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ABSTRACT

This paper presents a notion of error-tolerant recognition with finite state recognizers.
Error-tolerant recognition enables the recognition of strings that deviate mildly from any
string in the regular set recognized by the underlying finite state recognizer. Such recogni-
tion has applications in error-tolerant morphological processing, spelling correction, and
approximate string matching in information retrieval. After a description of the basic
concepts and algorithms involved, we give examples from two applications: In the con-
text of morphological analysis, error-tolerant recognition allows misspelled input word
forms to be corrected, and morphologically analyzed concurrently. We present an appli-
cation of this to error-tolerant analysis of agglutinative morphology of Turkish words. The
algorithm can be applied to morphological analysis of any language whose morphology
is fully described by two-level finite state transducers, regardless of the word formation
processes. In the context of spelling correction, error-tolerant recognition can be used to
enumerate correct candidate forms from a given misspelled string within a certain edit
distance. Again it can be applied to any language with a word list comprising all inflected
forms, or whose morphology is fully described by two-level finite state transducers. We
present experimental results for spelling correction for a number of languages. These
results indicate that such recognition works very efficiently for candidate generation in
spelling correction for many European languages such as English, Dutch, French, German,
[talian (and others) with very large word lists of root and inflected forms (some containing
well over 200,000 forms), generating all candidate solutions within 10 to 45 milliseconds
(with edit distance 1) on a SparcStation 10/41. For spelling correction in Turkish, error-
tolerant recognition operating with an (circular) recognizer of Turkish words (with about
29,000 states and 119,000 transitions) can generate all candidate words in less than 20
milliseconds, with edit distance 1.

1 Introduction

Error-tolerant finite state recognition enables the recognition of strings that deviate mildly
from any string in the regular set recognized by the underlying finite state recognizer. For



example, suppose we have a recognizer for the regular set over {a,b} described by the
regular expression (aba)* + (bab)*, and we would like to recognize inputs which may be
corrupted (but not too much) due to a number of reasons: e.g., abaaaba may be matched
to abaaba correcting for a spurious a, or babbb may be matched to babbab correcting for a
deletion, or ababba may be matched to either abaaba correcting a b to an a or to ababab
correcting the reversal of the last two symbols. Error-tolerant recognition can be used
in many applications that are based on finite-state recognition, such as morphological
analysis, spelling correction, or even tagging with finite-state models [15]. The approach
presented in this paper uses the same finite-state recognizer that is built to recognize
the regular set, but relies on a very efficiently controlled recognition algorithm based
on depth-first search of the state graph of the recognizer. In morphological analysis,
misspelled input word forms can be corrected, and morphologically analyzed concurrently.
In the context spelling correction, error-tolerant recognition can universally be applied to
the generation candidate correct forms, for any language with a word list comprising all
inflected forms, or whose morphology is fully described by automata such as two-level
finite state transducers [7, 8]. The algorithms for error tolerant recognition are very fast.
For instance, experimental results from a number of languages indicate that the proposed
approach works very efficiently for candidate generation in spelling correction for many
European languages with very large word lists of root and inflected forms (containing
around 200,000 forms), generating all solutions within 10 to 45 milliseconds, with edit
distance 1. It is also applicable to languages which have productive compounding, and/or
agglutination as word formation processes.

The paper first presents the notion of error tolerant recognition with finite state recogniz-
ers and presents an algorithm for error tolerant recognition with an arbitrary finite-state
recognizer. It then presents an application of the approach to error-tolerant morphological
analysis with two-level transducers, along with an example from Turkish morphology. The
paper then presents an application of error-tolerant recognition to candidate generation
in spelling correction, along with extensive results from many languages.

2 Error-tolerant Finite State Recognition

We can informally define error-tolerant recognition with a finite-state recognizer (FSR),
as the recognition of all strings in the regular set (accepted by the FSR), and additional
strings which can be obtained from any string in the set by a small number of unit editing
operations of insertion, deletion, replacement, and transposition of adjacent symbols.

The notion of error-tolerant recognition requires an error metric for measuring how much
two strings deviate from each other. The edit distance between two strings measures the
minimum number of such unit editing operations that are necessary to convert one string
into another. Let Z = 2y, 25, ..., 2,, denote a generic string of p symbols from an alphabet
A. Z[j] denotes the initial substring of any string Z up to and including the j** symbol.
We will use X (of length m) to denoted the misspelled string, and Y (of length n) to
denote the string that is a (possibly partial) candidate string. Given two strings X and
Y, the edit distance ed(X[m], Y[n]) computed according to the recurrence below (from



Du and Chang [3]), gives the minimum number of unit editing operations to convert one
string to the other.

ed(X[1+11,Y[j +1]) = ed(X[],Y[5]) if 241 =y

(last characters are same)

= 1+ mn{ed( X[t —1],Y[j —1]), if both ; =y,
6d(X[Z + 1]7 Y[]])v and Tiv1 = Y;
ed(X[], Y7 +1])}

(last two characters are

transposed)
= 14 min{ed( X[, Y]], otherwise
ed(X[e + 1], Y[5]),
ed( X[, Y[y +1])}
ed(X[0],Y[5]) = 4 0<j<n
ed(X[i],Y[0]) = ¢ 0<:<m
ed(X[—11,Y[j]) = ed(X[t],Y[-1]) = max(m,n) (Boundary definitions)

For example ed(recoginze,recognize) = 1, since transposing i and n in the former string
would give the latter. Similarly ed(sailn, failing) = 3 as in the former string, one could
change the initial fto s, insert an ¢ before the n, and insert a ¢ at the end to obtain the
latter.

A (deterministic) FSR R is described by a 4-tuple R = (Q, A, é, F') with () denoting the
set of states, A denoting the input alphabet, 6 : ) x A — @, denoting the state transition
function and F' C @ denoting the final states [6]. Let L C A* be the regular language
accepted by R. Given an edit distance error threshold ¢, we define a string X[m] & L to
be recognized by R with an error at most ¢, if the set

C ={Y[n] | YIn] € L and ed(X[m],Y[n]) <t}

is not empty.

2.1 An Algorithm for Error-tolerant Recognition

Any finite state recognizer can also be viewed as a directed graph with arcs are labeled
by symbols in A.! Standard finite-state recognition corresponds to traversing a path
(possibly involving cycles) in the graph of the recognizer, starting from the start node
to one of the final nodes, so that the concatenation of the labels on the arcs along this
path matches the input string. For error-tolerant recognition one needs to find all paths

'We may use state and node, and transition and arc, interchangeably.
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Figure 1: Searching the recognizer graph.

from the start node to one of the final nodes, so that when the labels on the links along a
path are concatenated, the resulting string is within a given edit distance threshold t, of
the (erroneous) input string. With ¢t > 0, the recognition procedure becomes a search on
this graph as shown in Figure 1.

Searching the graph of the recognizer has to be very fast if error-tolerant recognition is to
be of any practical use. This means that paths that can lead to no solutions have to be
pruned so that the search can be limited to a very small percentage of the search space.
Thus we need to make sure that any candidate string that is generated as the search is
being performed does not deviate from certain initial substrings of the erroneous string
by more than a certain amount. To detect such cases, we use the notion of a cut-off
edit distance. The cut-off edit distance measures the minimum edit distance between an
initial substring of the incorrect input string, and the (possibly partial) candidate correct
string. Let Y be a partial candidate string whose length is n, and let X be the incorrect
string of length m. Let [ = min(1,n —t¢) and v = max(m,n +t). The cut-off edit distance
cuted(X[m],Y[n]) is defined as

cuted(X[m],Y[n]) = min ed(X[i], Yn]).

I<i<u

For example, with ¢t = 2:

cuted(reprter,repo) = min{ ed(re,repo) =2,
ed(rep,repo) = 1,
ed(repr,repo) = 1,
ed(reprt,repo) = 2,
ed(

reprte, repo) = 3} = 1.



Note that except at the boundaries, the initial substrings of the incorrect string X con-
sidered, are of length n — ¢ to length n +¢. Any initial substring of X shorter than n — ¢
needs more than ¢ insertions, and any initial substring of X longer than n + ¢ requires
more than ¢ deletions, to at least equal Y in length, violating the edit distance constraint
(see Figure 2).

1 1 n-t u = n+t m

Cut-off distance is the minimum
edit distance between Y and any prefix of X
that ends in this range.

Figure 2: The cut-off edit distance.

Given an incorrect string X, a partial candidate string Y is generated by successively
concatenating relevant labels along the arcs as transitions are made, starting with the
start state. Whenever we extend Y, we check if the cut-off edit distance of X and the
partial Y, is within the bound specified by the threshold ¢. If Y is already beyond the
threshold, then the last transition is backed-off to the source node (in parallel with the
shortening of Y') and some other transition is tried. Backtracking is recursively applied
when the search can not be continued from that state. If, during the construction of Y,
a final state is reached without violating the cuted constraint, and ed(X[m],Y[n]) <t at
that point, then Y is a valid correct form of the incorrect input string.?

Denoting the states by subscripted ¢’s (go being the initial state) and the symbols in the
alphabet (and labels on the directed edges) by a, we can give the following algorithm for
generating all Y’s by a (slightly modified) depth-first probing of the graph, as shown in
Figure 3.

The crucial point in this algorithm is that the cut-off edit distance computation can be
performed very efficiently using a dynamic programming based approach. To illustrate
this, we use the distance matrix H, an m by n matrix with element H (7, j) = ed(X[¢], Y[j])
[3]. We can note that the computation of the element H(i + 1, j 4+ 1) recursively depends
ononly H(i,7),H(z,7+1),H(¢+1,7) and H(: — 1,7 — 1), from the definition of the edit

distance (see Figure 4.)

2Note that we have to do this check since we may come to other irrelevant final states during the
search.



/*push empty candidate, and start node to start search */
push((e, o))
while stack not empty
begin
pop((Y',¢;)) /* pop partial surface string Y
and the node */
for all ¢; and a such that 6(¢;,a) =g,
begin /* extend the candidate string */
Y = concat(Y',a) /* n is the current length of Y */
/* check if Y has deviated too much, if not push */
if cuted(X[m],Y[n]) <t then push((Y,q;))
/* also see if we are at a final state */

if ed(X[m],Y[n]) <t and ¢; € F' then output Y
end

end

Figure 3: Algorithm for error-tolerant recognition

H(G—1,7—1)
H(ij) — H(ij+1)
H(i+1,7) H(i+1,7+1)

Figure 4: Computation of the elements of the H matrix.



During the depth first search of the state graph of the FSR, entries in column n of the
matrix H have to be (re)computed, only when the candidate string is of length n. During
backtracking, the entries for the last column are discarded, but the entries in prior columns
are still valid. Thus all entries required by H(i+ 1,5 4+ 1), except H(7,j + 1), are already
available in the matrix. The computation of cuted(X[m],Y[n]) involves a loop in which
the minimum is computed. This loop (indexing along column j + 1) computes H(z,j + 1)
before it is needed for the computation of H(z,j + 1).

We now present (in Figure 5) a simple example for this search algorithm for a simple
finite state recognizer for the regular expression (aba)* + (bab)*, and the search graph for
the input string ababa. The thick circles from left to right indicate the nodes at which we

FSR for (aba)* + (bab)*

Search graph for matching ababa with threshold 1

Numbers in [ I’s show the the cut-off edit distance when search reaches
that node.

Figure 5: Recognizer for (aba)* 4 (bab)* and search graph for ababa.

have the matching strings abaaba, ababab and bababa, respectively. Prior visits to the final
state 1, violate the final edit distance constraint. (Note that the visit order of siblings
depend on how one orders the outgoing arcs from a state.)



3 Application to Error-Tolerant Morphological Anal-
ysis

The error-tolerant finite state recognition can be applied to morphological analysis, in
which, instead of rejecting a given misspelled form, the analyzer attempts to apply the
morphological analysis to forms that are within a certain (configurable) edit distance of
the incorrect form. Two-level transducers [7, 8] provide a suitable model for the ap-
plication of error-tolerant recognition. Such transducers capture all morphotactic and
morphographemic phenomena, and alternations in the language in a uniform manner.
They can be abstracted as finite state transducers over an alphabet of lexical and surface
symbol pairs 1:s, where either 1 or s (but not both) may be the null symbol 0. Tt is
possible to apply error-tolerant recognition to languages whose word formations employ
productive compounding and/or agglutination, and in fact to any language whose mor-
phology is described completely as one (very large) two-level finite state transducer. Full
scale descriptions using this approach already exist for a number of languages like English,
French, German, Turkish, Korean [9].

Application of error-tolerant recognition to morphological analysis proceeds as described
earlier. After a successful match with a surface symbol, the corresponding lexical symbol is
appended to the output gloss string. During backtracking the candidate surface string and
the gloss string are again shortened in tandem. The basic algorithm for this case is given
in Figure 6. The actual algorithm is a slightly optimized version of this where transitions
with null surface symbols are treated as special during forward and backtracking traversals
to avoid unnecessary computations of the cut-off edit distance.

We can demonstrate error-tolerant morphological analysis with a two-level transducer for
the analysis of Turkish morphology. Agglutinative languages such as Turkish or Finnish,
differ from languages like English in the way lexical forms are generated. Words are
formed by productive affixations of derivational and inflectional suffixes to roots or stems
like, “beads-on-a-string” [14]. Furthermore, roots and suffixes (morphemes) may undergo
changes at the boundaries due to various phonetic interactions. A typical nominal or a
verbal root may have thousands of valid forms which never appear in the dictionary. For
instance, we can give the following (rather exaggerated) example from Turkish:

uygarlastiramayabileceklerimizdenmissinizcesine

whose root is the adjective uygar (civilized).* The morpheme breakdown (with morpho-
logical glosses underneath) is:®

uygar +las +tr +ama +yabil  +ecek
civilized +AtoV +CAUS +NEG +POT +VtoA(AtoN)
+ler +imiz +den +mis +siniz  +cesine

+3PL +POSS-1PL +ABL(+NtoV) +PAST +2PL  +4VtoAdv

3Note that transitions are now labeled with [ : s pairs.

4This is an adverb meaning roughly “(behaving) as if you were one of those whom we might not be
able to civilize.”

5Glosses in parentheses indicate derivations not explicitly indicated by a morpheme.



/*push empty candidate string, and start node
to start search on to the stack */
push((e, € 40))
while stack not empty
begin
pop((sur face’,lexical’;q;)) /* pop partial strings
and the node from the stack */
for all ¢; and [:s such that 6(¢;,[:s) = g;
begin /* extend the candidate string */
sur face = concat(sur face', s)
if cuted(X[m], sur face[n]) <t then
begin
lexical = concat(lexical’,l)
push((sur face,lexical, q;))
if ed(X[m], surface[n]) <t and ¢; € F' then
output lexical

end
end
end

Figure 6: Algorithm for error-tolerant morphological analysis.

The portion of the word following the root consists of 11 morphemes each of which either
adds further syntactic or semantic information to, or changes the part-of-speech, of the
part preceding it. Though most words one uses in Turkish are considerably shorter than
this, this example serves to point out some of the fundamental difference of the nature of
the word structures in Turkish and other agglutinative languages.

Our two-level transducer for Turkish is based on a lexicon of about 23,500 root words
and is an re-implementation of PC-KIMMO [2] version of the same description [11], using
Xerox two-level transducer technology [7]. This description of Turkish morphology has 26
two-level rules that implement the morphographemic phenomena such a vowel harmony
and consonant changes across morpheme boundaries, and about 100 additional rules,
again based on the two-level formalism, that fine tune the morphotactics by enforcing se-
quential and long-distance feature sequencing and co-occurrence constraints, in addition
to constraints imposed by standard alternation linkage among various lexicons. Turkish
nominal morphotactics is circular due to a relativization suffix and there is considerable
linkage between nominal and verbal morphotactics due to productive derivational suffixes.
The resulting determinized and minimized transducer has 28,613 states and 81,566 tran-
sitions, with an average fan out of about 2.85 transitions per state (including transitions
with null surface symbols). It analyzes a given Turkish lexical form into a set feature-value
structures (instead of the more conventional sequence of morpheme glosses) that is used
in a number of natural language applications. The Xerox software allows the resulting
finite state transducer to be exported in a tabular form which can be imported to other



applications.

This transducer has been used as input to an analyzer implementing the error-tolerant
recognition algorithm in Figure 6. The analyzer first attempts to parse the input with

t =0, and if it fails, relaxes  up to 2, if it can not find any parse with a smaller ¢, and can

process about 150 (correct) forms a second on a Sparcstation 10/41.%7 Below, we provide
a transcript of a run:

res

>

> ((CAT

ela

reva => ((CAT
ava => ((CAT
deva => ((CAT
eda => ((CAT
ela => ((CAT
enva => ((CAT
evla => ((CAT
evi => ((CAT
eve => ((CAT
ev => ((CAT
evi => ((CAT
eza => ((CAT
leva => ((CAT
neva => ((CAT
ova => ((CAT
ova => ((CAT
ENTER WORD >
Threshold 0 ...
eviminkini
eviminkine
eviminkinin

ENTER WORD >
Threshold 0 ... ..
akIllInInkiler => ((CAT NOUN)(ROOT akIl)(CONV ADJ LI)(CONV NOUN) (AGR 3SG)

akI11InInkiler => ((CAT NOUN)(ROOT akI1l)(CONV ADJ LI)(CONV NOUN)(AGR 3SG)

8

eva

ADJ)&ﬁéOT ela))
ADJ) (ROOT reva))

NOUN) (ROOT
NOUN) (ROOT
NOUN) (ROOT
NOUN) (ROOT
NOUN) (ROOT
NOUN) (ROOT
NOUN) (ROOT
NOUN) (ROOT
NOUN) (ROOT
NOUN) (ROOT
NOUN) (ROOT
NOUN) (ROOT
NOUN) (ROOT
NOUN) (ROOT
VERB) (ROOT

eviminkinn

1

(conv

(conv

av) (AGR 3SG) (POSS NONE) (CASE DAT))
deva) (AGR 3SG) (POSS NONE) (CASE NOM))
eda) (AGR 3SG) (POSS NONE) (CASE NOM))
ela) (AGR 3SG) (POSS NONE) (CASE NOM))
enva) (AGR 3SG)(POSS NONE) (CASE NOM))
evla) (AGR 3SG)(POSS NONE) (CASE NOM))
ev) (AGR 3SG) (POSS NONE) (CASE ACC))
ev) (AGR 3SG) (POSS NONE) (CASE DAT))
ev) (AGR 3SG) (POSS NONE) (CASE NOM))
ev) (AGR 3SG) (POSS 3SG) (CASE NOM))
eza) (AGR 3SG) (POSS NONE) (CASE NOM))
leva) (AGR 3SG) (POSS NONE) (CASE NOM))
neva) (AGR 3SG) (POSS NONE) (CASE NOM))
ova) (AGR 3SG) (POSS NONE) (CASE NOM))
ov) (SENSE POS) (MOOD OPT) (AGR 3SG))

=> ((CAT NOUN) (ROOT ev) (AGR 3SG) (POSS 1SG) (CASE GEN)
PRONOUN REL) (AGR 3S5G) (POSS NONE) (CASE ACC))

=> ((CAT NOUN) (ROOT ev) (AGR 3SG) (POSS 1SG) (CASE GEN)
PRONOUN REL) (AGR 3S5G) (POSS NONE) (CASE DAT))

=> ((CAT NOUN) (ROOT ev) (AGR 3SG) (POSS 1SG) (CASE GEN)

(CONV PRONOUN REL) (AGR 3SG) (POSS NONE) (CASE GEN))
akI1llInnikiler
1 ... 2.

(POSS NONE) (CASE GEN) (CONV PRONOUN REL)
(AGR 3PL) (POSS NONE) (CASE NOM))

6No attempt was made to compress the FSR.

"The Xerox infl program working on the proprietary compressed representation of the same transducer

can process about 1000 forms/sec on the same platform.

8The outputs have been slightly edited for formatting. Upper case letters in roots and lexical forms
correspond to special Turkish characters, e.g., I corresponds to 1, and S corresponds to s.
names denote the usual morphosyntactic features. CONV denotes derivations to the category indicated by

the second token with a suffix denoted by the third token, if any.
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(POSS 2SG) (CASE GEN) (CONV PRONOUN REL)
(AGR 3PL) (POSS NONE) (CASE NOM))

akIllIndakiler => ((CAT NOUN) (ROOT akIl) (CONV ADJ LI)(CONV NOUN)(AGR 3SG)
(P0OSS 2SG) (CASE LOC) (CONV ADJ REL) (CONV NOUN)
(AGR 3PL) (POSS NONE) (CASE NOM))

ENTER WORD > teeplerdeki

Threshold 0 ... 1 ...

tepelerdeki => ((CAT NOUN) (ROOT tepe)(AGR 3PL) (POSS NONE) (CASE LOC)
(CONV ADJ REL))

teyplerdeki => ((CAT NOUN)(ROOT teyb) (AGR 3PL) (POSS NONE) (CASE LOC)
(CONV ADJ REL))

ENTER WORD > uygarlaStIramadIklarmIIzdanmISsInIzcasIna
Threshold 0 ... 1

uygarlaStIramadIklarImIzdanmISsInIzcasIna =>
((CAT ADJ) (ROOT uygar) (CONV VERB LAS)(VOICE CAUS) (SENSE NEG)
(CONV ADJ DIK) (AGR 3PL)(POSS 1PL)(CASE ABL) (CONV VERB)
(TENSE NARR-PAST) (AGR 2PL)
(CONV ADVERB CASINA)(TYPE MANNER))

ENTER WORD > aytpIrttIrIlan

Threshold 0 ... 1 ... 2 ...

arttIrttIrIlan => ((CAT VERB) (ROOT art)(VOICE CAUS)(VOICE CAUS)(VOICE CAUS)
(VOICE PASS) (SENSE POS) (CONV ADJ YAN))

astIrttIrIlan => ((CAT VERB) (ROOT as)(VOICE CAUS)(VOICE CAUS)(VOICE CAUS)
(VOICE PASS) (SENSE POS) (CONV ADJ YAN))

attIrttIrIlan => ((CAT VERB) (ROOT at)(VOICE CAUS)(VOICE CAUS)(VOICE CAUS)
(VOICE PASS) (SENSE POS) (CONV ADJ YAN))

ayIrttIrIlan => ((CAT VERB)(ROOT ayIr)(VOICE CAUS)(VOICE CAUS)(VOICE PASS)
(SENSE P0S) (CONV ADJ YAN))

aydIrttIrIlan => ((CAT VERB) (ROOT ay)(VOICE CAUS)(VOICE CAUS)(VOICE CAUS)
(VOICE PASS) (SENSE POS) (CONV ADJ YAN))

aCtIrttIrIlan => ((CAT VERB) (ROOT aC)(VOICE CAUS)(VOICE CAUS)(VOICE CAUS)
(VOICE PASS) (SENSE POS) (CONV ADJ YAN))

yaptIrttIrIlan => ((CAT VERB)(ROOT yap)(VOICE CAUS)(VOICE CAUS) (VOICE CAUS)
(VOICE PASS) (SENSE POS) (CONV ADJ YAN))

yatIrttIrIlan => ((CAT VERB)(ROOT yat)(VOICE CAUS)(VOICE CAUS)(VOICE CAUS)
(VOICE PASS) (SENSE POS) (CONV ADJ YAN))

In an application context, the candidates that are generated by such a morphological
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analyzer can be disambiguated or filtered to a certain extent by constraint-based tag-
ging techniques (e.g., [12, 15]) that take into account syntactic context for morphological
disambiguation.

4 Applications to Spelling Correction

Spelling correction is an important application for error-tolerant recognition. There has
been substantial amount work on spelling correction (see the excellent review by Kukich
[10]). All methods essentially enumerate plausible candidates which resemble the incorrect
word, and use additional heuristics to rank the results.” However, most techniques assume
a word list of all words in the language. These approaches are suitable for Tanguages
like English for which it is possible to enumerate such a list. They are not directly
suitable or applicable to languages like German, that have very productive compounding,
or agglutinative languages like Finnish, Hungarian or Turkish, in which the concept of a
word is much larger than what is normally found in a word list. For example, Finnish
nouns have about 2000 distinct forms while Finnish verbs have about 12,000 forms ([4],
pp. 59-60). The case in Turkish is also similar where for instance nouns may have about
170 basic different forms, not counting the forms for adverbs, verbs, adjectives, or other
nominal forms, generated (sometimes circularly) by derivational suffixes (Hankamer [5]
gives much higher figures (in the millions) for Turkish, presumably by taking into account
derivations.)

There have been some recent approaches to spelling correction using morphological anal-
ysis techniques. Aduriz et. al. [1] have used a two-level morphology approach to spelling
correction in Basque. Their approach uses two-level rules to describe common insertion
and deletion errors, in addition to the two-level rules for the morphographemic component.
Oflazer and Gilizey[13] have used a two-level morphology approach to spelling correction
in agglutinative languages, which has used a coarser morpheme-based morphotactic de-
scription instead of the lexical/surface symbol approach presented here. The approach
presented there essentially generates a valid sequence of the lexical forms of root and suf-
fixes and uses a separate morphographemic component implementing the two-level rules,
to derive surface forms. However, the approach presented there is very slow as the under-
lying PC-KIMMO morphological analysis and generation system is slow. The approach
presented in this paper, assumes that all morphographemic phenomena are already folded
into one finite state machine at compile time.

For languages like English where all inflected forms can be included in a word list, the
word list can be used to construct a finite state recognizer structured as a standard letter
tree recognizer (which has an acyclic graph) as shown in Figure 7, to which error-tolerant
recognition can be applied. Furthermore, just as in morphological analysis, the two-level
transducers can be used for spelling correction, so one algorithm can be applied to any
language whose morphology is described using such transducers.

°Ranking is dependent on the language, the application, and the error model. It is an important
component of the spelling correction problem, but is not addressed in this paper.
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Recognizer for the word list

abacus, abacuses, abalone, abandone, abandoned, abandoning
access.

Figure 7: A finite-state recognizer for a word list.

We demonstrate the application of error-tolerant recognition to spelling correction by
constructing finite state recognizers in the form of letter tree from large word lists that
contain root and contain inflected forms of words for 10 languages, obtained from a number
of resources on the Internet. Table 1 gives statistics about the word lists used. The Dutch,
French, German, English (two different lists), and Italian, Norwegian, Swedish, Danish
and Spanish word lists contained some or all inflected forms in addition to the basic
root forms. The Finnish word list contained unique word forms compiled from a corpus,
although the language is agglutinative.

For edit distance thresholds, 1, 2, and 3, we selected randomly, 1000 words from each
word list and perturbed them by random insertions, deletions, replacements and trans-
positions so that each misspelled word had the respective edit distance from the correct
form. Kukich [10], citing a number of studies, reports that typically 80% of the misspelled
words contain a single error of one of the unit operations, though there are specific appli-
cations where the percentage of such errors are lower. Our earlier study of an error model
developed for spelling correction in Turkish also indicated similar results [13].

Tables 2, 3, and 4 present the results from correcting these misspelled word lists for edit
distance threshold 1, 2, and 3 respectively. The runs were performed on a Sparcstation
10/41. The second column in these tables gives the average length of the misspelled string
in the input list. The third column gives the time in milliseconds to generate all solutions,
while the fourth column gives the time to find the first solution. The fifth column gives the
average number of solutions generated from the given misspelled strings with the given
edit distance. Finally, the last column gives the percentage of the search space (that is,
the ratio of forward traversed arcs to the total number of arcs) that is searched when
generating all the solutions.

The two-level transducer for Turkish developed using the Xerox software, was also used
for spelling correction. However, the original two-level transducer had to be simplified
for two-reasons. For morphological analysis, the concurrent generation of the lexical
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Language ords | Links | Average | Maximum | Average
Word Word Fan-out
Length Length
Finnish 276,448 | 968,171 12.01 49 1.31
English-1 | 213,557 | 741,835 10.93 25 1.33
Dutch 189,249 | 501,822 11.29 33 1.27
German 174,573 | 561,533 12.95 36 1.27
French 138,257 | 286,583 9.52 26 1.50
English-2 | 104,216 | 265,194 10.13 29 1.40
Spanish 86,061 | 257,704 9.88 23 1.40
Norwegian | 61,843 | 156,548 9.52 28 1.32
Italian 61,183 | 115,282 9.36 19 1.84
Danish 25,485 | 81,766 10.18 29 1.27
Swedish 23,688 | 67,619 8.48 29 1.36

Table 1: Statistics about the language word lists used

Average Average | Avg. Time | Average Average
Language Misspelied | Correction | to First Number of % of
Word Time Solution Solutions Space
Length (msec) (msec) Found Searched
Finnish 11.08 45.45 25.02 1.72 0.21
English-1 9.98 26.59 12.49 1.48 0.19
Dutch 10.23 20.65 9.54 1.65 0.20
German 11.95 27.09 14.71 1.48 0.20
French 10.04 15.16 6.09 1.70 0.28
English-2 9.26 17.13 7.51 1.77 0.35
Spanish 8.98 18.26 7.91 1.63 0.37
Norwegian 8.44 16.44 6.86 2.52 0.62
Italian 8.43 9.74 4.30 1.78 0.46
Danish 8.78 14.21 1.98 2.25 1.00
Swedish 7.57 16.78 8.87 2.83 1.57
| Turkish (FSR) | 8.63 | 17.90 | 7.41 | 4.92 1.23

Table 2: Correction Statistics for Threshold 1
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Average Average | Avg. Time | Average Average
Language Misspelled | Correction | to First Number of % of
Word Time Solution Solutions Space
Length (msec) (msec) Found Searched
Finnish 11.05 312.26 162.49 13.54 1.30
English-1 9.79 232.56 108.69 7.90 1.51
Dutch 10.24 148.62 68.19 9.35 1.25
German 12.05 169.88 96.55 3.33 1.14
French 9.88 95.07 37.52 6.99 1.44
English-2 9.12 129.29 55.64 12.56 2.28
Spanish 8.78 125.35 48.80 10.24 2.49
Nnrwpgian 8.36 112.06 4213 2727 3.47
Italian 8.41 57.87 25.09 8.09 2.36
Danish 9.15 82.39 34.80 13.25 4.23
Swedish 7.44 90.59 16.47 36.37 6.84
| Turkish (FSR) | 8.59 | 164.81 | 57.87 | 55.12 | 11.12 |
Table 3: Correction Statistics for Threshold 2
Average Average | Avg. Time | Average Average
Language Misspelled | Correction | to First Number of % of
Word Time Solution Solutions Space
Length (msec) (msec) Found Searched
Finnish 11.08 1217.56 561.70 157.39 3.86
English-1 9.73 1001.43 413.60 87.09 5.30
Dutch 10.30 610.52 256.90 71.89 4.07
German 11.82 582.45 305.80 21.39 3.14
French 9.99 349.41 122.38 41.58 4.00
English-2 9.36 519.83 194.69 97.24 6.97
Spanish 8.90 507.46 176.77 88.31 7.79
Norwegian 8.47 400.57 125.52 199.72 8.98
Italian 8.34 198.79 66.80 55.47 6.41
Danish 9.25 228.55 47.9 97.85 8.69
Swedish 7.69 295.14 36.89 267.51 14.70
| Turkish (FSR) | 8.57 | 907.02 | 63.59 | 442.17 | 60.00 |

Table 4: Correction Statistics for Threshold 3
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gloss string requires that occasional transitions with an empty surface symbol be taken,
to generate the gloss properly. Secondly, a given surface form can morphologically be
interpreted in many ways which is important in morphological processing. In spelling
correction, the presentation of only one of such surface forms is sufficient. To remove all
empty transitions and analyses with same surface forms from the Turkish transducer, a
FSR recognizing only the surface forms was extracted by using the Xerox tool ifsm. The
resulting recognizer had 28,825 states and 118,352 transitions labeled with just surface
symbols. The average fan-out of the states in this recognizer was about 4. This transducer
was then used to perform spelling correction experiments in Turkish.

In the first set of experiments 3 word lists of 1000 words each were generated from a
Turkish corpus, and words were perturbed as described before, for error thresholds of 1,
2, and 3 respectively. The results for correcting these words are presented in the last rows
(Turkish (FSR)) of the tables above. It should be noted that percentage of search space
searched may not be very meaningful in this case since the same transitions may be taken
in the forward direction, more than once.

On a separate experiment which would simulate a real correction application, about 3000
misspelled Turkish words again compiled from a corpus, were processed by successively
relaxing the error threshold starting with ¢ = 1. Of these set of words, 79.6% had an
edit distance of 1 from the intended correct form, while 15.0% had edit distance 2, and
5.4% had edit distance 3 or more. The average length of the incorrect strings was 9.63
characters. The average correction time was 77.43 milliseconds (with 24.75 milliseconds
for the first solution), and the average number candidates offered per correction was 4.29,
with an average of 3.62% of the search space being traversed indicating that this is a very
viable approach for real applications. For comparison, the same recognizer running as a
spell-checker (¢ = 0) can process correct forms at a rate of about 500 word/sec.

From these results it can be seen that error-tolerant recognition is very suitable for the
generation of candidate correct forms in spelling correction applications in both word-list
based recognizers and for recognizers derived from two-level transducers.

5 Conclusions

This paper has presented an algorithm for error-tolerant finite state recognition which
enables a finite state recognizer to recognize strings that deviate mildly from some string
in the underlying regular set, along with results of its application to error-tolerant mor-
phological analysis, and candidate generation in spelling correction. The approach is very
fast and applicable to any language with a given root and inflected form word list, or with
a finite-state (two-level) transducer recognizing its word forms.

On the other hand there are cases where the proposed approach may not be very efficient
and may be augmented with language specific heuristics: For instance in spell correction,
users (at least in Turkey) may have a habit of replacing non-ASCII characters with their
nearest ASCII equivalents due to inconveniences such as non-standard keyboards, or hav-
ing to input such a character using a sequence of keystrokes. For example, in the last
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spelling correction experiment for Turkish, almost all incorrect forms with edit distance
3 or more, had 3 or more non-ASCII Turkish characters, all of which were rendered with
the nearest ASCII version e.g., yasguntumizde (on our birthday) written as yasgunumuzde.
These can surely be found with appropriate edit distance thresholds, but at the cost of
generating many more rather distant words. Under these circumstances, one may use
language-specific heuristics first, before resorting to error-tolerant recognition.
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