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Abstract – In this position paper, we give a critical analysis of the deductive and inductive
approaches to program synthesis, and of the current research in these fields. From the
shortcomings of these approaches and works, we identify future research directions for these
fields, as well as a need for cooperation and cross-fertilization between them.

1 Introduction
Many Software Engineering tasks—such as algorithm design, algorithm transforma-
tion, algorithm implementation into programs, and program transformation—are usual-
ly perceived as requiring sound reasoning—such as deduction—in order to achieve
useful results. We believe that this perception is based on some faulty assumptions, and
that there is a place for not-guaranteed-sound reasoning—such as induction, abduction,
and analogy—in these tasks.

In this position paper, we analyze this case within the research of the Logic Program-
ming community, and more specifically within logic program synthesis research. More-
over, we concentrate on the use of inductive inference as a complement to sound
reasoning. This paper is then organized as follows. In Section 2, we take a critical look
at the use of deductive reasoning in synthesis, so as to identify the shortcomings of that
approach. In Section 3, we do the same thing with the use of inductive reasoning in syn-
thesis. This allows us, in Section 4, to plead for a cooperation and cross-fertilization be-
tween the two approaches. In Section 5, we conclude this apology of the use of not-
guaranteed-sound reasoning in Software Engineering.

2 On the Use of Deductive Reasoning in Program Synthesis
The Software Engineering tasks of algorithm design, algorithm transformation, algo-
rithm implementation into programs, and program transformation are often believed to
be the exclusive realm of sound reasoning, such as deduction. Note that the last two
tasks are often merged into the first two, provided the focus is on some form of pure
logic programs. However, it is clearly advantageous to separate algorithms from pro-
grams, that is to distinguish between the declarative aspects (such as logical correct-
ness) and the procedural aspects (such as control, operational correctness, and
efficiency) of software. This distinction is often blurred by the promises of Logic Pro-
gramming, promises that have however not been fulfilled by languages such as Prolog.
It is but a recent trend to dissociate algorithms and programs in Logic Programming



[16] [24] [32] [56] [86]. This corresponds to recasting Kowalski’s equation “Algorithm
= Logic + Control” [55] as “Program = Algorithm + Control”. Since there is no consen-
sus yet on these issues, and in order to keep our terminology simple, the word “algo-
rithm” stands in the sequel for “algorithm or program”, hence encompassing all
viewpoints.

In the Logic Programming community, this trend of deduction-based approaches is
clearly dominant in the proceedings of dedicated workshops such as the LOPSTR series
(LOgic Program Synthesis and TRansformation, where “synthesis” stands for some
form of (semi-)automated algorithm design) [19] [25] [57] [this volume], and of dedi-
cated sessions at most Logic Programming conferences (ICLP [50], SLP, META, …).

Let’s focus our attention now on the most challenging of the four tasks enumerated
above, namely algorithm design, and, more precisely, on algorithm synthesis. It should
be noted that the line between synthesis and transformation is a very subjective one, and
that the synthesizers of some researchers would be transformers for other researchers.
For the sake of this paper, we assume the following purely syntactic criterion for distin-
guishing between synthesis and transformation: if the input and output languages of a
tool are the same, then it is a transformer, otherwise it is a synthesizer. Usually, synthe-
sis amounts to the translation from a rich, high-level input language (the specification
language) into a less rich, lower-level language (the algorithm language). It is in this
sense that we consider synthesis more challenging than transformation. Our restriction
of the focus on algorithm synthesis can now be motivated as follows: synthesis gener-
ates the objects that can be transformed, so synthesis could just as well generate the
transformed version right away. In this sense, it suffices to discuss synthesis here.

The rest of this section is now organized as follows. Section 2.1 briefly relates the var-
ious approaches to using deductive reasoning in synthesis. This allows us, in
Section 2.2, to enumerate the problems of such deduction-based synthesis. Finally,
Section 2.3 contains a partial conclusion.

2.1 Approaches to Deduction-based Program Synthesis
In Logic Programming, synthesis is usually the process of (semi-)automatically trans-
lating a specification (usually in a language quite close to full first-order logic plus
equality) into a logic algorithm (usually in a language that is a proper subset of the spec-
ification language). Such a first-order axiomatization is often just assumed to be a faith-
ful formalization of the intentions1, though the synthesis process may provide feedback
to the specification elaboration process [60]. From such a formal specification, a natu-
ral thing to do is to proceed with sound reasoning, so as to obtain an algorithm that is
logically correct with respect to the specification. Research from this mind-set can be
divided into two main categories [27] [31]:

• Deductive Synthesis (also known as Transformational Synthesis): meaning-preserv-
ing transformations are applied to the specification, until an algorithm is obtained.
Sample works are those of Clark [18], Hogger [48], Bibel et al. [6], Sato and Tamaki
[73] [74], Lau and Prestwich [62], Kraan et al. [56], and so on. The theoretical foun-
dations to deductive synthesis are being laid out by Lau and Ornaghi [58]–[61].

1. Let’s ignore here the problem that the intentions tend to be unknown or to change over time.



• Constructive Synthesis (also known as Proofs-as-Programs Synthesis): an algorithm
is extracted from a (sufficiently) constructive proof of the satisfiability of the spec-
ification. Sample works are those of Tärnlund et al. [29] [46], Takayama [83],
Bundy et al. [16], Wiggins [86], Fribourg [35], and so on.

These two categories are not as clear-cut as one might think, as some synthesis mecha-
nisms can be successfully classified in the two of them [56]. The two approaches are
probably only facets of the same technique.

A third category, namely Schema-guided Synthesis, should be added: an algorithm is
obtained by successively instantiating the place-holders of some algorithm schema, us-
ing the specification, the algorithm synthesized so far, and the integrity constraints of
the chosen schema. This usually involves a lot of deductive inference sub-tasks, hence
the justification for viewing this as deduction-based synthesis. Curiously, this category
seems almost absent from the Logic Programming world, although spectacular results
are being obtained with this approach in Functional Programming by D.R. Smith [78]
[79]. The work of Fuchs [40] and Kraan [56] is definitely schema-based, but their logic
program schemas are not finegrained enough to more effectively guide the synthesis.

2.2 The Problems with Deduction-based Program Synthesis
Now, what are the problems with deduction-based synthesis, and the current approaches
to it? We see basically two problems.

The first problem is related to the current synthesis approaches. A lot of wonderful
theoretical effort is being directed at building theories of algorithms that may underlie
synthesis. Almost any algorithm can be synthesized using these approaches. Another
crux is that although these approaches show the derivability of many algorithms (which
is in itself a very positive result), the search spaces are exponentially large, making
these synthesizers impossible to use in automatic mode. So interactive usage is recom-
mended. But a close look at such syntheses shows that one almost needs to know the
final algorithm if any serious speedup is to be expected, which is not what one would
expect to have to do with a synthesizer. What is needed now is also a theory of algorithm
design in order to allow efficient traversal of these huge search spaces. The investiga-
tions on proof planning [17] and lemma generation [36] are first steps into that direc-
tion. But we believe that even more can be done, maybe along the lines of the schema-
guided synthesis paradigm mentioned above. Indeed, one of the conclusions of the early
efforts at automatic programming was that algorithm design knowledge and domain
knowledge are essential if synthesis wants to scale up to realistic tasks [42]. Curiously,
few people in the Logic Programming community seem to pay heed to that recommen-
dation by Green and Barstow.

The second problem with deduction-based synthesis is related to the formality of the
specifications. Where do the formal specifications come from? If deduction-based syn-
thesizers guarantee total correctness of the resulting algorithms with respect to their
specifications, what guarantee do we have that these specifications correctly capture our
intentions? These questions are often either dismissed as irrelevant or considered as in-
tractable issues that are left for future research. But what use are these synthesizers if
we don’t even know whether they solve our problems or not?



Before continuing, we must define the concept of specification, as there is little con-
sensus on such a definition. For the purpose of this paper, a specification is a description
of what a program does, and of how to use that program. Such specifications are totally
declarative in that they don’t express how the program actually works, and they thus
don’t bias the programmer in her/his task. Specifications have been alternately required
to be not (necessarily) executable [47], (preferably) executable [37] [38], and so on.

So what are the problems with formal specifications? As seen above, there is no way
to construct formal specifications so that we have a formal proof that they capture our
intentions. So an informal proof is needed somewhere (at worst by testing a prototype,
although testing never amounts to proving), as the purpose of Software Engineering is
after all to obtain programs that implement our informal intentions. Writing formal
specifications just shifts the obligation of performing an informal proof from the pro-
gram vs. specification verification to the specification vs. intentions verification, but it
doesn’t rid us of that obligation. So specifications could just as well be informal, to pre-
vent a delaying of an informal proof that has to be done anyway.

So we are actually hoping for somebody to write a new paper stating that specifica-
tions ought to be informal! Informal specifications should not be mixed up with natural
language specifications: they are just specifications written in a non-formal language
(without a predefined syntax and semantics). So natural language statements augmented
with ad hoc notations, or statements in a subset of natural language with a “clear” se-
mantics, would constitute an informal specification [63].

Another indicator why specifications ought to be informal can be obtained by observ-
ing the history of program synthesis research [72]: the first assemblers and compilers
were seen as automatic programmers, as they relieved the programmers from many of
the burdens of binary programming. Some programmers felt like they were only writing
some form of specifications, and that the compilers took care of the rest. But after a
while, the new “specification languages” were perceived as programming languages!
The same story is happening over and over again with each new programming para-
digm. One of the latest examples is Prolog: initially perceived by many as a specifica-
tion language (and still being perceived as such by some people), the consensus now
seems that it is a programming language. So how come that one-time specification lan-
guages are sooner or later perceived as programming languages, or that there never is a
consensus about the difference between formal specifications and programs? The for-
mal specifications of some people are indeed often very close to what other people
would call programs. Moreover, formal specifications are often as difficult to elaborate
and to maintain as the corresponding programs.

Some researchers don’t require formal specifications to be totally declarative, but only
as declarative as possible. Indeed, if a specification language allows the procedural ex-
pression of knowledge, practice shows that specifiers will use these features. But what
does it mean for a formal specification to be declarative? As writing recursive state-
ments seems to reflect a very procedural way of thinking2, a possible criterion for
declarativeness could be the absence of explicit recursion in the specification itself as
well as in the transitive closure of the union of the specifications of the predicate-sym-
bols used in that specification. But such recursion-free specifications are (possibly?) im-

2. However, recursive statements can be understood declaratively: the meaning is “… and so on”.



possible to write, as sooner or later one gets down to such fundamental concepts as
integer-addition or list-concatenation, which don’t have non-recursive finite-length de-
scriptions that completely capture them. So if the most evident symptom of
“procedurality”, namely recursion, seems impossible to avoid in formal specifications,
this would imply that declarative formal specifications don’t exist. And since specifica-
tions ought to be declarative, this would in turn imply that formal specifications cannot
be written.

In our opinion, the solution to all these problems with formality is that formal speci-
fications and programs are intrinsically the same thing! The inevitable intertwining be-
tween the formal specification elaboration process and the algorithm design process has
already been pointed out by Swartout and Balzer [82].

As algorithm synthesis research aims at raising the level of language in which we can
interact with the computer, synthesizers and compilers perform intrinsically the same
process. In other words, the “real” programming is being done during the formalization
process while going from an informal specification to a formal specification/program
(which is then submitted to a synthesizer/compiler). In Logic Programming, there is lit-
tle research about this formalization process, a laudable exception being Deville’s work
on hand-constructing logic algorithms from informal specifications [24], a process for
which some mechanization opportunities have been pointed out [26].

Note that we are not saying that formal specifications are useless: of course it is im-
portant to be able to check whether a formal specification is internally consistent, and
to generate prototypes from executable specifications, because this allows early error
detection and hence significant cost-cutting. At any given time, formal specifications,
even if written in a programming language, will have different purposes (validation,
prototyping, contracts, …) and attributes (readability, efficiency, …) than programs
[39]. We here just say that formal/executable specifications are already programs,
though not in a conventional sense. But conventions change in time, and the specifica-
tions of today may well be perceived tomorrow as programs. To understand this, it helps
to define programming from a process-theoretic viewpoint (that is, as an activity of
carefully crafting, debugging, and maintaining a formal text) rather than from a prod-
uct-theoretic viewpoint (programming yields a formal text).

2.3 Partial Conclusion about Deduction-based Program Synthesis
Let’s summarize in a very synoptic way the situation about deduction-based synthesis:

• Deduction-based synthesis translates a formal specification (with assumed-to-be-
complete information about the intentions) into an algorithm.

• Deduction-based synthesis research, in Logic Programming, should incorporate
(more) explicit algorithm design knowledge, such as algorithm schemas.

• The deduction-based synthesis approach suffers from the following problems:
– where do the formal specifications come from?
– it’s impossible to have a formal guarantee that a formal specification correctly

captures the intentions;
– formal specifications are often as difficult to write as programs;
– there is even no consensus on the difference between formal specifications and

programs; in fact, the expression “formal specification” is a contradiction in



terms, and formal specifications and programs are intrinsically the same thing; so
synthesis and compilation also are intrinsically the same process.

Let’s now move on to the use of inductive reasoning in algorithm synthesis.

3 On the Use of Inductive Reasoning in Program Synthesis
Human beings often understand a new concept after just seeing a few positive (and neg-
ative) examples thereof. Machine Learning is the branch of Artificial Intelligence that
explores the mechanization of concept learning (from examples). Important sub-
branches are Empirical Learning (from a lot of examples, but only a little background
knowledge) and Analytical Learning (from a few examples, but a lot of background
knowledge), the latter being also known as Explanation-Based Learning (EBL) or Ex-
planation-Based Generalization (EBG) [85]. Machine Learning was long cast in the
framework of propositional logic, but since the early 1980s, the results are being up-
graded to first-order logic. These efforts are nowadays collectively referred to as ILP
(Inductive Logic Programming, a term coined by Muggleton [65]), because concept de-
scriptions are there written as logic programs. ILP is somehow a cross-fertilization be-
tween Logic Programming and Machine Learning, and between Empirical Learning
and Analytical Learning, and is divided into Empirical ILP (heuristic-based learning of
a single concept from many examples) and Interactive ILP (algorithmic and oracle-
based learning of many concepts from a few examples). The base cycle of every learner
is that it reads in examples from a teacher and periodically turns out hypotheses (con-
jectures at concept descriptions).

An important distinction needs to be made here. Algorithm synthesis from examples
is but a niche (albeit a significant one) of ILP. Indeed, algorithm synthesis in general is
only useful if the algorithm actually performs some “computations”, via some looping
mechanism such as recursion or iteration. Straight-line code is always very close to its
full specification, and its synthesis is thus a mere rewriting process. So, in particular,
algorithm synthesis from examples is only useful if the algorithm actually performs
some “computations”. But recursive algorithms are only a subclass of all possible con-
cept descriptions, so algorithm synthesis from examples effectively is a niche of ILP. In
the following, by “algorithms” we mean recursive concept descriptions, and by “iden-
tification procedures” we mean non-recursive concept descriptions. Other differences
between ILP in general and induction-based algorithm synthesis in particular are sum-
marized in Table 1 [31].

The central column of Table 1 shows the spectrum of situations covered by ILP re-
search, but it doesn’t mean to imply that all learners do cover, or should cover, this full
spectrum. The right-hand column however shows the most realistic situation for induc-
tion-based algorithm synthesis, that is a situation that should be covered by every syn-
thesizer. Let’s have a look now at these two columns.

In ILP, the agent who provides the examples can be either a human being or some au-
tomated device (such as a robot, a satellite, a catheter, …). It is possible for this agent
not to know the intended concept, which means that it may give examples that are not
consistent with the intended concept, or that it may give wrong answers to queries from
the learner. Examples can be given in any amounts: Empirical ILP systems expect nu-
merous examples, while Interactive ILP systems expect only a few examples, and often



construct their own examples so as to submit them to the teacher. Examples may in-
volve more than one predicate-symbol: the instance “Tweety” of the concept “canary”
could yield the example:

mouth(tweety,beak) ∧ legs(tweety,2) ∧ skin(tweety,feather) ∧
utterance(tweety,sings) ∧ color(tweety,yellow),

which involves many predicate-symbols, but not a canary/1 predicate-symbol. The
used rules of inductive inference can be either selective (only the predicate-symbols of
the premise may appear in the conclusion) or constructive (the conclusion “invents”
new predicate-symbols). Selective rules are often sufficient to learn concepts, such as
“canary”, from multi-predicate examples. There are many learning situations where an
approximately correct concept description is sufficient, whereas in other situations a to-
tally correct description is hoped for. For general concept descriptions, there are hardly
any useful schemas (template concept descriptions): indeed, such schemas tend to spell
out the entire search space, and thus don’t decrease its size. For general concepts, there
are usually only a few correct hypotheses: for instance, there is probably only one cor-
rect definition of the “canary” concept, in any given context.

But in induction-based algorithm synthesis, the most realistic setting is where the
specifier is a human being who knows the intended concept and who is assumed to pro-
vide only examples that are consistent with that intended concept.3 “Knowing a con-
cept” means that one can act as a decision procedure for answering membership queries

3. There are of course other settings for induction-based synthesis, such as the intelligent system
that re-programs itself in the face of new problems [11]. We think that in such cases a general
Machine Learning approach is more adequate as the system can’t know in advance whether the
new concept has an algorithm or an identification procedure.

Inductive Logic
Programming

Induction-based
Algorithm Synthesis

Class of hypotheses any concept descriptions algorithms

Specifying agent human or machine human

Intended concept sometimes unknown always known

Consistency of examples any attitude assumed consistent

# examples any a few

# predicates in examples at least 1 exactly 1

Rules of inductive infer. selective & constructive necessarily constructive

Correctness of hyp.s any attitude total correct. is crucial

Existence of hyp. schemas hardly any yes, many

# correct hypotheses usually only a few always many

Table 1: Induction-based Algorithm Synthesis as a Niche of Inductive Logic Programming



for that concept [2], but it doesn’t necessarily imply the ability to actually write that de-
cision procedure.4 Such a specifier cannot be expected to be willing to give more than
just a few examples. Examples only involve one predicate-symbol, namely the one for
which an algorithm is to be synthesized: for instance, an example of a sorting algorithm
could be sort([2,1,3],[1,2,3]). The used rules of inductive inference thus necessarily in-
clude constructive rules, as algorithms usually use other algorithms than just them-
selves. Total correctness of the synthesized algorithm with respect to the intended
concept is crucial in induction-based synthesis. Algorithms are highly structured, com-
plex entities that are usually designed according to some strategy, such as divide-and-
conquer, generate-and-test, global search [79]: algorithm synthesis can thus be effec-
tively guided by an algorithm schema that reflects some design strategy. The existence
of many such schemas, and the existence of many choice-points within these strategies
entail the existence of many correct algorithms for a given “computational” concept.
For instance, sorting can be implemented by Insertion-sort, Merge-sort, Quicksort algo-
rithms, and many more.

So there is a dream of actually synthesizing algorithms from specifications by exam-
ples. Since many intentions are covered by an infinity of examples, finite specifications
by examples cannot faithfully formalize such intentions, and the synthesizer needs to
extrapolate the full intentions from the examples. This is necessarily done by not-guar-
anteed-sound reasoning, such as induction, abduction, or analogy.

The rest of this section is now organized as follows. Section 3.1 briefly relates the var-
ious approaches to using inductive reasoning in synthesis. This allows us, in
Section 3.2, to enumerate the problems of such induction-based synthesis. In
Section 3.3, we tackle the most commonly encountered prejudice about induction-
based synthesis. Finally, Section 3.4 contains a partial conclusion.

3.1 Approaches to Induction-based Program Synthesis
In the early 1970s, some researchers investigated how to synthesize algorithms from
traces of sample executions thereof. However, traces are very procedural specifications,
and constructing a trace means knowing the algorithm, which rather defeats the purpose
of synthesis. Sample work is related in [7] and, more recently, [52]. Regarding induc-
tion-based synthesis from examples, there are basically two approaches [31] [27]:

• Trace-based Synthesis: positive examples are first “explained” by means of traces
(that fit some predefined algorithm schema), and an algorithm is then obtained by
generalizing these traces, using the above-mentioned techniques of induction-based
synthesis from traces. Sample works are those of Biermann et al. [8] [12], Summers
[81], and so on, and they are surveyed by D.R. Smith [77]. This research was a pre-
cursor to the EBL/EBG research of Machine Learning.

• Model-based Synthesis: a logic program is “debugged” with respect to positive and
negative examples until its least Herbrand model coincides with the intentions. This
is the ILP approach. Sample works are those of E.Y. Shapiro [76], and many others
are compiled by Muggleton [66] and surveyed in [67].

4. It would be interesting to examine specifiers (oracles) that are capable of answering other kinds
of queries (subset, superset, … [2]) and to investigate other meanings of the phrase “knowing
a concept”.



Historically speaking, the two approaches barely overlap in time: trace-based synthesis
research took place in the mid and late 1970s, whereas model-based synthesis research
is ongoing ever since the early 1980s. Indeed, in the late 1970s, trace-based synthesis
research hit a wall and partly declared defeat considering that the techniques found
didn’t seem to scale up to realistic problems. But then, E.Y. Shapiro [76] and others pub-
lished their first experiments with model-based approaches, and model-based synthesis
took over, not only for induction-based algorithm synthesis, but for inductive concept
learning in general.

“Linguistically” speaking, the two approaches also barely overlap: trace-based syn-
thesis was pursued by the Functional Programming community, whereas model-based
learning is being investigated by the Logic Programming community. Revivals of trace-
based synthesis in the Logic Programming community have been suggested by Flener
[31] [32] and Hagiya [45].

3.2 The Problems with Induction-based Program Synthesis
Now, what are the problems with induction-based synthesis, and the current approaches
to it? We see basically two problems.

The first problem is related to the current synthesis approaches: there seems to be little
dedicated induction-based synthesis research any more in the Logic Programming com-
munity, as most research seems directed at model-based learning in general. However,
as conveyed by Table 1, induction-based synthesis is a sufficiently restricted sub-area
of induction-based learning to justify very dedicated techniques. It is illusory to hope
that very general learning techniques carry over without major efficiency problems to
particular tasks such as induction-based synthesis: since synthesis is akin to compilation
(see Section 2.2), this illusion amounts to looking for a universal programming lan-
guage. The phrase ILP is ambiguous in that it can be understood in two different ways:
ILP could mean “writing Logic Programs using Inductive reasoning” (I-LP), or it could
mean “Programming (in the traditional sense of the word) in Logic using Inductive rea-
soning” (I-L-P). The bulk of ILP research accepts the first interpretation.

Some good ideas of trace-based synthesis (such as schema-guidance) haven’t re-
ceived much attention by model-based learning research. Indeed, as seen above, for
general concepts there are hardly any schemas that wouldn’t spell out the entire search
space. Of course, one can use application-specific schemas, but then the question arises
as to the acquisition of these schemas. Now, for the particular task of model-based syn-
thesis, there is room for schemas [80] [84]: algorithm schemas significantly reduce the
search space, they bring “discipline” into an otherwise possibly anarchic debugging
process, and they convey part of the algorithm design knowledge called for by Green
and Barstow [42]. The other entries of Table 1 provide an agenda for future, dedicated
research in model-based synthesis.

Also, there is a fundamental difference between a teacher/learner relationship and a
specifier/synthesizer relationship. A teacher usually is expected to know how to com-
pute/identify the concept s/he is teaching to the learner, whereas a specifier usually only
knows what the concept is about, the determination of how to compute it being precisely
the task of the synthesizer. So a teacher can guide a learner who is “on the wrong track”,
but a specifier usually can’t. A teacher can, right before the learning session, set the



learner “on the right track” by providing carefully chosen examples and/or background
knowledge, but a specifier often can’t. For instance, most ILP systems can learn the
Quicksort algorithm from examples of sort/2 plus logic procedures for partition/3 and
append/3 as background knowledge. But this amounts to a “specification of quick-
sort/2”, which is a valid objective for a teacher, but not for a specifier: one specifies
sort/2, a problem, not quicksort/2, a solution! We really wonder about the efficiency of
ILP-style learners in a true specifier/synthesizer setting, where a lot of relevant and ir-
relevant background knowledge is provided. A solution to the ensuing inefficiency
would be structured background knowledge, such as classifying the partition/3 proce-
dure as a useful instance of the induction-parameter-decomposition placeholder in a di-
vide-and-conquer algorithm schema.

The second problem with induction-based synthesis is that examples alone are too
weak a specification approach. Incompleteness results are indeed abundant [3] [10] [41]
[51] [68] [69]. It is true that in Machine Learning in general, examples are often all one
can hope for. But, as conveyed by Table 1, in synthesis, we usually have the setting of
a human specifier who knows the intended relation. So s/he probably knows quite a bit
more about that relation, but can’t express it by examples alone. For instance, it is un-
realistic that somebody would want a sorting program and not know the reason why
[2,1] is sorted into [1,2] rather than into [2,1]. The reason of course is that 1 ≤ 2, but the
problem here is that the ≤/2 predicate-symbol cannot appear in the examples.

More generally, the problem is about the lack of provision of domain knowledge to
the synthesizer (another recommendation by Green and Barstow [42]), and has been
perceived a while ago. Various proposed solutions are type declarations for the param-
eters [76], type assertions about the intended relation [28], properties of the intended re-
lation [31] [32], integrity constraints about a set of intended relations [20] [21], and bias
(all knowledge potentially useful for narrowing the search space [71]), as generally
used in ILP. Note that special care needs to be taken not to require complete knowledge
about the intentions in the assertions/properties/constraints/bias, because otherwise a
deduction-based synthesizer would be more appropriate. This is a problem with some
of the proposed solutions [23]. Of course, if someone wants to give complete knowl-
edge about the intentions, then the synthesizer should be able to handle it.

Some other often mentioned “problems” with induction-based synthesis are, in our
opinion, no problems at all, and we discuss them in the next sub-section.

3.3 Induction-based Program Synthesis: Prejudice and Reality
When faced with research about synthesizing algorithms from examples, some deduc-
tion-based synthesis researchers react somewhere in between the paternalistic smile of
a father at his child who just completed her/his first Lego house and aggressive attacks
about the uselessness of such research. Let’s have a look at the most frequently encoun-
tered prejudices, and debunk them in the face of reality.
Prejudice: Induction-based synthesis researchers think that they will provide the solu-
tion to synthesis.
Reality: Induction-based synthesis researchers are fully aware of the limitations of their
research. They view it as just the provision of components and tools for software engi-
neering environments. In the synthesizer-as-a-workbench-of-powerful-mini-



synthesizers approach advocated by A.W. Biermann [9] and schema-guided synthesis
researchers such as D.R. Smith [78] [79], there is a place for induction-based synthesiz-
ers, because certain classes of algorithms can be reliably synthesized with little effort
from a few examples. As an illustration, the first author estimates that about 50% of the
code of his induction-based SYNAPSE synthesizer [31] falls into such categories of al-
gorithms (divide-and-conquer algorithms in this case), and could thus have been written
by SYNAPSE itself.

Prejudice: Induction-based synthesis can at most pretend to aim at programming-in the-
small. So it is useless as such algorithms are trivial and can often be written faster than
the specifications by examples.
Reality: Even though deduction-based synthesis can effectively hope to scale up to pro-
gramming-in-the-medium (though probably not to programming-in-the-large?), this
doesn’t mean that strictly less powerful approaches are not useful. One should not for-
get that synthesis aims at helping all sorts of programmers, not only the skilled ones.
Moreover, synthesis aims at the design of any algorithms, not only the complex ones.
Finally, synthesis aims at raising the level of language in which the programmer can
communicate with the computer, and thinking in terms of examples seems to us of a
higher level than thinking in terms of recursion. During the implementation of his
SYNAPSE system, the first author felt many times that he would rather use SYNAPSE (if
only it existed already!) than work out himself the recursive calls and other more low-
level details. In ILP research on algorithm synthesis, a lot of denotation is now being
paid to minimizing the number of examples, and the first results are promising [1] [5]
[43] [70].

Prejudice: Induction-based synthesis research is useless because it offers no guarantee
that the synthesized algorithms are correct with respect to our intentions.
Reality: In both the deduction-based and the induction-based synthesis approaches, it
takes specification debugging and maintenance to achieve correctness with respect to
the intentions. In the two approaches, completeness of the algorithm with respect to the
specification is guaranteed, but only in the deduction-based approach does partial cor-
rectness with respect to the specification make sense. The problem does not lie in the
use of not-guaranteed-sound vs. sound reasoning, but in the fact that synthesis starts
from formal specifications. Whereas with example-based specifications one knows that
the specification is but a fragmentary description of the intentions, such is usually not
the case with axiomatic specifications, where one only knows that there is a problem
when something goes wrong during the synthesis or during the execution of an imple-
mentation of the synthesized algorithm. The line of reasoning for the prejudice above
could thus also be used to claim that deduction-based synthesis research is useless be-
cause it also doesn’t offer a guarantee that the synthesized algorithms are correct with
respect to our intentions, this because we have no guarantee that our formal specifica-
tions are correct with respect to our intentions.

There certainly are other prejudices, but let’s leave it at these for now.



3.4 Partial Conclusion about Induction-based Program Synthesis
Let’s summarize in a very synoptic way the situation about induction-based synthesis:

• Induction-based synthesis generalizes a formal specification (with known-to-be-
fragmentary information about the intentions) into an algorithm.

• Induction-based synthesis research, in Logic Programming, is a niche of ILP, but its
specifics are not being catered for. The results are usually inefficiency and inade-
quateness. For instance, synthesizers should incorporate (more) explicit algorithm
design knowledge, such as algorithm schemas.

• The induction-based synthesis approach suffers from the problem that examples
alone are too weak a specification approach: additional domain and problem knowl-
edge must be provided.

• There is a place for the induction-based synthesis approach.
This finishes our discussion of the deduction-based and induction-based approaches to
algorithm synthesis. Let’s now plead for a cooperation and cross-fertilization between
the two approaches, and actually also with abduction- and analogy-based approaches.

4 Towards a Cooperation and Cross-Fertilization between
Deduction-based Synthesis and Other Approaches to Synthesis

From the beginning, ILP has sought cross-fertilization with other fields, be it by defini-
tion (ILP is an attempt at cross-fertilizing Machine Learning and Logic Programming)
or by “charter” (ILP aims at the cross-fertilization of Empirical Machine Learning and
Analytical Machine Learning). Other opportunities for cross-fertilization have been
discovered and added to the ILP “charter”. Some successful attempts have been with:

• Data/Knowledge-Base Updating: cross-fertilization resulted in that learning can
now be done from (clausal) integrity constraints, a generalization of examples, and
that non-unit clauses can now be asserted [20] – [22]. The extended field is known
as Belief Updating or Theory Revision. The discovery of data dependencies in rela-
tional and deductive databases has also been examined [30] [53] [75].

• Theorem Proving: a procedure may be constructed by an analysis of a failed proof
of a formal specification of its predicate-symbol [34] [49] [64]. However, in some
cases, an inductive theorem prover is not able to process a formula and thus fails to
finish a proof. Induction-based learning methods are then used for inventing new
predicates and a new formula is built. It is shown that even in the case where the new
formula is not equivalent to the original one, the prover is able to make the next step
and to finish the proof [33].

• Logic Program Transformation: cross-fertilization with Analytical Learning
(EBL/EBG) resulted in Explanation-Based Program Transformation (EBPT) [14],
where sample concrete transformations guide the overall abstract transformation
process.

So the question now arises as to whether cooperation and cross-fertilization are possible
with (other) branches of deduction-based Software Engineering? Some attempts at
solving Software Engineering tasks with induction-based techniques have been made,
such as logic program synthesis and debugging [5] [23] [28] [43] [76], test case gener-
ation [4], and program verification [13], but there was no sign of actual cross-fertiliza-
tion. So what is the potential of such cooperation and cross-fertilization?



One of the major problems we pointed out with the deduction-based synthesis para-
digm is due to the formality of the needed specifications: where do the formal specifi-
cations (logical axiomatizations, that is) come from? Following Muggleton’s summary
of the importance of inductive reasoning in scientific discovery [65], the popular answer
is that axioms, representing generalized beliefs, can be constructed from particular
facts, which are in turn derived from the senses. Turing is reported to have believed that
the problems due to Gödel’s incompleteness theorem could be overcome by learning
from examples. So a possible cooperation would be mixed-inference specification ac-
quisition followed by deduction-based synthesis/transformation. Deduction-based syn-
thesis can provide feedback to the specification elaboration process [60], but this
doesn’t assist in the initial formalization process and only detects inconsistencies within
the specification, but not inconsistencies with respect to the intentions.

Another opportunity for cooperation lies in the synthesizer-as-a-workbench-of-pow-
erful-mini-synthesizers approach advocated by A.W. Biermann [9] and schema-guided
synthesis researchers such as D.R. Smith [78] [79]: such a workbench should include
induction-based synthesizers that are known to reliably converge very quickly to cor-
rect algorithms from just a few examples. This would be handy synthesis tools, and we
believe they would be used very often. Similarly for tools based on other kinds of infer-
ence.

A little-explored avenue for cross-fertilization is the use of deductive reasoning within
induction-based synthesis, and vice-versa. Indeed, synthesis (especially if schema-
guided) can often be broken down into very different sub-tasks (such as instantiating
some place-holder of an algorithm schema). So it is likely that some sub-tasks are easier
to solve by deductive reasoning, whereas others are more amenable to other kinds of
reasoning.

For instance, the SYNAPSE system [31] [32] is schema-guided, starts from specifica-
tions by examples and some strong form of axioms (called properties), and features de-
ductive and inductive reasoning, according to whichever is preferable for each place-
holder of a divide-and-conquer schema. The given properties are used in a constructive
way: formulas are extracted from an explanation of the failure of a deductive proof that
the current algorithm satisfies the properties, and these formulas are then added to that
algorithm. This is a different approach from the usage of assertions [28] or integrity
constraints [21], which are used in a destructive way (to reject parts of the current hy-
pothesis) and without any actual deductive reasoning.

This technique is related to abduction [54], which plays an important role when the
incorporation of incoming information to an existing theory is impossible or inconve-
nient: for example in deductive databases and knowledge bases, where adding a new
piece of knowledge may cause an inconsistency [15] [44], or in a fault diagnosis, where
we are interested in a cause of failure rather than in the failure itself. By abduction, we
look for an explanation of the new knowledge, consistent with the existing theory, and
then add it to the theory.

Abductive reasoning is non-monotonic, as many explanations may exist for a given
piece of knowledge. Another evidence for non-monotonicity is that explanations of two
different pieces of incoming knowledge may contradict each other.



In the field of algorithm synthesis, De Raedt [20] pointed out that Shapiro’s MIS [76]
actually also performs abduction: in the context of multiple predicate learning, abduced
facts are not added to the theory, but rather used as the starting point for a synthesis
phase. In [20], an abductive technique for the inductive learner CLINT is described,
making it capable of learning multiple predicates. The use of abduction in interactive
algorithm synthesis from examples is also explored in [70].

We believe that deductive/abductive inference from, and constructive usage of, ora-
cle-answers and extensions of example-based specifications will play an important role
in induction-based synthesis (and learning). Conversely, we also believe that deduction-
based synthesis will greatly benefit from the inclusion of other kinds of reasoning.

5 Conclusion
In this essay, we have given a critical analysis of the deduction-based and induction-
based approaches to algorithm synthesis, and of the current research in these fields with-
in the Logic Programming community. We have identified some future research direc-
tions for these approaches, as well as a clear need for cooperation and cross-fertilization
between them.

The two approaches and their associated current research efforts have their shortcom-
ings, and, upon close inspection, they even share the most fundamental shortcomings:

• the two current efforts suffer from the fact that (more) algorithm design knowledge
(such as algorithm schemas) ought to be injected into the synthesizers;

• the two approaches suffer from the fact that there is no formal guarantee that the
synthesized algorithms correctly cover our intentions; so in the two approaches an
informal proof of correctness is needed somewhere (usually via specification debug-
ging and maintenance).

We hope to have convinced initially suspicious readers that the intuitive argument of the
superiority of the deduction-based approach is based on some faulty and prejudiced as-
sumptions.
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