Here, the density

of a given routing. The weight w/’ (w?) of a horizontal (vertical) edge c?,

of a channel segment denotes the total number of nets passing through that

segment for a given routing. Using this model, we can express the balance

CHAPTER 3. FPGAS & GLOBAL ROUTING 21

quality B of a given routing R as

P Q-1 Q P-1
B(R) = Z_; Z_;(wﬁq(R))Q + Z_; Z_;(w;fq(R))Z (3.2)

As is seen in Eq. (3.2), each channel segment contributes the square of its den-

sity to the objective function thus penalizing imbalanced routing distributions.

Hence, the global routing problem reduces to the minimization of the objective

function given in Eq. (3.2).

Chapter 4

MFA SOLUTION FOR GLOBAL
ROUTING IN FPGA

This chapter investigates the routing problem in Static RAM Field Pro-
grammable Gate Arrays (FPGA’s) implementing the non-segmented (Xilinx
based) network [27]. The architecture model of FPGA used for formulation
and Mean Field Annealing formulation for global routing problem are given
in this chapter. Details of experiments, the circuits used in experiments and

results are shown at the end of this chapter.

4.1 MFA Formulation of Global Routing

The MFA algorithm is derived by analogy to Ising and Potts models which
are used to estimate the state of a system of particles, called spins, in thermal
equilibrium. In Ising model, spins can be in one of the two states represented
by 0 and 1, whereas in Potts model they can be in one of the K states. All
LS/SL subnets are represented by Ising spins since they have only two possible
routes. In Ising spin encoding of each LS/SL subnet m, u,, = 1 (0) denotes
that the LB-to-SB or SB-to-LB routing is achieved through a single horizontal
(vertical) channel segment. Each SS subnet n having K,, > 2 possible routes
is represented by a K, -state Potts spin. The states of a K, -state Potts spin is

represented using a K, dimensional vector

v, = [’Unl,...,’UnT,...,’UnJ(n]t (4.1)

22

CHAPTER 4. MFA SOLUTION FOR GLOBAL ROUTING IN FPGA 23

where “t” denotes the vector transpose operation. Each Potts spin v, is allowed

to be equal to one of the principal unit vectors eq,...,e,,..., ek, , and can not
take any other value. Principal unit vector e, is defined to be a vector which

has all its components equal to 0 except its r’th component which is equal to

1. Potts spin v,, 1s said to be in state r if v, = e,. Hence, a K, -state Potts

spin v, is composed of K, two state variables v,i,...,Vns,...,0nk,, Where

vnr € {0,1}, with the following constraint

Ky

S v =1 (4.2)

If Potts spin n is in state r (i.e., v,, = 1 for 1 < r < K,,) we say that the

corresponding net n is routed by using the route r.

In the MFA algorithm, the aim is to find the spin values minimizing the
energy function of the system. In order to achieve this goal, the average (ex-
pected) values (u,,) and (v,,) = [(va1), ..., (Var), ..o, (vnk,)" of all Ising and
Potts spins, respectively, are computed and iteratively updated until the system
stabilizes at some fixed point. Note that for each Ising spin m, u,,, € {0,1}, i.e.,
U, can take only two values 0 and 1, whereas (u,,) € [0,1], i.e., (u,,) can take
any real value between 0 and 1. Similarly, for each Potts spin n, v,, € {0,1}
whereas (v,,) € [0,1]. When the system is stabilized, (u,,) and (v,,) values
are expected to converge to either 0 or 1 with the constraints 35 (v,,) = 1

for the Potts spins.

In order to construct an energy function it is helpful to associate the fol-

lowing meaning to the values (u,,) for LS/SL subnets.

(um) = P(subnet m is routed by using the horizontal channel segment)

1 — (uy) = "P(subnet m is routed by using the vertical channel segment)

That is, (u,,) and 1— (u,,) denote the probabilities of finding Ising spin m
at states 1 and 0, respectively. In other words, (u,) and 1— (u,) denote
the probabilities of routing subnet m through a single horizontal and vertical
channel segment, respectively. Similarly, for S5 subnets represented with Potts

spins
() = P(subnet n is routed through router) for 1<r <K, (4.3)

That is, (v,.) denotes the probability of finding Potts spin at state r for 1 <
r < K,. In other words, (v,,) denotes the probability of routing net n through

CHAPTER 4. MFA SOLUTION FOR GLOBAL ROUTING IN FPGA 24

route r. Here and hereafter, u,, and v,, will be used to denote the respective
expected values ((u,,) and (v,,),respectively) for the sake of simplicity. Now,

we formulate the total density cost of global routing problem as an energy term

P Q-1 Q P-1
Ep(U, V) = 373 [wp,(U) 4wy (V)2 + 37 D [w;,(U) + wp (V)]? (4.4)
p=1 ¢q=1 g=1 p=1
where w;bq U) = Z U, and wgq(V) = Z Z Vpr
m3ch, n3ck, rERn, 3k,
we (U)= > (I—uy) and wi (V)= > > v
m3Cpq n3cp, T€RR,r3ch,

where U = {uy,uy,...} and V = {vy,vy,...} represent the sets of Ising and

Potts spins corresponding to the LS/SL and SS subnets, respectively. For
LS/SL subnets, “m > ¢,,” denotes “for each LS/SL subnet m whose pair

of pins share the horizontal or vertical channel segment ¢,,”. For S5 sub-

nets “n 3 ¢,,” denotes “for each S5 subnet n whose routing area contains

the horizontal and vertical channel ¢,,”.

Furthermore, “r € R,,r 3 ¢, de-
notes “for each possible route r of S5 subnet n which passes through the
horizontal or vertical channel segment ¢,,”. Here, w,,(U) and w,,(V) repre-
sent the probabilistic densities of the horizontal or vertical channel segment ¢,
for the current routing states of LS/SL and SS subnets, respectively. Hence,
Wpe(U, V) = w,,(U)4w,, (V) represents the total probabilistic density of hor-

izontal or vertical channel segment ¢,, for the overall current routing state.

Mean field theory equations, needed to minimize the energy function Ep,

can be derived as

¢m(U7V) = EB(U7V)|um:0 - EB(U7V)|um:1
= 20w (U,V)—w’ (U, V)= 2(u, —0.5)] (4.5

where ch,ch eEm
for an Ising spin m and
¢nr(U, V) = Ep(U,V)lv,=0 — Es(U, V)l|y,=, (4.6)
= -2 ; (w5, (U, V) = vp,) + Z; (w0, (U, V) = vp)]
choer ch Er

for 1<r<K,

for a Potts spin n, respectively. Mean field values ¢,, and ¢,, can be interpreted
as the increases in the energy function Eg(U, V) when Ising and Potts spins

m and n are assigned to states 1 and r, respectively. Hence, —¢,, and —¢,,

CHAPTER 4. MFA SOLUTION FOR GLOBAL ROUTING IN FPGA 25

may be interpreted as the decreases in the overall solution qualities by routing
LS/SL and SS subnets m and n through the horizontal channel and route r,

respectively. Then, u,, and v,, values are updated such that probabilities of

routing subnets m and n through horizontal channel and route r increase with

increasing mean field values ¢,, and ¢,, as follows:

el T
e¢nr/T
Vpp = ——— Tfor r=12,...,K, (4.8)

E?:’H ePnk/T
respectively.

After the mean field equations (Eqs. (4.5-4.6)) are derived, the MFA algo-
rithm can be summarized as follows. First, an initial high temperature spin
average is assigned to each spin, and an initial temperature T is chosen. Each
U, value is initialized to 0.5 & 6, and each v,, value is assigned to 1/K, & 6,,
where 6,, and 6,, denote randomly selected small disturbance values. Note
that limr_ o ty, = 0.5 and limy_ oo v, = 1/K,. In each MFA iteration, the

mean field effecting a randomly selected spin is computed using either Eq. (4.5)
or Eq. (4.6). Then, the average of this spin is updated using either Eq. (4.7)
or Eq. (4.8). This process is repeated for a random sequence of spins until the
system is stabilized for the current temperature. The system is observed after
each spin update in order to detect the convergence to an equilibrium state for
a given temperature. If energy function Fp does not decrease in most of the
successive spin updates, this means that the system is stabilized for that tem-
perature. Then, T is decreased according to a cooling schedule, and iterative
process is re-initialized. At the end of this cooling schedule, each Ising spin
m is set to state 1 if u,, > 0.5 or to state 0, otherwise. Similarly, maximum
element in each Potts spin vector is set to 1 and all other element are set to 0.

Then, the resulting global routing is decoded as mentioned earlier.

4.2 Implementation

The performance of the proposed MFA algorithm for the global routing problem

is evaluated in comparison with the well-known LocusRoute algorithm [24].

The MFA global router is implemented efficiently as described in Sec-
tnit

tion 4.1. Average of each Ising spin m is initialized by randomly selecting u

CHAPTER 4. MFA SOLUTION FOR GLOBAL ROUTING IN FPGA 26

in the range 0.45 < u,, < 0.55. Similarly, average of each Potts spin n is initial-
ized by randomly selecting K, v,, values in the range 0.9/K, < v,, < 1.1/K,

and normalizing vi"t = v,/ S Er 4. for r = 1,2,..., K,. Note that random

selections are achieved by using uniform distribution in the given ranges.

The initial temperature parameter used in mean field computation is esti-

mated using the initial spin averages values. Selection of initial temperature

parameters Tj is crucial to obtain good routing. In previous applications of
MFA, it is experimentally observed that spin averages tend to converge at a

critical temperature. Although there are some methods proposed for the esti-

mation of critical temperature, we prefer an experimental way for computing
To which is easy to implement and successful as the results of experiments

indicate. We compute the initial average mean field as

Nn Kn Nn
27;&]2; (Z ¢zmt + Z:lkz: ¢zmt) Nm + Z:l I{n)
n= 1 n=

Note that initial mean field values ¢i"" and ¢i"" are computed according to
and v"*, Here, N,, and N,
denote the total number of Ising and Potts spins, respectlvely, where N = N, +

init

Egs. (4.5) and (4.6) using initial spin values "

N,, denotes the total number of spins (subnets). Then, initial temperature is

computed as Ty = C gbfﬁ; where constant C is chosen as 540 for all experiments.

The cooling schedule is an important factor in the performance of MFA
global router. For a particular temperature, MFA proceeds for randomly se-
lected unconverged net spin updates until AE < € for M consecutive itera-
tions respectively where M = N initially and € = 0.05. Average spin values
are tested for convergence after each update. For an Ising spin m, if either
Uy, < 0.05 or u, > 0.95 is detected, then spin m is assumed to converge to
state 0 or state 1, respectively. For a Potts spin n, if v,, > 0.95 is detected
for a particular r = 1,2,..., K,, then spin n is assumed to converge to state
r. The cooling process is realized in two phases, slow cooling followed by fast
cooling, similar to the cooling schedules used for Simulated annealing. In the
slow cooling phase, temperature is decreased by T' = a x T" where a = 0.9
until 7' < To/1.5. Then, in the fast cooling phase, M is set to M/2, « is
set to 0.8. Cooling schedule continues until 90% of the spins converge. At
the end of this cooling process, each unconverged Ising spin m is assumed to
converge to state 0 or state 1 if u,, < 0.5 or u,, > 0.5, respectively. Simi-
larly, each unconverged Potts spin n is assumed to converge to state r where
Unr = max{vng : k=1,2,..., K,}. Then, the result is decoded as described in
Section 4.1, and the resulting global routing is found.

CHAPTER 4. MFA SOLUTION FOR GLOBAL ROUTING IN FPGA 27

Table 4.1. MCNC benchmark circuits used in experiments

Benchmarks
Circuits

number number FPGA

name of of size

nets 2-pin nets

9symml 71 259 10x9
too—large 177 519 14x13
apexT 124 300 11x9
example2 197 444 13x11
vda 216 722 16x15
alu2 137 511 14x12
alud 236 851 18x16

terml 87 202 9x8
1355 142 360 12x11
C499 142 360 12x11
880 173 427 13x11
K2 388 1256 21x19
Z03D4 575 2135 26x25
buscntl 145 392 12x11
dram fsm 389 1422 22x21
dma 197 771 17x15
203 575 2135 26x25

The LocusRoute algorithm is implemented as in [24]. As the LocusRoute
depends on rip-up and reroute method, LocusRoute is allowed to reroute the
circuits 5 times. No bend reduction has been done as in [3]. Both algorithms

are implemented in the C programming language.

4.3 Experimental Results

This section presents experimental performance evaluation of the proposed
MFA algorithm in comparison with LocusRoute and Simulated Annealing (SA)
algorithm. All algorithms are tested for the global routing of thirteen ACM
SIGDA Design Automation benchmarks (MCNC) and four famous FPGA
benchmark circuits on SUN SPARC 10 . The Table 4.1 illustrates the proper-

ties of these benchmark circuits.

These three algorithms yield the same total wiring length for global routing
since two or less bend routing scheme is adopted in all of them. Necessary
design automation process such as technology mapping and placement are done
in University of Toronto by using Chortle technology mapper [11] and XAltor

placement tools.

CHAPTER 4. MFA SOLUTION FOR GLOBAL ROUTING IN FPGA 28

able 4.2. e Global Router results

Circuit MFA PGA SA
| Cost | Dens | time Cost | Dens | time Cost [Dens | time
9symml 1.0 12.0 0.36 1.032 14 0.00 1.000 12.0 20.64
toolarge 1.0 16.0 0.88 1.071 17 0.06 1.003 16.0 113.90
apexT 1.0 14.0 0.42 1.073 16 0.00 0.935 14.0 31.46
example2 1.0 15.0 0.64 1.097 16 0.02 0.856 15.0 76.54
vda 1.0 17.0 0.42 1.055 18 0.10 1.002 17.0 207.80
alu 1.0 17.0 0.30 1.080 17 0.02 0.928 17.0 91.44
alud 1.0 17.0 0.68 1.073 19 0.10 0.966 17.0 288.78
terml 1.0 14.0 0.34 1.093 14 0.00 0.921 14.0 13.28
C1355 1.0 13.0 0.56 1.119 15 0.00 1.000 13.6 50.36
C'499 1.0 15.0 0.48 1.075 16 0.00 1.003 15.0 44,58
C880 1.0 15.4 0.68 1.065 17 0.04 0.933 16.8 74.40
k2 1.0 20.2 0.94 1.038 22 0.20 0.952 20.0 712.10
203D4 1.0 17.0 2.34 1.117 18 0.30 1.000 17.0 | 1821.12
buscntl 1.0 13.0 0.42 1.050 13 0.00 0.998 13.0 54.92
dram fsm 1.0 15.0 1.94 1.073 18 0.20 0.999 15.0 763.02
dma 1.0 15.0 1.96 1.084 16 0.10 0.972 15.0 216.80
203 1.0 20.0 2.10 1.119 21 0.30 1.000 20.0 | 1837.86

Table 4.2 illustrates the performance results of these three algorithms for

the benchmark circuits. The MFA algorithm is executed 10 times for each cir-
cuit starting from different, randomly chosen initial configurations. The results
given for the MFA algorithm in Table 4.2 illustrate the average of these execu-
tions. Global routing cost values of the solutions found by both algorithms are
computed using Eq. (3.2) and then normalized with respect to those of MFA.
In Table 4.2, maximum channel density denotes the number of routes assigned
to the maximally loaded channels. That is, it denotes the minimum number

of tracks required in a channel for 100% routability.

As is seen in Table 4.2, global routing costs of the solutions found by MFA
are 3.1%-10.5% better than those of LocusRoute. As is also seen in this table,
maximum channel density requirements of the solutions found by MFA are less
than those of LocusRoute in almost all circuits except alu?2 and termi. Both

algorithms obtain the same maximum channel density for these two circuit.

How the global router distributes the channel densities, how the global
router decrease the maximum channel densities and how detailed router com-
pletes the routing are some important metrics to measure the quality of the
global routers. The propagation net delays, number of switch used , number of
tracks in a channel are considered in comparison of global routers after com-
pletion of routing. The channel densities distribution affects on the number of
tracks and switch also the propagation delay (because of number of switches)

of the nets. In next paragraphs, the results of global routes are given in terms

CHAPTER 4. MFA SOLUTION FOR GLOBAL ROUTING IN FPGA 29

Table 4.3. The SEGA detailed routing results in area optimization mode

Routing Info. Delay Info.

Circuit Total Segment Shared Avg. Delay Max. Delay
MFA | PGA | Imp || MFA | PGA || MFA | PGA | Imp MFA PGA
9symml 674 711 | 5.20 42 85 5.06 5.56 9.01 63.38 57.97
toolg 1803 1951 | 7.59 47 114 13.83 | 15.10 8.45 125.48 | 122.80
apex7 960 1026 | 6.43 36 63 9.88 | 10.64 7.15 70.97 77.65
exp2 1775 1893 | 6.23 42 56 10.08 | 11.98 | 15.86 101.31 | 121.88
vda 2760 2950 | 6.44 70 176 18.67 | 20.58 9.30 140.77 | 170.36
alu2 1580 1674 | 5.62 36 129 9.82 9.61 -2.12 129.24 | 110.30
alu4d 3183 3424 | 7.04 67 203 16.58 | 17.08 2.93 153.88 | 163.30
terml 602 638 | 5.64 21 47 9.57 9.60 0.32 74.81 70.50
C1355 1299 1347 | 3.56 27 82 12.17 | 13.15 7.50 121.01 | 118.12
C499 1242 1296 | 4.17 37 82 11.64 | 12.02 3.15 79.75 94.46
C880 1575 1670 | 5.69 38 91 14.83 | 15.36 3.48 111.58 | 115.72
K2 5980 6323 | 5.42 88 306 25.77 | 27.54 6.43 244.35 | 229.54
703D4 7125 7700 | 7.47 227 555 12.75 | 13.60 6.26 190.62 | 191.65
bus-cntl 1128 1213 | 7.01 43 94 7.94 8.57 7.28 104.36 | 126.24
dram-fsm 4267 4648 | 8.20 174 403 6.19 6.68 7.35 140.61 | 157.05
dma 2300 2545 | 9.63 94 214 15.17 | 16.58 8.53 200.82 | 194.71
z03 7161 7870 | 9.01 267 533 13.05 | 14.40 9.39 193.18 | 192.93

of these metrics. The balance cost of SA and MFA global routers are not very
different but the execution time of SA is 250 times longer than the MFA on

the averages for all circuit.

The detailed router used in this experiments is called SEGA [20], for SEG-
ment Allocator, and was developed specifically for SRAM based FPGA’s. The
input of SEGA is a netlist of two point connections, which is output of the
global router. To route the connections, SEGA allocates wire segments ac-
cording to cost function, basing its decisions on either of two goals: optimize
for area or optimize for speed. For area optimization, only routability of the
circuit is considered, which means the cost function focuses only on the task
of successfully routing 100% of the connections in a circuit. In delay opti-
mization, SEGA selects the routes that have the best speed performance. The
following assumption are done in experiments. All routing channels have an
equal number of tracks. The flexibility of the channel blocks are equal to num-
ber of tracks. (Each logic pin can connect to a channel with all tracks) The
LocusRoute global routing algorithm used in PgaRoute global router (PGA).
For further part of this chapter, PGA global router are used for LocusRoute
algorithm [23].

The SEGA detailed router routes the nets by considering either area op-
timization or speed optimization criteria. Therefore all circuits are tested ac-

cording to these two optimization criteria, separately. The output of MFA and

CHAPTER 4. MFA SOLUTION FOR GLOBAL ROUTING IN FPGA 30

Table 4.4. The SEGA detailed routing results in speed optimization mode

Routing Info. Delay Info.

Circuit Total Segment Shared Avg. Delay Max. Delay
MFA | PGA | Imp MFA | PGA || MFA | PGA Imp MFA PGA
9symml 653 649 | -0.62 63 147 5.07 5.28 3.94 56.46 48.67
toolg 1776 1822 2.52 74 243 13.34 | 13.06 -2.17 128.56 | 106.00
apex7 942 952 1.05 54 137 9.73 9.86 1.28 70.97 63.32
exp2 1746 1762 0.91 71 187 10.01 | 10.81 7.40 95.27 98.10
vda 2704 2774 2.52 126 352 19.07 | 19.10 0.17 148.30 | 164.71
alu2 1533 1542 0.58 83 261 9.46 9.56 1.07 127.29 | 128.45
alu4d 3132 3193 1.91 118 434 16.17 | 16.29 0.76 145.32 | 147.41
terml 591 592 0.17 32 93 9.74 8.13 | -19.82 76.82 46.33
C1355 1277 1269 | -0.63 49 160 12.34 | 11.69 -5.59 126.73 98.27
C499 1225 1222 | -0.25 54 156 11.66 | 10.72 -8.81 81.49 83.71
C880 1552 1567 0.96 61 194 14.39 | 14.01 -2.73 106.94 | 106.06
K2 5900 5995 1.58 168 634 27.05 | 26.50 -2.10 262.23 | 210.25
703D4 6965 7664 9.12 437 1191 12.42 | 12.34 -0.65 167.32 | 169.05
bus-cntl 1112 1114 0.18 59 193 8.03 7.95 -1.04 95.93 86.24
dram-fsm 4155 4305 3.48 286 746 6.05 6.61 8.54 140.61 | 146.57
dma 2243 2350 4.55 151 409 14.89 | 15.40 3.30 203.74 | 181.06
z03 6953 7205 3.50 475 1198 12.65 | 13.27 4.69 172.34 | 173.38

PGA global routers was used as a input of the detailed router. After that
SEGA detailed router was executed in two different mode (area and speed op-
timization mode) for each benchmark circuit. The results of SEGA detailed
router gives information about routing which contains total number of segment,
shared segment and minimum channel width for 100% routing, and propaga-
tion delay which contains average and maximum delay of the nets. Therefore,
quality of MFA and PGA global routers are compared by considering these

routing and delay information.

Table 4.3, Table 4.4 and Table 4.5 shows the results of SEGA detailed router
whose inputs were constructed by MFA and PGA routers. Table 4.3 represents
the results for area optimization mode and Table 4.4 represents the results for
speed optimization mode. As seen in Table 4.3, MFA needs less number of
segment that PGA for complete routing. There are 3%-9% improvement in
total number of segment used in complete routing. Also MFA causes less
propagation delay than MFA for all benchmark circuits as in Table 4.3. The
average delay for routing are decreased by 3%-15% for MFA according to PGA.
If we consider the number of tracks in a channel, MFA needs small channel
width in 6 benchmarks, but PGA routes 8 benchmarks with less number of
tracks than MFA. For other benchmarks circuit both PGA and MFA need same
channel width as seen in Table 4.5 Finally we can say that MFA global router
produces better results that PGA global router according to area optimization.

Because, MFA can distribute the channel density more that PGA. Also SEGA

CHAPTER 4. MFA SOLUTION FOR GLOBAL ROUTING IN FPGA 31

Table 4.5. Minimun Channel Width for 100% routing

Channel Widht (W)

Circuit Area Opt. Mode Speed Opt. Mode

MFA PGA MFA PGA
9symml 10 9 10 11
toolg 13 11 13 12
apex7 11 13 12 15
exp2 13 17 14 19
vda 13 16 16 16
alu2 13 10 13 12
alu4 14 13 15 15
terml 10 9 11 10
C1355 10 12 12 12
C499 13 11 14 11
C880 12 13 13 14
K2 15 16 19 19
703D4 14 14 15 15
bus-cntl 10 10 11 11
dram-fsm 13 11 13 13
dma 11 11 12 13
z03 16 14 16 16

detailed router results in speed optimization mode as in Table 4.4 shows that
there are also improvement in both total number of segment, channel width
and average delay. But the percent of improvement is less than those of area
optimization mode. Note that PGA can cause less maximum delay than MFA

for most of circuits.

Also the channel width is important criteria for routing because its affect
on the size of FPGAs. In Table 4.5 the minimum number of track (channel
width) in a channel are shown for both area and speed optimization mode. As
in this table, for some circuits, MFA gives better results but some circuits PGA
gives better results, therefore the MFA’s and PGA’s performance on channel

width are very similar.

Figures 4.1 and 4.2 contain visual illustrations as pictures (left) and his-
tograms (right) for the channel density distributions of the solutions found by
MFA and LocusRoute, respectively, for the circuit C'1355. The pictures are
painted such that the darkness of each channel increases with increasing chan-
nel density. Global routing solutions found by these two algorithms are tested
by using SEGA detailed router for FPGA. Figure 4.3 illustrates the results of
the SEGA detailed router for the circuit C'1355

CHAPTER 4. MFA SOLUTION FOR GLOBAL ROUTING IN FPGA 32

Figure 4.1. Channel density distribution obtained by MFA for the circuit C'1355

Figure 4.2. Channel density distribution obtained by LocusRoute for the circuit
C1355

(a) (6)

Figure 4.3. SEGA detailed router results of the circuit C'1355 for the global
routing solutions obtained by (a) MFA (b) LocusRoute

Chapter 5

THE MAPPING PROBLEM

This chapter introduces the mapping problem in parallel processing and its

application.

5.1 The Mapping Problem

Use of parallel computers in various applications, makes the problem of map-
ping parallel programs to parallel computers more crucial. The mapping prob-
lem arises while developing parallel programs for distributed-memory, message-
passing parallel computers (multicomputers). In multicomputers, processors
neither have shared memory nor have shared address space. Each processor
can only access its local memory. Synchronization and coordination among
processors are achieved through explicit message passing. Processors of a mul-
ticomputer are usually connected by utilizing one of the well-known direct
interconnection network topologies such as ring, mesh, hypercube, etc. These
architectures have the nice scalability feature due to the lack of shared resources

and the increasing bandwidth with increasing number of processors.

However, designing efficient parallel algorithms for such architectures is not
straightforward. An efficient parallel algorithm should exploit the full potential
power of the architecture. Processor idle time and the interprocessor commu-
nication overhead may lead to poor utilization of the architecture and hence
poor overall system performance. Processor idle time arises due to the uneven
load balance in the distribution of the computational load among processors

of the multicomputer. Parallel algorithm design for multicomputers can be

33

CHAPTER 5. THE MAPPING PROBLEM 34

divided into two phases: first phase is the decomposition of the problem into a
set of interacting sequential sub-problems (or tasks) which can be executed in
parallel. Second phase is mapping each one of these tasks to a processor of the
parallel architecture in such a way that the total execution time is minimized.
This mapping phase, named as the mapping problem [4], is very crucial in

designing efficient parallel programs.

For a class of regular problems with regular interaction patterns, the map-
ping problem can be efficiently resolved by the judicious choice of the decompo-

sition scheme. In such problems, chosen decomposition scheme yields an inter-

action topology that can be directly embedded to the interconnection network
topology of the multicomputer. Such approaches can be referred as intuitive

approaches. However, intuitive mapping approaches yield good results only for

a restricted class of problems, under simplifying assumptions. The mapping
problem is known to be NP-hard [13]. Hence, heuristics giving sub-optimal so-
lutions are used to solve the problem [4, 13, 21]. Two distinct approaches have
been considered in the context of mapping heuristics, one-phase approaches
and two phase approaches. One-phase approaches, referred to as many-to-one
mapping, try to map tasks of the parallel program directly onto the processors
of the multicomputer. In two phase approaches, clustering phase is followed
by a one-to-one mapping phase. In the clustering phase, tasks of the parallel
program is partitioned into as many equal weighted clusters as the number
of processors of the multicomputer, while minimizing the total weight of the
inter-cluster interactions [21]. In the one-to-one mapping phase, each cluster
is assigned to an individual processor of the multicomputer such that total

inter-processor communication is minimized [21].

In two phase approaches, the problem solved in the clustering phase is
identical to the multi-way graph partitioning problem. Graph partitioning is
the balanced partitioning of the vertices of a graph into a number of bins, such
that the total cost of the edges in the edge cut set is minimized. Kernighan-
Lin (KL) heuristic [10, 17] is an efficient heuristic, originally proposed for the
graph bipartitioning problem, which can also be used for clustering [21]. KL
heuristic is a non-greedy, iterative improvement technique that can escape from
local minima by testing the gains of a sequence of moves in the search space
before performing them. A variant of the KL heuristic can be used for solving

one-to-one mapping problem encountered in the second phase [15].

Simulated Annealing (SA) can also be used as a one phase heuristic for

CHAPTER 5. THE MAPPING PROBLEM 35

solving many-to-one mapping problem [15, 28]. Successful applications of SA to
the mapping problem is achieved in various works [15, 28]. It has been observed

that the quality of the solutions obtained using SA are superior compared with

the results of the other heuristics.

5.2 The Model of Mapping Problem

In various classes of problems, interaction pattern among the tasks is static.

Hence, the decomposition of the algorithm can be represented by a static task
graph. Vertices of this graph represent the atomic tasks and the edge set
represents the interaction pattern among the tasks. Relative computational
costs of atomic tasks can be known or estimated prior to the execution of the
parallel program. Hence, weights can be associated with the vertices in order

to denote the computational costs of the corresponding tasks.

There are some model to model the static task interaction pattern. One of
the model is Task Interaction Graph (TIG) model. In the TIG model, inter-
action patterns are represented by undirected edges between vertices. In this
model, each atomic task can be executed simultaneously and independently.
Each edge denotes the need for the bidirectional interaction between corre-
sponding pair of tasks at the completion of the execution of these tasks. Edges
may be associated with weights which denote the amount of bidirectional in-
formation exchange involved between pairs of tasks. TIG usually represents
the repeated execution of the tasks with intervening task interactions denoted

by the edges.

The TIG model may seem to be unrealistic for general applications since it
does not consider the temporal interaction dependencies among the tasks [26].
However, there are various classes of problems which can be successfully mod-
eled with the TIG model. For example, iterative solution of systems of equa-
tions arising in finite element applications [7, 26] and power system simula-
tions, and VLSI simulation programs [28] are represented by TIGs. In this
work, problems which can be represented by the TIG model are addressed.

In order to solve the mapping problem, parallel architecture must also be
modeled in a way that represents its architectural features. Parallel architec-
tures can easily be represented by a Processor Organization Graph (POG),

where nodes represent the processors and edges represent the communication

CHAPTER 5. THE MAPPING PROBLEM 36

INKS.

In a multicomputer architecture, each adjacent pair of processors commu-
nicate with each other over the communication link connecting them. Such

communications are referred as single-hop communications. However, each

non-adjacent pair of processors can also communicate with each other by means
of software or hardware routing. Such communications are referred as multi-
hop communications. Multi-hop communications are usually routed in a static
manner over the shortest path of links between the communicating pairs of
processors. Communications between non-adjacent pairs of processors can be
associated with relative unit communication costs. Unit communication cost
between a pair of processors will be a function of the shortest path between

these processors and the routing scheme used for multi-hop communications.

For example, in software routing, the unit communication cost is linearly pro-
portional to the shortest path distance between the pair of communicating
processors. Hence, the communication topology of the multicomputer can be
modeled by an undirected complete graph, referred here as Processor Com-
munication Graph (PCG). The nodes of PCG represent the processors and
the weights associated with the edges represent the unit communication costs
between pairs of processors. As is mentioned earlier, PCG can easily be con-
structed using the topological properties of POG and the routing scheme uti-

lized for inter-processor communication.

The objective in mapping TIG to PCG is the minimization of the expected
execution time of the parallel program on the target architecture. Thus, the
mapping problem can be modeled as an optimization problem by associating
the following quality measures with a good mapping : (7) interprocessor com-
munication overhead should be minimized, (i7) computational load should be
uniformly distributed among processors in order to minimize processor idle

time.

A mapping problem instance can be formally represented with two undi-
rected graphs, Task Interaction Graph (TIG) and Processor Communica-
tion Graph (PCG). The TIG Gr(V,FE), has |V| = N vertices labeled as
(1,2,...,4,7,...,N). Vertices of the G represent the atomic tasks of the
parallel program. Vertex weight w; denotes the computational cost associated
with task ¢ for 1 < < N. Edge weight e;; denotes the volume of interaction
between tasks ¢ and j connected by edge (i,j5) € E. The PCG Gp(P,D),

CHAPTER 5. THE MAPPING PROBLEM 37

I«r
is a complete graph with |P| = K nodes and |D| = (;) edges. Nodes of

the Gp, labeled as (1,2,...,p,q,..., K), represent the processors of the target

multicomputer. Edge weight d,,, for 1 < p,q < N and p # ¢, denotes the unit

communication cost between processors p and g.

Given an instance of the mapping problem with the TIG G7(V, E) and

the PCG Gp(P, D), the question is to find a many-to-one mapping function

M 'V — P, which assigns each vertex of the graph G'r to a unique node of the

graph Gp, and minimizes the total interprocessor communication cost (C'C')

CC = > e dpiyM () (5.1)
(4,5)EE,M({)#M(5)

while maintaining the computational load (C'L, : computational load of pro-

cessors p)

CL,= Y. w, 1<p<K (5.2)

i€V, M (i)=p

of each processor balanced. Here, M(z) = p denotes the label (p) of the proces-
sor that task 7 is mapped to. In Eq. (5.1), each edge (¢, 7) of the G contributes
to communication cost (C'C'), only if vertices ¢ and j are mapped to two differ-
ent nodes of the Gp, i.e. M(i) # M(j). The amount of contribution is equal
to the product of the volume of interaction e;; between these two tasks and
the unit communication cost d,, between processors p and ¢ where p = M(z)
and ¢ = M(j). The computational load of a processor is the summation of
the weights of the tasks assigned to that processor. Perfect load balance is
achieved if CL, = (XX, w;)/K for each p, 1 < p < K. Computational load
balance of the processors can be explicitly included in the cost function using
a term which is minimized when all processor loads are equal. Another scheme

is to include load balance criteria implicitly in the algorithm.

In Figure 5.1, an example for mapping problem are shown. The TIG graph

is in Fig. 5.1.a and a corresponding mapping instance is in Fig. 5.1.b

CHAPTER 5. THE MAPPING PROBLEM 38

Cutsize = 27

(b)

Figure 5.1. An example of mapping problem

Chapter 6

MFA SOLUTION FOR MAPPING

In this chapter, the general MFA formulation and a new efficient MFA for-
mulation for mapping problem in mesh and hypercube type multicomputer are
proposed. The experimental results for randomly generated mapping instances

and real problem instances are shown at the end of this chapter.

6.1 General MFA Formulation for Mapping Problem

The MFA algorithm is derived by analogy to Ising and Potts models which
are used to estimate the state of a system of particles, called spins, in thermal
equilibrium. In Ising model, spins can be in one of the two states represented
by 0 and 1, whereas in Potts model they can be in one of the K states. In
this work we use the Potts model. In the K state Potts model of S spins, the

states of spins are represented using S K-dimensional vectors
t .
Si =[Sty v vy Siky- vy SiK]) for 1 =1,2,...,85.

where “t” denotes the transpose operation. The spin vector S; is allowed to
be equal to one of the principal unit vectors eq,...,eg,...,ex, and can not
take any other value. Principal unit vector e is defined to be a vector which
has all its components equal to 0 except its £’th component which is equal to
1. Spin S; is said to be in state k if S; = e,. Hence, a K-state Potts spin
S; is composed of K two state variables {s;z}5_,, where s; € {0,1}, with the

following constraint
K
s =1 for i=1,2,...,5. (6.1)
k=1

39

CHAPTER 6. MFA SOLUTION FOR MAPPING 40

In the general encoding of the mapping problem, each spin vector corresponds
to a vertex of the TIG G(T', I). Hence, number of spins vectors is S = |T'| =
Dimension K of the spin vectors is equal to the number of processors. If a spin

is in state k (i.e., s;x = 1) we say that the corresponding task is assigned to

Processor k.

In the MFA algorithm, the aim is to find the spin values minimizing the
energy function of the system. In order to achieve this goal, the average (ex-
pected) values V; = (S;) of each spin vector S; is computed and iteratively

updated until the system stabilizes at some fixed point.Hence, we define
VZ' = [vz-l, N TR viK]t = <SZ> = [<Si1>, ceey <5ik>7 ceey <SZ'K>]t (62)

That is, vy, = (sig), for e = 1,2,...,5 and k = 1,2,..., K. Note that, s; €
{0,1}, i.e., s; can take only two values 0 and 1, whereas vy € [0,1], i.e., vy
can take any real value between 0 and 1. As the system is a Potts glass we

have the following constraint similar to Eq. (6.1)
K
> vk =1, for ¢=1,2,...,N (6.3)

This constraint guarantees that each Potts spin S; is in one of the K states at
a time, and each task is mapped to only one processor. In order to construct
an energy function it is helpful to associate the following meaning to the values
vik; Vir = P(task i is mapped to the processor k) for ¢ =1,2,..., N, and
k=1,2,...,K. That is, v;, is the probability of finding spin ¢ at state k. If

vix = 1 then spin ¢ is in state k£ and the corresponding configuration is S; = V;.

Now, we formulate the communication cost of the mapping problem as an

energy term

K K
EC(V) = Z €ij Z Z dri’P(task ¢ is mapped to processor k)
G.)el k=11#k
‘P(task j is mapped to processor [)
K

2D DD eivividi (6.4)

1=1 jeAdj(s) k=1 I#k

[\Dlr—t

where V = [Vy,...,Vy,..., V]’ is the spin average matrix consisting of N
K-dimensional spin vectors as its rows. Here, Adj(7) denotes the set of tasks
connected to task 7 in the given TIG. Minimization of E¢ corresponds to the

minimization of the communication cost of the mapping problem. Another

CHAPTER 6. MFA SOLUTION FOR MAPPING 41

term of the energy function is the term for penalizing imbalanced mappings.

N N
EB(V) = %Z Z w;w;P(tasks i and j are mapped to the same processor)
i=1 j#j
N N K
= 3 Z Z w;w; Z P(task ¢ is mapped to processor k)
i=1 j#5 k=1
P(task j is mapped to processor k)
1 N N K
= 5 Z Z Z ViU kW Wy (65)
1=1 j#i k=1

This triple summation term computes the summation of the inner products of
the weights of the tasks assigned to individual processors. Global minimum
of this term occurs when equal amounts of task weights are assigned to each

processor. If there is an imbalance in the mapping, £® term increases with the

square of the amount of the imbalance, penalizing imbalanced mappings. The

total energy function F is be defined in terms of E¢ and E? as
E(V) = E°(V)+ BE"(V) (6.6)

where parameter 3 is introduced to maintain a balance between the two op-
timization objectives of the mapping problem. Mean field theory equations,
needed to minimize the energy function E, can be derived as
OE(V K a
¢z’k = - &Ek) = — Z Zeijdklvﬂ — ﬂZwiwjvjk (67)

JEA; (i) Ik i

The quantity ¢;; represents the k’th element of the mean field vector ef-
fecting on spin k. Using the mean field values ¢, average spin values v;;, can
be updated using the Boltzmann distribution as

Uzk:W forZ:l,Q,,N,kzl,Q,,K (68)

where T' is the temperature parameter which is used to relax the system itera-
tively. Equation (6.8) handles the constraints given in Eq. (6.3) thus enforcing

each Potts spin S; to be in one of the K state when they converge.

In Eq. (6.7), the first and second summation terms represent the increases
in the total communication and imbalance costs, respectively, by mapping task
2 to processor k. Hence, —¢,;;, may be interpreted as the decrease in the overall
solution quality by assigning task ¢ to processor k. Then, in Eq. (6.8), v;; is up-
dated such that the probability of mapping task ¢ to processor k increases with

CHAPTER 6. MFA SOLUTION FOR MAPPING 42

increasing mean field ¢;;. After the mean field theory equations are derived
(Eq. (6.7), Eq. (6.8)), MFA algorithm can be summarized as follows. First an

initial, high temperature, spin average is assigned to each spin, and an initial

temperature is chosen. At each temperature, starting with initial spin averages,

the mean field vector effecting on a randomly selected spin is computed using

Eq. (6.7). Then, spin average vector is updated using Eq. (6.8). This process
is repeated for a random sequence of spins until the system is stabilized for the
current temperature. Then, T is decreased according to the cooling schedule,
and iterative process is re-initiated. In [6] we have proposed an efficient im-
plementation scheme which asymptotically reduces the complexity of a MFA
iteration to ©(dy,, K + K?) where d,,, denotes the average vertex degree in

the x.

6.2 Interconnection-Topology Specific MFA Formula-
tion for Mapping

In this section, we proposed efficient Mean Field Annealing formulation for

Mesh-connected and Hypercube-connected architecture.

6.2.1 MFA formulation for Mesh-Connected Architec-

tures

Consider a P by () two-dimensional mesh-connected architecture with P rows
and () columns. The encoding in the general MFA formulation summarized in
Section 6.1 necessitates N x K = N x P x () variables for the problem represen-
tation. In this section, we propose a MFA formulation for the mesh-connected
architectures which exploits the conventional routing scheme in mesh intercon-
nection topologies to introduce a much more efficient encoding scheme. Note
that, the communication distance between any two processors is equal to the
Manhattan distance between those two processors on the processor grid. Hence,
the unit communication cost between any two processors can be expressed as
the sum of two components: horizontal and vertical communication costs. Hor-
izontal and vertical unit communication costs are equal to the column and row

distances between the processor pairs, respectively. Thus, any edge (7,7) € [

CHAPTER 6. MFA SOLUTION FOR MAPPING 43

with weight e;; of the TIG will contribute

Eg = EZ-I—EZ”? = e;; X [column(z) — column(j)|+ €i; X [row(i) — row(y)| (6.9)

to the total communication cost, where row(:) and column(z) denote the row

and column indices of the processor that task ¢ is mapped to and |-] denotes the

absolute value function. Here, £}, and EZh? denote the horizontal and vertical

communication costs due to edge (¢,7) € I of the TIG. Hence, the row and

column mappings of each task are sufficient for efficient computation of the

interprocessor communication cost in mesh-connected architectures.

Encoding

In the proposed encoding, we use two Potts spins of dimensions P and @)
for each vertex (task) of the TIG. Spins of dimensions P and @ are used to
encode the row and column mappings of the tasks, respectively. Note that this
encoding also constructs a one-to-one mapping between the configuration space
of the problem domain and the spin domain. However, it is much more efficient
since it uses a total of N x(P + @) two-state variables instead of N x Px() two
state variables of the general encoding. Spins with dimensions P and () are
+Sipr -5 Sip)’

, 850t respectively, for ¢ = 1,2,...,N. If a row

called row and column spins which are labeled as S? = [sf,...

and 8§ = [s§,...,85,...
(column) spin is in state p (¢) we say that the corresponding task is mapped
to row p (column ¢). Hence, s7, = 1 (s, = 1) means that task 7 is mapped to
row p (column ¢) of the mesh. That is, if s}, = 1 and s{, = 1, this means that
task 7 is mapped to processor pg in the mesh. Here, processor pg identifies the

processor at row p and column ¢ of the mesh.

Energy Function Formulation

The following spin average vectors are defined for the sake of energy function

formulation.

VI = ol heesvp] = (S5 = (R (s)ee s (s50)]'

Vi = [vfl,...,qu,...,va]t:<Sf>:[<3§1>7---7<3?q>7---7<5?Q>]t

Note that, s7 , sf, € {0,1}, i.e., s} and s, are discrete variables taking only two

values 0 and 1, whereas v] ,vf, € [0,1],1.e., v}, and v, are continuous variables

CHAPTER 6. MFA SOLUTION FOR MAPPING 44

taking any real value between 0 and 1. As the system is a Potts glass we have

the following constraints similar to Eq. (6.3)

P Q

> vl =1, S g =1, (6.10)
q=1

p=1

These constraints guarantee that each Potts spin S (S¢) is in one of the P

(@) states at a time, and each task is assigned to only one row (column) for

the proposed encoding. In order to construct an energy function it is helpful

to associate the following meanings to the vf, and vg, values,

vy, = P(task 1 is mapped to one of the processor in row p),

C

v;, = P(task ¢ is mapped to one of the processor in column ¢) (6.11)

fori=1,2,... N,p=1,2,...,Pand ¢ = 1,2,.... That is, v}, (v{,) denotes
the probability of finding row (column) spin 7 in row p (column ¢). Formulation
of horizontal communication cost due to edge (¢,7) of the TIG as an energy

term is:

. Q-1 @
Eigy = e 2. > (I—k)
k=1 I=k+1
x {P(tasks ¢ and j are mapped to columns k and [, respectively) +

P(tasks j and ¢ are mapped to columns k and [, respectively)}

Q-1 Q
= e >, > (I=k)(vjv5 + vivh) (6.12)

k=1 l=k+1

Similarly, energy formulation for the vertical communication cost due to edge
(2,7) is

P-1 P

EG ;) = e€ij Yo > (= k) (vl + vigvi) (6.13)

k=1 I=k+1
The derivation of the mean field theory equation using the formulation of the
energy terms Ky and Ef ;) given in Egs. (6.12) and (6.13) results in sub-
stantially complex expressions. Hence, we simplify the expressions for E(hm-)
and Ef; ;) in order to get more suitable expressions for the mean field theory
equations. A close examination of Eqgs. (6.12) and (6.13) reveals the symmetry
between the expressions for E(hm.) and Ef; ;) terms which can be obtained from
each other by interchanging "r” with ”¢” and ”P” with ”7Q”. Hence, algebraic
simplifications will only be discussed for the E; ;) term. Similar step can be
followed for the Ef; ;) term.

CHAPTER 6. MFA SOLUTION FOR MAPPING 45

We introduce the following notation for the sake of simplification of the

communication cost terms:
Q k P

k
cmk = Z vy Lik = vah ka = ZUZ L?,k = ZUZ (6-14)

=k = =k

Here, F5 and LS, denote the probabilities that task ¢ is mapped to one of

the processor in the first k£ columns (i.e., columns 1,2,3,..., k) and the last

QQ—Fk+1 columns (i.e., columns k, k+1,...,Q), respectively. Similarly, F7, and

. denote the probabilities that task ¢ is mapped to one of the processors in
the first k£ rows and the last P—k+1 rows, respectively. Using this notation

and thru some algebraic manipulations the expression for E(hm-) simplifies as :

Q-1 Q Q-1 Q
E(hz',j) = eij{z Z (I = k)vipof + Z Z (I = k)vjpoi}

k=1 I=k+1 k=1 I=k+1
Q-1 @ Q Q-1 @ Q
= ei{D D0 D vt D0 D DL vikvin)
kllk+1ml kllk+1ml
Q-1 k Q-1 k
= {2) Z Vi D0 D Z U105
k=1 =1 m=k+1 k=1 l=1 m=k+1
Q-1 k Q Q-1 k Q
= {20 D v D et 2D v X0 via)
k=1 [l=1 m=k+1 k=1 [l=1 m=k+1
Q-1
= € Z ikl ket € Z kL e
k=1
Q 1
= eij 3 (FSLS pyy + FipLigiy) (6.15)
1 i,k 5,k+1 ki, k1
k=1

Similarly, the expression for Ef; ;y simplifies to

UJ €ij Z j k+1 + FTkLz k+1) (616)

We formulate the energy term corresponding to the imbalance cost using

the same inner product approach adopted in the general formulation (Eq. (6.5))

as follows:
1 N N
EB = = Z Z w;w;P(task ¢ and j are mapped to the same processor)
23 j#i
1 N N P Q
= 2 Z Z w;w; Z Z P(task i is mapped to the processor pq)
1=1 j#1i p=1g¢=1
P(taskj is mapped to the processor pq)
1 N N P
= 9 Z Z wiw; Z Z vzpvzqvjpvjq (6.17)
1=1 j#¢ p=1g=1

CHAPTER 6. MFA SOLUTION FOR MAPPING 46

Total energy term can be defined in terms of the communication cost terms

and the imbalance cost term as

E(VY, V) = EMV®) + EY(VY) + BEB(V®, V) (6.18)

Here, V' = [V],...,V],...,Vp]' and V° = [V{,... . V{ ... V3]’ denote the
row and column spin-average matrices consisting of N, P and) dimensional

vectors as their rows, respectively.

Derivation of the Mean Field Theory Equation

The expected values V! and V¢ of each row and column spins S7 and S¢ are
iteratively updated using the Boltzmann distribution as
ebin/T" . ebialT°

vV

= S (6.19)

(@) v = S oo (6)
forp=1,2,...,Pand ¢ =1,2,...,Q), respectively. Here, T" and T° denote the
temperature parameters used for annealing the row and column spin updates
respectively. Recall that, the number of states of the row and column spins
are different (P and @ for row and column spins, respectively) in the proposed
encoding. As the convergence time and the temperature parameter of the
system depends on the number of states of the spins we interpret the row and
column spins as different system, i.e., the temperature parameter of the row
and column spins are different. Note that, Eqs. (6.19.a) and (6.19.b) handle
the constraints given in Eq. (6.10) thus enforcing each row and column Potts
spins ST and S¢ to be in one of the P and () states when they converge. In the
proposed MFA formulation, row and column spins are updated in an alternative
manner, i.e., each row spin update is followed with a column spin update and
vice versa. MFA iterations in which row and column spins are updated will be

referred here as row and column iterations, respectively.

In the proposed formulation, row and column mean field vectors ®7
and ®¢ are to be computed in row and column iterations, respectively.
Each element ¢, and ¢f, of the row and column mean field vectors ®! =
[@F, s Ol bip)t and BF =[5, ..., ¢5,,. .., ¢5]" experienced by row and

column Potts spins ¢ denote the decrease in the energy function by assigning ST
iv
decrease in the overall solution quality by mapping task ¢ to row p (column q).

to e, and S to e,, respectively. Hence, —¢} (—¢5,) may be interpreted as the

In other words, —¢7, (—¢5,) corresponds to the increase in the energy function

CHAPTER 6. MFA SOLUTION FOR MAPPING 47

by mapping task ¢ to row p (column ¢). Then, in Eq. (6.19.a) (Eq. (6.19.b)), v
(v§,) is updated such that the probability of mapping task ¢ to row p (column
q) increases with increasing mean field value ¢, (¢f,). Using the simplified

expressions for the proposed energy function in Egs. (6.15), (6.16) and (6.17)

, OH(V", V) () | ar (B
vT T g =% T8¢
= - Z ei; 25, — B w; Z w;v H,szq v5, (6.20)
JEAL;(7) J=1,5#1
. JH(VT,V°) ¢ o C
= —qu=¢iq +5°9y”)
= - Z ei; 25, — Bw; Z w;v quvzp V5, (6.21)
JEAdj(4) Jj= 173#2
where Z k-l— Z L and Zc Z k-l— Z L

k=p+1 k=q+1

As seen in Eqs.(6.20) and (6.21), different balance parameters 5" and 3¢ are
used in the mean field computations of row and column iterations since row and
column spins are interpreted as different system. Figure 6.1 illustrate the MFA
algorithm proposed for the mapping problem for mesh-connected architectures.
Note that, each iteration of the inner while-loop (step 3.1) involves one row and
one column iteration. Also note that the computation of the energy differences
AFE" and AE° necessitates computing E in Eq. (6.18) twice at each iteration
of the inner while-loop which drastically increases the complexity of a MFA
iteration. Here, AE" and A E° represent the energy differences due to the row
and column spin updates, respectively. As is seen at Step 3.1.5 we use the
efficient energy difference computation scheme which we have proposed for the

general MFA formulation [6].

An Efficient Implementation Scheme

As mentioned earlier, the proposed MFA algorithm is an iterative process. The
complexity of a single MFA iteration is due mainly to the mean field compu-
tations. As is seen in Eqs. (6.20) and (6.21), calculation of mean field values is
computationally very intensive. In this section, we propose an efficient imple-

mentation scheme which reduces the complexity of mean field computations,

CHAPTER 6. MFA SOLUTION FOR MAPPING

48

1. Get the initial temperatures Ty, 7§, and set 7" =T§,T° =T§

11 3 3 [T T T
2. Initialize the spin averages V" = [v],,...,00,..., 0} p]
c [C C
and V¢ = [vf,...,05,...,05%]

3. WHILE temperature T" and T is in the cooling range DO
3.1 " and E° are decreasing

3.1.1 Select tasks ¢ and j at random for horizontal and vertical
spins, respectively.

3.1.2 Compute mean field vectors ®; and ®¢ experienced by
row and column Potts spins ¢ and j.

ro_) r 7o, IV T Q C ,C
= T 2oheAd;(i) ethhp — Brw; 2 h=1,hi WhUhp 2og=1 ViyVhq

c . c Coyy . SOV c P o7
S0 = — Lheadi(j) €inlig — BW; Xhmi haty WhVGy Lp=1 VipVhy

3.1.3 Compute the summations -0_, e?/T" and Y2, ?i/T°
3.1.4 Compute row and column spin-average vectors V} and V7

T T N~P o gr T
S = ST S T

o) = 5T T2 T

3.1.5 Compute the energy changes AE" = ¢7 Av] and AE® =

3.1.6 Update row and column spin-average vectors VI and V7

¢ _ c(new)
and Vi = Yijq

r _r(new)
Vip = Vip

32 T"=axT"and T =a x T°

C C
.7'qu.7'<1

Figure 6.1. The proposed efficient MFA algorithm for the mapping problem

for mesh-connected Architectures.

CHAPTER 6. MFA SOLUTION FOR MAPPING 49

and hence the complexity of the MFA iteration, by asymptotical factors. Mean

field theory equations given in Section 6.2.1 reveals the symmetry between the

mean field vector computations in row and column iterations. Hence, the pro-

posed implementation scheme will only be discussed for computing the mean

field vector ®] = [¢}},..., ¢}, ..., ¢ip]" in row iterations. Similar discussion
applies to the computation of the ®f = [¢5,..., 45, ..., d5]" vector in column
1terations.

Assume that row Potts spin ¢ is selected at random in a row iteration

for updating its expected value vector Vi. We will first discuss the mean

field computations corresponding to the vertical communication cost. As
is seen in Eq. (6.20), these computations require the construction of the
7 = [Ziy,..., 2}, ..., Zip]" vector for each vertex j adjacent to ¢ in TIG.
The computation of an individual Z vector necessitates the construction of

Fi = [F,...,F ... Fipltand LY = [L%y,..., L%, ..., Lp]* vectors. These
two vectors can be constructed in ©@(P) time using the recursive equation
o= Pl +vl, for k=23,...,P (6.22)
where I} = v}
w o= Lig +vj, for k=P-1,P-2,...1 (6.23)
where Lip =vp

The computation of an individual Z7 value takes ©(F) time. Hence, the
complexity of computing an individual Z’ vector becomes O(P?). However, in
the proposed scheme the elements of the Z7 vector are computed in only O(P)

time by exploiting the recursive equation

Z.;q = 7

7,9—1

P
where Z7, =Y Lj

=2

— L, 4+ Fl,_, for k=12,...,P (6.24)

Hence, the complexity of mean field computations corresponding to the vertical
communication costs term is ©(d; P) in a row iteration since the first summation
term in Eq. (6.20) requires the computation and weighted addition of d; such
Z’ vectors. Here, d; denotes the degree of vertex ¢ in the TIG. Similarly,
the complexity of mean field computations corresponding to the horizontal
communication cost term is ©(d;@)) when column spin ¢ is selected at random

in a column iteration.

As is seen in Eq. (6.20), the complexity of computing an individual mean

field value corresponding to the imbalance term is (N Q). Since P such values

CHAPTER 6. MFA SOLUTION FOR MAPPING 50

are computed in a row iteration, the total complexity of mean field computa-
tions corresponding to the imbalance cost term becomes O(N PQ). However,
the complexity of these computations can be asymptotically reduced as follows.
The second summation term in Eq. (6.20) can be re-written by interchanging

the order of summations as

Z w;v 7pzvzq ja T wlzvzq Z w;v 7z> 7q

J=1,5#1 j=1,7#14
= w; vaq(— wivv;,) (6.25)
where = W, = Zw] VU5, (6.26)

Here, W, denotes the total computational load of processor pq for the current

row and column spin values. In Eq. (6.26), W,, — w;v] v{ denotes the weight

of processor pg excluding task . Hence, Eq. (6.26) re;reZents the increase in
the imbalance cost term if task i is assigned to row p (i.e., vf, is set to 1).In
the proposed implementation scheme, we maintain a P by () processor weight
matrix W consisting of W, values. The entries of this matrix are computed
using Eq. (6.26) only at the beginning of the algorithm. Then, while updating
the expected value vector V{ of an individual Potts spin ¢z, the W matrix is
updated in O(PQ) time using
pynew) — plold) 4 wivicq(v:(new) _ yrleid)y

rq rq P p
forp=1,2,...,P and ¢ = 1,2,...,Q. Hence, computing Eq. (6.26) for each
iv
struct the mean field vector, the total complexity of mean field computations

value takes O(()) time. Since, P such values are to be computed to con-

corresponding to the imbalance cost term reduces O(PQ) in a row iteration.

It should be noted here that, column iterations also use and update the same
weight matrix W as is used and maintained in row iterations. The complexity
of mean field computations corresponding to the imbalance cost term is also
O(QP) in column iterations. Thus, the proposed scheme reduces the overall
complexity of mean field computations to ©(d,,, P + PQ) and O(d,,,Q + PQ)
in row and column iteration, respectively. Here, d,,, denotes the average vertex
degree in TIG . After computing the mean field vectors @7 and ®¢, expected
value vectors Vi and V¢ of row and column Potts spin 7 and j can be up-
dated using Eq. (6.19.a) and Eq. (6.19.b) in ©O(P) and O(Q) times, in a row

and column iteration, respectively. The complexities of computing the energy

CHAPTER 6. MFA SOLUTION FOR MAPPING 51

difference AE” and AFE® as shown at step 3.1.5 of Fig. 6.1 are ©(P) and O(Q)

times, in a row and column iteration, respectively.

Therefore, the proposed implementation scheme reduces the complexity of
an individual row and column iteration to ©(d,,, P+ PQ) and ©(d,,,Q + PQ),

respectively. Note that, a row and a column iteration pair corresponds to a

single iteration of the general MFA formulation discussed in Section 6.1. Hence

the proposed MFA scheme asymptotically reduces the complexity of a single
MFA iteration from O(d,., PQ + (PQ)?) of the general MFA formulation to
O(dus(P+Q)+PQ) for a P by @) mesh. For a square mesh with K processors,
this corresponds to an asymptotical complexity reduction from ©(d,,, K + K?)

to O(du, VK + K).

6.2.2 MPFA Formulation For Hypercube Architecture

Consider M dimensional hypercube, encoding in the general MFA formulation
summarized in Section 6.1 needs N x K variables for problem representation.
Here, N is the number of task and M = log(K). In this section, we propose
a new MFA formulation for hypercube type multicomputers which necessi-
tates N x log(K) variables for problem representation. For sake of simplicity,
some definition about hypercube are given below. The communication distance
between any two processors is equal to Hamming distance between those two
processors. The Hamming Distance between two processors in hypercube is de-
fined as the number of different bits between those two processor id’s (binary
representation of processor ids). A dimension i refers to the communication
links between the processors whose processors ids differs on the sth bit. A M
dimensional hypercube can be divided into two (M — 1) dimensional subcube
along the any dimension. Therefore, M dimensional hypercube can be divided
into two (M — 1) subcube in M different ways (dimension). We define two
(M — 1) dimensional subcubes H* and H? which is constructed by dividing M
dimensional hypercube along the sth dimension. Subcube H' contains the pro-
cessor whose ith bit of ids is 1 and subcube H? contains the processors whose
ithe bit is 0. In Figure 6.2, the 3-dimensional hypercube is divided into two
2-dimensional subcubes in 3 different ways. In our new efficient formulation,

each task is assigned to subcubes instead of processors.

In hypercube topologies, using Ising model is more suitable than Potts

model, because in Ising model spins can be in one of the two states represented

CHAPTER 6. MFA SOLUTION FOR MAPPING 52

Devision 3-dimensional Hypercube to 2 dimensional Hypercubes

Figure 6.2. Three different ways for dividing 3-dimensional hypercube to 2
2-dimensional subcubes

by 0 and 1. So, for each M — 1 dimensional subcube H™ of the M dimensional
hypercube, one Ising spin is used for encoding. To encode the configuration
space of the mapping problem, one Ising spin is assigned to each M — 1 dimen-
sional subcube of the hypercube . Totally M Ising spin is represented for each
task 7. Here M is the number of dimension of the hypercube and if there is K
processor in hypercube, then M = log(K).

There will be a total of |N| x log(K') Ising spins in the system for encoding
the configuration space of the problem. Note that, this encoding constructs
the one-to-one mapping between the configuration space of the problem domain
and the spin domain. This encoding is much more efficient than the general

MFA encoding which requires |N| x K spins for encoding.

The spin which is assigned to task i and represented to subcube H* of the
hypercube is labeled as s7*. If a s is 1, we say that the corresponding task is

mapped to one of the processors the H,, subcube.

The average v =< s > of each spin. s

2

is computed and iteratively

updated until the system stabilizes at some fixed point. We define
v =< s > where m=1,2,...,log(K)

Here s™ € {0,1}, whereas v € [0, 1], In order to construct an energy function,

CHAPTER 6. MFA SOLUTION FOR MAPPING 53

it 1s helpful to associate the following meaning to v values.

v* = P{task i is mapped to one of the processors in subcube H™}

For simplicity, the energy computation is divided to two part, interconnec-

tion communication energy term (F.,,) and imbalance energy term ([Epy;).

E = Ecom + r X Eba,l

We derive the interconnection communication energy function for mapping
problem as follows.

N N log(K)

1
Feoro = = Z Zeii Z P{ task i is mapped to one of the processor in H'} x
i=1 i#; I=1
P{ task j is mapped to one of the processors in H!(6.27)
log(K)
= —ZZ% > six(1-s)) (6.28)
1=1 i#£j =1

We consider the load-imbalance term for each processors so we formulate the

energy term correspond the imbalance cost as

| NN K
Ewi = =>> wyw; Y P{task i is mapped to processor p} x
1=1 j#i p=1
P{task j is mapped to processor p}
| NN K
= 52> waw; Y SIS (6.29)
=1 j#i p=1

Here, S is the probability of task ¢ is mapped to processor p. For example,
we have 4-dimensional hypercube and the probability of task i mapped to
processor 9 is Sf = [sts?s?s)] = (six (1 —5s2) x (1 —s?) xs!) we define S?

as

SP Hlog(Pl where zi = ms, +m(l — s}) (6.30)

Here 2! is s} or (1 — s!) according to the binary representation of the processor
number p. In equation (6.30), m is 1 or 0 if the I-th bit of the processor number
is 1 or 0. Total energy term can be defined in terms of communication cost

term and the imbalance term as

E = E(‘om + r X Eba,l
1 N N log(K)

= —ZZe” Z sﬁx(l—sé)—}—

=1 z#] =1

r X —Zszwj ZSpSp (6.31)

=1 j#¢

CHAPTER 6. MFA SOLUTION FOR MAPPING 54

In MFA algorithm, the expected values v* of each spin s7* are iteratively

updated using Boltzmann distribution as

m 1
v = 1+6_¢Z_n/T (632)

Each ¢ denotes the decrease in the energy function. Hence for the for-

mulation of mapping problem for hypercube —¢ may be interpreted as the

decrease in the overall solution quality by assigning task ¢ to one of the pro-

cessors in subcube H™. In this work the mean field values are computed as

¢:n: comz+r><¢balz

The mean field values coming from the communication energy term is cal-

culated as
. 0F o 1

com,i — aszn = - Z eij(vjm - 5) (633)

JEAdj(1)

Here if ¢
of task ¢ is mapped to one of the processor whose m-th bit is 1. Also ,if ¢7

is positive then v/* is attracted to 1. This means that probability

com, 7

com, 7

is negative then v is attracted to 0. This means that probability of task :
is not mapped to one of the processor whose m-th bit of binary number is 1.
The computation of the mean field value for communication cost takes O(dy,,)

where d,,, is the average vertex degree of TIG.

Second Term of the mean field value is the imbalance energy term is calcu-

lated as

0Fpq 1 L E log(K) log(K) 1
¢balz - asm = —§ZZOZUJZUJJH]€ 1k;ém ZH z'
1

? 71p1

N
= _szz Héco‘glI}c;ém 25 Z Hlog(A) Zl (634)

J=1,5#1

Here o is 1 or -1 according to m-th bit of the processor p. To simplify the
equation (6.34), the product term is substituted by S in equation (6.30).

K Sp N
b = wZ Z a— Z w;SY (6.35)
et J=Lg#i

As seen equation (6.35), the complexity of computing an individual mean field

value corresponding the imbalance cost is O(|N|x K'). However, the complexity

CHAPTER 6. MFA SOLUTION FOR MAPPING 55

of the computation can be asymtoticaly reduced as follows.

1 log(K)
A —3 Z a(SF/sT) - 87 (6.36)
where WP = Z w;S¥ (6.37)
7=1

Here, WP denotes the weight of the processor p for current spin values. The

parenthesis term inside the summation (6.36) denotes the weight of processor

p excluding the task 7. Hence (6.36) represent the increase in imbalance cost

term, if task ¢ 1s assigned to processor p. The entries of the W vectors are

computed using (6.37) at the beginning of the algorithm. Then, while updating

the expected value of individual Ising spin ¢, the W vector is updated in O(K)
by using iterative properties of equation (6.37). If the s is updated in MFA
iteration then the W vector is updated like as

Wr — wp 4 gplnew) _ grleld) plnew) _ ST mfnew)
8 .

2

As the 87 value is updated in O(1) times , updating the W vector takes O(K)
times. Therefore total computation of mean field value for imbalance cost term

(¢7) takes O(K) times.

In Figure 6.3, another method are given for calculating the mean field value

for imbalance cost term which takes also O(K).

If we add the mean field values from communication cost term (6.33) and
imbalance term (6.36), the mean field value for given spin ¢ and subcube H™

1s

1 1 log(K)
o == D e =) —g5 X alSI/sTV - 8Y) (6.:39)
JEAd; (i) p=1

As seen in (6.39), total computation of the mean field value for given spin
¢ and dimension m is O(dy,, + K). Steps of the MFA algorithm for hypercube
topologies is very similar to the MFA algorithm for mesh. In this MFA algo-
rithm one spin is selected randomly for each dimension. Therefore one MFA
iteration requires log(K') mean field value computation. So complexity of the
one MFA iteration is O(du, X logK + K x logK). Instead of O(dyy, x K + K?)
in the traditional MFA algorithm.

CHAPTER 6. MFA SOLUTION FOR MAPPING 56

sum = 0;
for k=0 to (p/2**1)-1 do
for =0 to 2 — 1 do
p=1x2Mt 41,

g=p+2*

WP = WP — wiSf
Wq = Wq - wz-Sf
sum = sum + SY(W? — WP
endfor
endfor
¢ = —w; X (sum/si")

Figure 6.3. The Mean field value calculation of given spin i of subcube H™

6.3 Performance Evaluation

This section presents the performance evaluation of the efficient MFA formu-
lation proposed for the mapping problem for mesh-connected architectures
in comparison with the well known mapping heuristics: simulated anneal-
ing (SA), Kernighan-Lin (KL) and the general MFA formulation. Each al-
gorithm is tested using randomly generated mapping problem instances for
mesh-connected architectures. The following paragraphs briefly present the

implementation details of these algorithms.

The MFA algorithm proposed for the mapping problem for mesh topology is
implemented efficiently as described in Section 6.2.1. At the very beginning the
of the algorithm row and column spin averages are initialized to 1/P and 1/Q
plus a random disturbance term, so that the initial spin averages are uniformly

distributed in the range

1 r(initia 1

0.9x5§%§ ”)§1.le for i=1,2,....,.N, p=12,...,P
1 c(initial) 1 .

0.9><§_v2-q Sl.lxa for ¢=1,2,...,N, g=1,2,...,Q

respectively. Note that limgr_ovf, = 1/P and limpe_o v§, = 1/Q. The
initial temperatures and balance parameters used in the mean field computa-
tion of the row and column iterations are estimated using these initial random

spin average values. Recall that, in the mean field computations (Egs. (6.20))

CHAPTER 6. MFA SOLUTION FOR MAPPING 57

and (6.21) of row and column iterations, the parameters 47 and [° deter-
mine a balance between the terms gb;gc) and gbZZEB) and gb;gc) and qbféB), respec-
tively. We compute the row spin averages <¢>T(C)> = (XN, P gbr(c))/NP

ip =1 p= ip

and <¢77(B)> = (- qu(B))/NP using the initial v}, values. Column spin

ip =1 p= ip
averages <¢f(§c)> and <¢>;§B)> are computed similarly using the initial v

¢
iq

ues. Then, balance parameters are computed as " = CB<¢;EC)>/<¢;EB)> and
B = CB<¢>C(C)>/<¢>C(B)>, where Cp is chosen as 5.6. Our experiments show that

79 79
computing 4" and (3¢ using this method is sufficient for obtaining balanced

val-

partitions.

Selection of initial temperature parameters T and 7§ is crucial for ob-
taining good quality solutions. In previous applications of MFA [18, 22], it

is experimentally observed that spin averages tend to converge at a critical

temperature. Although there are some methods proposed for the estimation of
critical temperature, we prefer an experimental way for computing 75 and 7§
which is easy to implement and successful as the results of experiments indicate.
After the balance parameters 8" and 3¢ are fixed, average row and column mean
fields are computed as (g7,) = (¢is) +87(¢5")) and (¢5,) = (637)+8(53)
. Then T§ and 1§ are computed using Ty = Cr(¢;,)/P and T§ = Cr(¢5,)/Q
where C7 is chosen as 20. Note that, both T and T are inversely proportional
to the dimensions of the row and column Potts spins, respectively, which is also
observed for the critical temperature formulations presented in other MFA im-

plementations [18, 26].

The same cooling schedule is adopted for row and column iterations as fol-
lows. At each temperature, row and column iterations proceed in an alternative
manner for randomly selected unconvergenced row and column spin updates
until AE" < € and AE® < e for M consecutive iterations respectively where
M = N initially and € = 0.05. Average spin values are tested for convergence
after each update. If one of the v; terms of a row or column spin average
vector is detected to be greater than 0.95, that spin is assumed to converge to
state k. The cooling process is realized in two phases, slow cooling followed
by fast cooling, similar to the cooling schedules used for SA [22]. In the slow
cooling phase, row and column temperatures are decreased using o = 0.9 until
T < Ty/1.5 for both row and column iterations. Then in the fast cooling phase,
M is set to M /4, « is set to 0.7 and cooling for row and column iterations are
continued until 90% of the row and column spins converge, respectively. At
the end of this cooling process, the maximum element in each unconvergenced

spin average vector is set to 1 and all other elements in that vector are set to

CHAPTER 6. MFA SOLUTION FOR MAPPING 58

0. Then, the result is decoded as described in Section 6.2, and the resulting

mapping 1s found. Note that, all parameters used in this implementation are

either constants or found automatically. Hence, there is no parameter setting

problem for different mapping instances.

The general MFA formulation summarized in Section 6.1 is implemented
efficiently as described in [6]. The initialization of spin averages, the selection

of the balance parameter 8 and the initial temperature T are performed as

1s described for the mesh-specific MFA implementation. The expressions used
for these computations can be found by replacing P and) with K = Px() in
those expressions described for the mesh-specific MFA implementation. The
parameters C'r and Cg are chosen as 0.5. The same cooling schedule described

for mesh-specific MFA implementation is used in the implementation of the

genera MFA formulation.

The two-phase approach is used to apply KL to the mapping problem. KL
heuristics is implemented efficiently as described by Fiduccia and Mattheyses
(FM) [6] for the clustering phase. The recursive bisection scheme implemented
for the first phase recursively partitions the initial TIG into two cluster until
K = Px(clusters are obtained. Here, K is assumed to be a power of two. In
the KLFM heuristic, computational load balance among clusters is maintained
implicitly by the algorithm. Vertex moves causing intolerable load imbalance
are not considered. The one-to-one mapping heuristics used in the second
phase is a variant of the KL heuristics. In this heuristic, communication cost
is minimized by performing a sequence of cluster swaps between the processor

pairs after an initial random mapping of K clusters [21].

The SA algorithm implemented in this work implicitly achieves the load
balance among processors by setting a neighborhood configuration consisting
of all configurations which result from moving one task from the processor
with maximum load to any other processor. Randomly selected possible moves
which decrease the communication costs are realized. Acceptance probabilities
of randomly selected moves that increase the communication cost are controlled
with a temperature parameter 7' which is decreased using an automatic anneal-
ing schedule [22]. Hence, as the annealing proceeds acceptance probabilities of

uphill moves decrease.

CHAPTER 6. MFA SOLUTION FOR MAPPING 59

Table 6.1. Total communication costs averages normalized with respect
to mesh-specific MFA of the solution found by SA ,KL,general MFA and
mesh-specific MFA for randomly generated mapping problem instances for var-
ious mesh size

Problem Size Average Communication Cost
TIG Mesh MFA

N [davg | PXQ KL SA [Gen. | Mesh
2 4x4 1.20 | 0.83 1.16 1.00

2 4x8 2.62 | 0.76 1.09 1.00

400 3 4x4 1.14 | 1.01 1.13 1.00
3 4x8 1.96 | 0.94 1.07 1.00

4 4x4 1.31 | 1.03 1.09 1.00

4 4x8 1.92 | 0.97 | 1.08 1.00

2 4x8 1.73 | 0.89 1.10 1.00

2 8x8 2.61 | 0.88 1.30 1.00

800 3 4x8 2.20 | 1.13 1.41 1.00
3 8x8 2.88 | 1.06 1.00 1.00

4 4x8 1.65 | 1.14 1.13 1.00

4 8x8 2.55 | 1.17 | 1.20 1.00

2 8x8 1.61 | 0.99 0.93 1.00

2 8x16 2.89 | 1.05 1.15 1.00

1600 3 8x8 1.57 | 0.99 | 0.96 1.00
3 8x16 2.47 | 1.00 1.13 1.00

4 8x8 2.03 | 1.17 | 1.31 1.00

4 8x16 3.39 | 0.93 1.26 1.00

6.4 Experimental Results

The mapping heuristics are experimented by mapping randomly generated
TIGs and test TIGs onto various size meshes. Random TIGs are generated
using the following parameters: number of vertices (NN), average vertex de-
gree (dg.,), maximum vertex weight (w0;,4,) and maximum edge weight (€44)-
In a random graph Gy, with N vertices, each pair of vertices constitutes an
edge with probability p. Since Gy p can have at most pC(N,2) edges, the
sum of the degrees of the vertices of Gy, is equal to 2pC(N,2). Then, the
expected average vertex degree of G, is dyyy = 2pC(N,2)/N = p(N — 1).
Thus, the parameter P is selected as p = dg,, /(N — 1) to generate a random
TIG with N vertices and expected vertex degree d,,,. Then, the edge set is
created by flipping a coin with probability p for all (N(N — 1)/2 potential
edges. Each vertex or edge is weighted randomly by choosing a number be-
tween 1 and w,q, or 1 and e,,,,, respectively. Nine test TIGs generated with
N = 400,800,1600, dyy = 2,3,4, Wpar = 5 and €44, = 10 using this random
graph generation algorithm. These test TIGs are mapped to 4 x4, 4x 8, 8x8

and 8 X 16 two-dimensional meshes.

CHAPTER 6. MFA SOLUTION FOR MAPPING 60

Table 6.2. Percent computational load imbalance averages of the solution found
by SA,KL,general MFA and mesh-specific MFA for randomly generated map-

ping problem instances for various mesh size

Problem Size Average Percent Imbalance
TIG Mesh MFA

N [davg | PxQ KL SA | Gen. [Mesh
2 4x4 9.1 2.1 8.6 7.8

2 4x8 14.5 6.5 11.1 8.3

400 3 4x4 11.4 4.4 8.6 4.5
3 4x8 15.5 5.5 9.7 8.3

4 4x4 11.9 4.0 5.1 7.9

4 4x8 16.1 7.8 12.7 6.3

2 4x8 12.0 5.8 16.2 7.8

2 8x8 16.7 8.4 12.7 8.7

800 3 4x8 15.6 3.5 8.7 5.2
3 8x8 19.7 9.6 16.0 8.2

4 4x8 16.5 | 13.8 7.9 14.2

4 8x8 19.0 6.6 6.2 6.9

2 8x8 13.8 9.3 12.7 8.2

2 8x16 21.0 9.4 13.9 7.9

1600 3 8x8 15.3 | 14.3 16.6 10.3
3 8x16 19.7 | 10.9 13.0 11.7

4 8x8 15.6 9.4 14.9 8.9

4 8x16 21.9 7.3 11.2 9.4

Table 6.3. Execution time averages of the solution found by SA ,KL,general
MFA and mesh-specific MFA for randomly generated mapping problem in-
stances for various mesh size

Problem Size Average Execution Time(sec)
TIG Mesh MFA
N [dawg | PxQ@ || KL SA [Gen, | Mesh
2 4x4 1.1 99.4 11.7 2.8
2 4x8 1.1 99.4 11.7 2.8
400 3 4x4 0.9 44.0 3.1 0.9
3 4x8 1.4 96.4 5.6 1.8
4 4x4 1.0 48.8 2.7 1.4
4 4x8 1.5 80.0 9.7 3.5
2 4x8 1.7 248.9 15.8 5.3
2 8x8 3.2 522.8 53.8 6.8
800 3 4x8 2.2 256.0 13.0 4.2
3 8x8 4.4 550.2 44.7 8.6
4 4x8 2.9 240.2 55.1 8.7
4 8x8 5.5 545.7 87.6 9.9
2 8x8 5.4 1983.6 230.6 13.5
2 8x16 15.6 | 16793.4 | 1081.5 39.5
1600 3 8x8 8.9 1826.5 157.2 18.2
3 8x16 24.1 4946.0 515.0 40.6
4 8x8 11.3 3095.6 206.2 15.1
4 8x16 51.0 5345.7 495.4 49.9

CHAPTER 6. MFA SOLUTION FOR MAPPING 61

Table 6.4. Average performance measures of the solution found by SA, KL,
general MFA and mesh-specific MFA for randomly generated mapping problem
mnstances

MFA
KL SA Gen. | Mesh.
COMM. COST 2.10 1.00 1.13 1.00

LOAD IMBALANCE || 2.01 0.91 1.49 1.00
EXECUTION TIME 0.67 || 93.20 || 8.17 1.00

Table 6.1, 6.2, 6.3 illustrates the performance result of the KL, SA, general
and mesh-specific MFA heuristics for the generated mapping problem instances.
In this table, ”Gen” and "Mesh” denote the general and mesh-specific MFA

formulations, respectively, discussed in this work. Each algorithm is executed 5

times for each problem instance starting from different, randomly chosen initial

configurations. Total communication cost averages of the solutions in Table 6.1
are normalized with respect to the results of the mesh specific MFA heuristic
developed in this work. Percent computational load imbalance averages of solu-
tions displayed in Table 6.2 are computed using 100x(C' Lyap — C Linin)/C Lawg-
Here, CL,,,, and C'L,,;, denotes the maximum and minimum processor loads
and CL,,, denote the computational loads of processors under perfect load
balance conditions. Execution time averages are measured on a DEC Alpha
workstation in seconds for randomly generated mapping problem instances.
Table 6.4 is constructed for a better illustration of the overall relative per-
formances of the heuristics. Percent load imbalance averages and execution
time averages of the solutions are also normalized with respect to the results of
the mesh-specific MFA heuristic. Then, the overall averages of the normalized
averages of Table 6.1, 6.2, 6.3 are displayed in Table 6.4.

These four tables confirm the expectation that mesh-specific MFA formu-
lation is significantly faster (8.17 times on the average) than the general MFA
formulation while producing solutions with considerably better qualities for
randomly generated problem instances. As seen in these tables, the mesh spe-
cific MFA heuristic produces significantly better solutions than the KL heuristic
whereas the MFA heuristic is slightly slower (only 1.49 times on the average).
The qualities of the solutions obtained by the mesh-specific MFA heuristic are
comparable with those of the SA heuristic. However, the mesh-specific MFA
heuristic is orders of magnitudes faster (93.2 times on the average). Hence,

the proposed MFA heuristic approaches the speed performance of the fast KL

CHAPTER 6. MFA SOLUTION FOR MAPPING 62

Table 6.5. The Benchmark Sparce Matrix data used in experiments

Benchmark #of Nodes | # of Edges | Min.Deg | Max.Deg | Avg.Deg
DWT-492 492 1332 2 10 5.41
DWT-758 758 2618 3 10 6.91
DWT-1242 1242 4592 1 11 7.39
BCSPWRO06 1454 1923 1 12 2.64
BCSPWRO09 1723 2394 1 14 2.78
JAGMESH?2 1009 2928 3 6 5.80
JAGMESH6 1377 3808 2 6 5.53
JAGMESH7 1138 3156 3 6 5.54
LSHP2233 2233 6552 3 6 5.87
LSHP3466 3466 10215 3 6 5.89

heuristic while approaching the solution quality of the powerful SA heuristic.

Test TIG’s correspond to the undirected sparse graphs associated with the
symmetric sparse matrices selected from Harwel Boeing sparse matrix test col-
lection [12]. Weights of the vertices are assumed to be equal to their degrees.

These test TIG’s are mapped to 8 x8, 8 x 16 and 16 x 16 2D-meshes. The
properties of test TIGs are shown in Table 6.5

Table 6.6, 6.7. 6.8 illustrates the performance result of the KL, SA, general
and mesh-specific MFA heuristics for the mapping problem instances from test
TIGs. Each algorithm is executed 5 times for each problem instance starting
from different, randomly chosen initial configurations. Total communication
cost averages of the solutions in Table 6.6 are normalized with respect to the
results of the mesh specific MFA heuristic developed in this work. Execution
time averages are measured on a SUN SPARC 10 workstation. Execution time
averages are normalized with respect to those of mesh-specific MFA heuristic
in Table 6.8. Table 6.9 is constructed for a better illustration of the overall
relative performances of the heuristics. Percent load imbalance averages of the
solutions are also normalized with respect to the results of the mesh-specific
MFA heuristic. Then, the overall averages of the normalized averages of Ta-
ble 6.6, 6.7. 6.8 are displayed in Table 2. Tables 6.6, 6.7, 6.8, 6.9 confirm the
expectation that mesh-specific MFA formulation is significantly faster (7.26
times on the average) than the general MFA formulation while producing solu-
tions with considerably better qualities for test TIGs. As seen in these tables,
the mesh specific MFA heuristic produces significantly better solutions than
the KL heuristic whereas the MFA heuristic is slightly slower. The qualities of
the solutions obtained by the mesh-specific MFA heuristic are comparable with
those of the SA heuristic. However, the mesh-specific MFA heuristic is faster

CHAPTER 6. MFA SOLUTION FOR MAPPING

63

Table 6.6. Total communatication cost averages, normalized with respect

to mesh-specific MFA, of the solution found by SA,KL, general MFA and

mesh-specific MFA for some bechmark mapping problem

ous mesn size

instances for vari-

Com.Cost
Circuit Par MFA SA | GenMFA KL
16 1.00 | 0.82 1.39 | 0.95
32 1.00 | 1.11 1.89 | 1.61
DWT-492 64 1.00 | 0.97 1.74 | 1.98
128 1.00 | 1.13 2.52 | 2.33
256 1.00 | 1.10 2.62 | 1.90
16 1.00 | 0.83 1.48 | 0.74
32 1.00 | 0.95 1.98 | 1.17
DWT-758 64 1.00 | 0.95 2.02 | 1.79
128 1.00 | 1.10 2.75 | 2.85
256 1.00 | 1.38 4.03 | 3.34
16 1.00 | 0.85 1.18 | 0.99
32 1.00 | 0.95 1.71 1.25
DWT-1242 64 1.00 | 1.00 2.01 1.42
128 1.00 | 1.05 2.62 | 2.53
256 1.00 | 1.08 2.94 | 2.91
16 1.00 | 0.89 1.12 | 0.89
32 1.00 | 0.93 1.30 | 0.99
JAGMESH2 64 1.00 | 0.90 2.04 | 1.91
128 1.00 | 1.11 3.35 | 3.06
256 1.00 | 1.19 3.73 | 3.44
16 1.00 | 0.56 0.92 | 0.69
32 1.00 | 0.87 1.43 | 1.14
JAGMESH6 64 1.00 | 0.91 1.78 | 1.23
128 1.00 | 1.13 3.59 | 2.48
256 1.00 | 1.08 3.82 | 3.43
16 1.00 | 0.78 1.12 | 0.83
32 1.00 | 0.86 1.26 | 1.21
JAGMESH7 64 1.00 | 0.95 1.89 | 1.40
128 1.00 | 1.06 3.25 | 2.74
256 1.00 | 1.20 3.77 | 3.48
16 1.00 | 0.67 2.14 | 1.47
32 1.00 | 0.98 3.25 | 2.33
BCSPWRO06 64 1.00 | 0.93 2.80 | 2.18
128 1.00 | 1.12 3.35 | 2.90
256 1.00 | 1.23 3.45 | 3.80
16 1.00 | 0.51 1.36 | 1.11
32 1.00 | 0.89 2.74 | 1.88
BCSPWRO09 64 1.00 | 0.90 2.43 | 1.87
128 1.00 | 1.01 3.13 | 2.33
256 1.00 | 1.80 5.06 | 4.75
16 1.00 | 0.84 1.02 | 1.09
32 1.00 | 0.89 1.29 | 1.31
LSHP2233 64 1.00 | 0.81 1.88 | 1.37
128 1.00 | 0.97 3.63 | 2.20
256 1.00 | 1.12 2.68 | 3.31
16 1.00 | 0.65 1.05 | 0.37
32 1.00 | 0.66 1.23 | 0.43
LSHP3346 64 1.00 | 0.68 1.91 | 0.52
128 1.00 | 0.68 3.48 | 0.68
256 1.00 | 0.87 2.10 | 1.07

CHAPTER 6. MFA SOLUTION FOR MAPPING 64

Table 6.7. Load Imbalanced averages,of the solution found by SA,KL, general
MFA and mesh-specific MFA for some bechmark mapping problem instances
for various mesh size

Load-Bal
Circuit Par MFA SA | GenMFA KL
16 2.41 2.41 4.34 5.42
32 3.01 3.61 7.47 7.35
DWT-492 64 6.10 7. 32 8.54 9.76
128 11.00 | 15.00 15.50 | 17.00
256 19.00 | 35.00 26.00 | 28.00
16 1.62 0.92 3.79 6.45
32 2.45 2.15 5.52 9.45
DWT-758 64 4.20 5.25 5.68 9.38
128 7.75 14.37 9.25 | 12.25
256 9.00 | 26.25 15.00 | 16.50
16 1.13 0.57 3.55 7.86
32 1.60 1.48 4.60 8.08
DWT-1242 64 2.66 3.85 6.22 8.88
128 5.35 5.28 8.17 | 12.11
256 9.43 | 11.43 10.29 | 16.29
16 1.58 0.82 2.51 4.29
32 0.87 1.64 3.55 5.96
JAGMESH2 64 2.64 4.12 5.60 8.13
128 2.89 6.67 5.56 | 10.89
256 6.82 15.91 12.73 | 18.18
16 1.03 0.84 3.95 4.41
32 1.60 0.84 8.32 6.34
JAGMESH6 64 2.10 2.52 7.06 7.39
128 2.54 4.24 5.25 | 12.03
256 7.93 | 12.07 10.69 | 13.45
16 1.29 0.82 2.89 4.64
32 1.68 1.27 5.18 6.60
JAGMESH7 64 2.86 2.81 6.33 8.06
128 4.49 7.65 5.92 | 11.02
256 9.17 | 18.75 12.50 | 13.75
16 1.13 0.31 2.92 4.05
32 2.67 0.63 5.42 5.50
BCSPWRO06 64 3.33 0.83 8.00 | 10.54
128 5.00 1.67 7.67 | 12.43
256 8.00 5.00 11.33 | 17.22
16 1.84 0.33 2.31 4.05
32 2.55 0.67 5.44 5.50
BCSPWRO09 64 4.19 1.35 7.97 | 10.54
128 4.05 2.70 10.81 12.43
256 4.05 5.56 18.89 | 17.22
16 0.88 0.31 1.31 5.16
32 1.52 0.98 2.44 6.36
LSHP2233 64 2.30 1.23 5.39 8.04
128 2.45 2.94 3.92 9.41
256 3.73 7.84 12.07 | 10.20
16 0.51 0.31 1.21 4.05
32 2.02 0.98 1.87 5.50
LSHP3466 64 1.50 1.23 4.48 | 10.54
128 1.51 2.94 4.47 | 12.43
256 4.18 7.84 12.07 | 17.22

CHAPTER 6. MFA SOLUTION FOR MAPPING

65

Table 6.8. Total execution time, normalized with respect to mesh-specific MFA,
of the solution found by SA KL, general MFA and mesh-specific MFA for some

bechmark mapping problem instances for various mesh size

Execution Time
Circuit Par MFA SA | GenMFA KL
16 1.00 54.70 3.09 | 0.24
32 1.00 16.73 2.78 | 0.12
DWT-492 64 1.00 17.56 4.27 | 0.29
128 1.00 4.64 1.70 | 0.33
256 1.00 3.91 2.45 2.28
16 1.00 63.29 2.48 | 0.19
32 1.00 24.00 2.17 | 0.11
DWT-758 64 1.00 15.98 3.34 | 0.15
128 1.00 5.70 1.63 | 0.23
256 1.00 5.39 2.65 1.69
16 1.00 89.19 6.10 | 0.18
32 1.00 27.50 5.01 0.08
DWT-1242 64 1.00 25.33 7.74 | 0.13
128 1.00 8.72 2.67 | 0.19
256 1.00 7.02 3.79 | 0.75
16 1.00 61.11 8.62 | 0.12
32 1.00 24.16 7.69 | 0.08
JAGMESH2 64 1.00 16.43 10.81 | 0.11
128 1.00 8.53 4.14 | 0.24
256 1.00 8.21 5.27 | 1.16
16 1.00 | 112.12 10.72 | 0.16
32 1.00 45.16 11.93 | 0.09
JAGMESH6 64 1.00 30.02 15.45 | 0.13
128 1.00 13.01 6.60 | 0.18
256 1.00 10.98 6.25 | 0.81
16 1.00 78.00 7.75 | 0.15
32 1.00 32.29 10.98 | 0.09
JAGMESH7 64 1.00 26.58 19.41 | 0.14
128 1.00 11.01 4.22 | 0.20
256 1.00 9.58 6.77 | 1.10
16 1.00 | 213.22 2.14 | 0.30
32 1.00 66.53 1.74 | 0.13
BCSPWRO06 64 1.00 55.05 4.01 0.20
128 1.00 18.43 4.80 | 0.26
256 1.00 14.24 5.88 | 0.87
16 1.00 | 261.90 3.54 | 0.24
32 1.00 76.14 3.81 0.10
BCSPWRO09 64 1.00 59.62 8.27 | 0.15
128 1.00 23.50 6.56 | 0.20
256 1.00 32.09 14.88 | 1.30
16 1.00 | 104.60 7.72 | 0.09
32 1.00 4417 10.05 | 0.06
LSHP2233 64 1.00 34.47 17.28 | 0.09
128 1.00 17.48 7.22 | 0.13
256 1.00 13.95 2.19 | 0.57
16 1.00 53.11 11.11 | 0.03
32 1.00 22.63 12.44 | 0.02
LSHP3466 64 1.00 15.81 13.36 | 0.02
128 1.00 8.53 11.62 | 0.04
256 1.00 8.48 2.19 | 0.20

CHAPTER 6. MFA SOLUTION FOR MAPPING 66

Table 6.9. Average performance measures of the solutions found by SA, KL,
general MFA and mesh-specific MFA for mapping problem instances.

MFA
KL SA Gen. | Mesh.
Communication Cost 2.55 1.08 2.94 1.00
Load Imbalance 2.34 1.5 1.85 1.00
Execution Time 0.5 19.7 7.26 1.00

Table 6.10. Total communication costs averages normalized with respect to
hypercube-specific MFA of the solution found by SA,KL,general MFA and
hypercube-specific MFA for randomly generated mapping problem instances
for various hypercube size

Problem Size Average Communication Cost
TIG Hypercube MFA
N | davg K KL SA Gen. [Mesh
3 8 1.41 | 0.96 1.12 1.00
3 16 2.45 | 1.02 0.69 1.00
400 4 16 2.43 | 1.32 1.74 1.00
4 32 1.48 | 1.21 1.25 1.00
8 32 1.35 | 1.18 1.25 1.00
8 64 1.25 | 1.18 1.08 1.00
3 8 1.39 | 0.87 1.23 1.00
3 16 1.47 | 1.34 1.30 1.00
800 4 16 1.73 | 1.13 1.26 1.00
4 32 1.83 | 0.88 0.93 1.00
8 32 1.55 | 0.99 1.16 1.00
8 64 1.42 | 1.03 1.13 1.00
3 8 1.37 | 0.92 0.84 1.00
3 16 0.98 | 0.74 0.88 1.00
1600 4 16 0.86 | 0.74 1.14 1.00
4 32 1.56 | 0.87 1.26 1.00
8 32 1.26 | 0.89 0.98 1.00
8 64 1.68 | 1.14 1.36 1.00

(19.7 times on the average). Hence, the proposed MFA heuristic approaches
the speed performance of the fast KL heuristic while approaching the solution

quality of the powerful SA heuristic.

Table 6.10, 6.11, 6.12 illustrates the performance result of the KL, SA, gen-
eral and hypercube-specific MFA heuristics for the generated mapping prob-
lem instances. In this table, ”Gen” and "Hypercube” denote the general and
hypercube-specific MFA formulations, respectively. Each algorithm is exe-
cuted 10 times for each problem instance starting from different, randomly
chosen initial configurations. Total communication cost averages of the so-
lutions in Table 6.10 are normalized with respect to the results of the mesh
specific MFA heuristic developed in this work. Percent computational load

imbalance averages of solutions displayed in Table 6.2 are computed using

CHAPTER 6. MFA SOLUTION FOR MAPPING 67

Table 6.11. Percent computational load imbalance averages of the solution
found by SA,KL,general MFA and hypecube-specific MFA for randomly gen-

erated mapping problem instances for various hypercube size

Problem Size Average Percent Imbalance
TIG Hypercube MFA

N | davg PxQ KL SA | Gen. | Mesh

3 8 12.22 7.50 9.17 2.78

3 16 15.56 8.33 | 18.46 6.67

400 4 16 14.44 9.33 | 16.43 | 10.05
4 32 21.43 | 15.29 | 23.33 | 23.81

8 32 15.48 | 12.60 | 30.71 8.33

8 64 23.81 21.15 24.29 | 21.49

3 8 10.28 2.50 9.17 6.39

3 16 13.89 5.50 | 13.33 6.75

800 4 16 15.05 5.65 9.32 3.06
4 32 20.15 | 10.33 | 15.80 | 11.11

8 32 18.89 5.50 | 17.60 | 13.60

8 64 22.22 | 13.14 | 20.65 19.05

3 8 8.20 2.02 4.85 3.63

3 16 11.83 3.66 9.95 5.65

1600 4 16 12.82 3.82 6.97 3.79
4 32 16.67 6.91 11.29 8.60

8 32 15.87 7.68 | 12.58 8.58

8 64 25.56 7.11 15.33 9.88

Table 6.12. Execution time averages of the solution found by SA,KL,general
MFA and hypercube-specific MFA for randomly generated mapping problem
instances for various hypercubesize

Problem Size Average Execution Time(sec)
TIG Hypercube MFA

N [davg | PXQ KL SA [Gen. [Mesh
3 8 0.77 41.27 8.55 0.81

3 16 1.13 64.57 18.75 2.35

400 4 16 1.23 62.49 7.41 1.97
4 32 2.17 106.25 10.48 6.77

8 32 1.52 79.87 6.18 3.00

8 64 2.58 124.63 8.58 4.63

3 8 1.26 123.65 7.78 1.49

3 16 1.91 147.90 15.07 3.99

800 4 16 2.15 156.51 7.53 3.20
4 32 2.95 252.31 15.65 7.19

8 32 4.37 410.88 15.85 5.45

8 64 13.62 707.90 44.46 | 13.26

3 8 2.42 209.69 22.64 2.64

3 16 0.31 329.72 29.66 7.06

1600 4 16 3.69 432.32 9.96 5.29
4 32 5.68 712.89 47.81 | 17.42

8 32 8.59 749.02 96.08 | 14.84

8 64 16.59 | 2462.81 | 241.73 | 45.38

CHAPTER 6. MFA SOLUTION FOR MAPPING 68

100 X (C Lz — CLiin)/CLay,. Here, CLy,q, and CL,,;, denotes the maxi-
mum and minimum processor loads and C'L,,, denote the computational loads

of processors under perfect load balance conditions. Execution time averages

are measured on a DEC Alpha workstation in seconds for randomly generated

mapping problem instances.

Chapter 7

CONCLUSION

In this thesis, we try to solve two combinatorial optimization problems, global
routing problem in design automation of FPGA and domain mapping problem

in parallel processing, by using Mean Field Annealing method.

First of all, Static RAM based Field Programmable gate arrays (FPGA)
is modeled as 2-dimensional mesh graph. Than we have proposed an order-
independent global routing algorithm, for FPGA based on Mean Field Anneal-
ing. The performance of the proposed global routing algorithm is evaluated in
comparison with the LocusRoute global router for ACM/SIGDA benchmark
circuits. Initial experimental results indicate that the proposed MFA heuristic

performs better than the LocusRoute.

We proposed an encoding scheme to applied MFA onto global routing prob-
lem for FPGA. Our aim is to minimize the energy function of our spin (par-
ticles) system. It corresponds to minimize the our objective function, that is
finding most uniform distribution routes of the nets (balanced routing). We
expected from most uniform distribution of routes that the following detailed
routing shows a good performance. (Decrease in total number of segment used,

decrease in channel width, and decrease in average delay of nets).

Experimental results show that our expectation was true, the MFA al-
gorithm found more uniform distributed routing that LocusRoute algorithm,
therefore the performance of the detailed routing for 100% routing is better in

MFA than in LocusRoute for many benchmark circuits.

We have some difficulties in MFA formulation. In this formulation, it is the

69

CHAPTER 7. CONCLUSION 70

first time that Potts spins have different number of states. In Previous MFA

formulation for various combinatorial optimization problem, all Potts spins
have same number of state, therefore the affect of spin values on the problem

remains same but now, as Potts spin vector has different dimension, the affects

of spins on problem are different. This may cause some problem therefore we

have to find a normalization function that keeps the affect of spins same.

Also if we can find better cooling schedule than we may get better results
than we have got. Especially, critical temperature is very important here, if

it is initialized to very low temperature, than MFA find a local minimum as a

global minimum.

In the second part of this thesis, we have proposed an efficient map-
ping heuristic for mesh and parallel-connected parallel architecture based on
Mean Field Annealing(MFA). We have also developed an efficient implemen-
tation scheme for the proposed mapping formulation. The proposed MFA
scheme asymptotically reduces the complexity of a single MFA iteration from
O(dawy PQ + (PQ)?) of the general MFA formulation to ©(du.,(P+Q)+PQ) for
a P by () mesh. For a square mesh with K processors, this corresponds to an
asymptotical complexity reduction from O(d,,, K 4+ K?) to 0(d,,VK + K).
And for hypercube type architecture complexity of the one MFA iteration is
O(dawy x logK + K X logK) instead of O(d,,, X K + K?) in the traditional
MFA algorithm.

The performance of the proposed mapping heuristic is evaluated in compar-
ison with the well-known heuristics Kernighan-Lin (KL), Simulated Annealing
(SA) and general MFA formulation for a number of randomly generated map-
ping problem instances and Harwell-Boeing sparse matrix test collection. The
proposed topology-specific MFA formulation is found to be significantly faster
than the general MFA formulation as is expected. The proposed MFA heuristic
is slightly slower than the fast KL heuristic. However, it always produces sig-
nificantly better solutions than the KL heuristic. The quality of the solutions
obtained by the proposed MFA heuristic are comparable to those of the power-
ful SA heuristic. However, the proposed MFA heuristic is orders of magnitudes
faster than the SA heuristic. If we can find a good cooling scheduling and
initial temperature parameter, then we can get better results. We conclude
that for mapping problem, MFA can be located on the algorithms line between
the KL and SA.

Bibliography

1]

2]

3]

Fundemental of Placement and Routing. Xilinx Company, SanJose, Cali-
fornia, 1990.

The Programmable Gate Array Data Book. Xilinx Company, SanJose,
California, 1992.

S. Brown B. Tseng, J.Rose. Using architectural and cad interactions to

improve fpga routing architecture. In First International Workshop on

Field Programmable Gate Arrays, pages 2-7. ACM, 1992.

S. H. Bokhari. On the mapping problem. IEEE Transactions on Com-
puters, 30(3):207-214, 1981.

T. Bultan. Parellel mapping and circuit partitioning heuristic on mean

field annealing. PhD thesis.

T. Bultan and C. Aykanat. A new mapping heuristic based on mean field
annealing. Journal of Parallel and Distributed Computing, 16:292-305,
1992.

F. Ercal C. Aykanat, F. Ozguner and P. Sadayappan. Iterative algorithms
for solution of large sparse systems of linear equations on hypercubes.

IEEFE Transactions on Computers, 37:1554-1567, 1988.

D. E. Vand den Bout and T. K. Miller. Improving the performance of the
hopfield-tank neural network through normalization an annealing. Bio-

logical Cybernetics, 62:129-139, 1989.

D. E. Vand den Bout and T. K. Miller. Graph partitioning using annealing
neural networks. [EEE Transaction on Neural Networks, 1(2):192-203,
1990.

71

BIBLIOGRAPHY 72

[10]

C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improv-
ing network partitions. In Proceedings of the 19th ACM/IEEE Design
Automation Conference, pages 175-181, 1982.

[11]

R. Francis, J. Rose, and Z. Vranesic. Chortle-crt: Fast technology
mapping for lookup table-based FPGAs. In Proceedings of the 28th
ACM/IEEE Design Automation Conference, pages 227-233, 1991.

[12]

[13]

[14]

[17]

[18]

[19]

[20]

[21]

J. Lewis I. Duff, R. Grimes. Sparse matrix test problems. ACM Transac-
tion on Mathematical Software, 15(1):1-14, march 1989.

B. Indurkhya and H. S Stone. Optimal partitioning of randomly gener-
ated distributed programs. IEEE Transaction on Software Engineering,
12(3):453-495, 1986.

S. Kaptanoglu J. Greene, V. Roychowdhury and A. El Gamal. Segmented
channel routing. In International Conference on Computer Aided Design,

pages 567-572. IEEE, 1990.

F. Ercal P. Sadayappan J. Ramanujam. Task allocation by simulated
annealing. In Proceeding of International Conference on Supercomputing,

pages 475-497, Boston, MA., May 1988.

A. El Gamal J. Rose and A. Sangiovanni-Vincentelli. Architecture of
field-programmable gate-array. Proceedings of IEEE, 81(7):1013-1029,
july 1993.

B. W. Kernighan and S. Lin. An efficient heuristic procedure for partition-
ing graphs. The Bell System Technical Journal, 49(2):291-307, February
1970.

S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671-680, May 1983.

T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout.
John Wiley and Sons, Inc., Chichester, West Sussex, England, 1990.

S. Brown M. Khellah and Z. Vranesic. Minimizing interconnetction delays
in array-based fpgas. In Proceedings of Canadian conference on VLSI,
1994.

F.Ercal P. Sadayyapan and J. Ramanujam. Cluster partitioning aproaches
to mapping parallel programs onto hypercube. Parallel Computing, 13:1—
16, 1990.

BIBLIOGRAPHY 73

[22]

C. Peterson and B. Soderberg. A new method for mapping optimization

problems onto neural networks. International Journal of Neural Systems,

3(1):3-22, 1989.

B. Fallah J. Rose. Timing-driven routing segment assignment in fpgas. In
Proceesings of Canadian Conference on VLSI, pages 1-7, 1992.

[24]

[25]

J. Rose. Parallel global routing for standard cells. [EEE Transactions on
Computer-Aided Design, 9(10):1085-1095, october 1990.

Z. Vranesic S. Brown, J. Rose. A detailed router for field-programable gate

arrays. In International Conference on Computer Aided Design, pages

382-385. IEEE, 1990.

[26]

[27]

[28]

[29]

P. Sadayappan and F. Ercal. Nearest-neigbour mapping of finite ele-
ment graphs onto processor meshes. IEEE Transactions on Computers,

36(12):1408-1424, 1987.

N. Sherwani. Algorithms for VLSI Physical Design Automation. Kluwer
Academic Publishers, 1993.

J. Shield. Partitioning concurrent VLSI simulation programs onto a multi-
processor by simulated annealing. IEE Proceedings Part-G, 134(1):24-28,
1987.

B.A Hendrickson W. Camp, S. J. Plimpton and R. W. Leland. Massively
parallel methods for engineering and science problems. Communication

of ACM, 37(4):31-41, April 1994.

