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Abstract. In Genetic programming (GP) applications the programs are
expressed as parse trees. A node of a parse tree is an element either from
the function-set or terminal-set, and an element of a terminal set can be
used in a parse tree more than once. However, when we attempt to use
the elements in the terminal set at most once, we encounter problems in
creating the initial random population and in crossover and mutation op-
erations. 4-Op problem is an example for such a situation. We developed
a technique called map-trees to overcome these anomalies. Experimental
results on 4-Op using map-trees are presented.

1 Introduction

Genetic algorithms, by combining the survival of the fittest among string struc-
tures with a randomized genetic information exchange, try to form a search
algorithm similar to the evolution process in nature. In every generation, a new
set of strings is created using bits and information coming from the fittest of the
previous generations. See [3, 4] for details on GAs.

Genetic programming (GP) on the other hand employs programs instead of
strings [5]. Both genetic methods differ from most of the search techniques in
that they simultaneously involve a parallel search involving a large number of
points. In GP this is done by the random creation of a population of individuals
represented by programs which are the candidate solutions to the problem. These
programs are expressed in GP as parse trees. The individuals in the population
then go through a process of evolution.
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Fig. 1. A parse tree example.



Thus for example, a simple program that computes “a + b * ¢” would be
expressed as in Fig.1, or to be precise as suitable data structures linked together
to achieve this effect.

The programs in the population are composed of elements from a function-
set and a terminal-set, which are typically fixed sets of symbols selected to be
appropriate for the solution of problems in the domain of interest. The initial
population consisting of individual programs is randomly created after deter-
mining these two sets. In GP the genetic information exchange is done by taking
randomly selected subtrees in the individual programs and exchanging them.
This is the recombination operation which is referred to as crossover because
of the way that genetic material crosses over from one chromosome to another.
Because of the closure property of the functions and terminals, this genetic
crossover operation always produces syntactically legal parse trees as offspring
regardless of the selection of parents or crossover points.

The crossover operation takes place in an environment where the selection of
who gets to mate is a function of the fitness of the individual, i.e. how good the
individual is at competing in its environment. Some GP techniques use a simple
function of the fitness measure to select individuals (probabilistically) to undergo
genetic operations such as crossover or reproduction (the propagation of genetic
material unaltered). This is called fitness proportionate selection. Mutation also
plays a role in this process, though it is not the dominant role that is popularly
believed to be the process of evaluation, i.e. random mutation and survival of
the fittest. It cannot be stressed too strongly that the GP is not a random search
for a solution to a problem. The GP uses stochastic processes, but the result is
distinctly better than random.

The GP executes the following cycle: Evaluate the fitness of all individu-
als in the population; Create a new population by performing operations such
as crossover, fitness proportionate reproduction and mutation on the individu-
als based on the fitness; Discard the old population and iterate using the new
population. One iteration of this loop is referred to as a generation.

As a last remark, we will state an important point that was pointed out by
Koza [5]:

Seemingly different problems for a variety of fields can be reformulated
as problems of program induction (requiring the discovery of a computer
program that produces some desired output when presented with partic-
ular inputs), GP paradigm provides a way to search the space of possible
computer programs for an individual program that is highly fit to solve
the problems of program induction.

The reason behind reformulating various problems as problems of program in-
duction is because computer programs have the flexibility and complexity needed
to express the solutions to a wide variety of problems and there is a way to solve
the problem of program induction which is the GP paradigm.

Usually in GP applications there is no restriction on the number of function-
set and terminal-set elements used. However in some applications there may be

29



a restriction on the number of occurrences for each element of these sets. In this
case standard crossover and mutation operation will lead to illegal parse trees.
In this paper we present such an application called 4-Op where the function-set
is {4+, —, /, *} and the terminal-set consists of six integers.

The next section gives a description of the 4-Op problem. Section three
presents our formalism called map-trees which helps to redefine the crossover
and mutation operations to guarantee that off-springs are legal parse trees. The
fourth section makes an empirical study of our new technique and the last section
concludes with an overall evaluation.

2 Description of the 4-Op Problem

4-Op is a well known TV-game where the players try to find an arithmetical
expression, involving six integers, whose value is closest to a given target value.
The expression may contain any number of the four arithmetical operations
“4,—,%,/”. The first four of the input number set are between one and ten
and the last two are chosen from the set {25, 50, 75, 100}. The target value is
between 100 and 999. An important restriction is that the players can use each
element of the input set at most once.

For example, let the input number set be {2, 3, 5, 8, 25, 100} and the target
value be 467. The expression (5% 100) — (25 4+ 8) = 467 is one of the possible
answers to the question. However it is not always possible to find an exact
solution. A player can get points if no other player has a closer expression.

In genetic programming applications usually there is no restriction on how
many times each element of the terminal set can be used. However in our problem
we can use each element at most once. So this brings a restriction to parse trees
formed and to the operations on the parse trees like crossover and mutation.
We can not perform crossover and mutation operations at an arbitrary point in
the parse trees, since this may cause repetition of a terminal-set element in the
parse tree. Let us illustrate these anomalies with an example. Consider the two
parse trees named P1 and P2 in Fig.2a. The tree P1 stands for the expression
(* 5 (+ (* 3 25) 50)) and P2 stands for the expression (+ 3 (x (+ 5 (— 8 2)) 25))
in prefix notation. The numbers near each node of the tree represent the crossover
points. Now let us perform a crossover at points 4 on P1 and 3 on P2. The
crossover fragments are shown in Fig.2a inside dashed lines. After the crossover
operation, we get two offsprings as shown in Fig.2b.

Also if we consider a mutation at point 7 on P1 in Fig.3a and if we generate
the mutation fragment as in Fig.3b, we get the off-spring shown in Fig.3¢ after
the mutation operation.

Now, let us examine the trees we get after mutation and crossover. In all of
them at least one element of the terminal set is used more than once. In O1
the element 5, in O2 the element 3 and in new-P1 the element 3 and 5 are used
twice. Hence, the new form of expressions we have are invalid and cannot be
used as solutions to our initial problem (Since there is a restriction that we can
use each element of the terminal-set at most once). However this is not the case
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a)

Fig. 2. a) Parents in crossover, where crossover fragments are enclosed in dashed lines.
b) Offsprings after crossover. Note that both offsprings contain an element used twice.

for all crossover points and for all mutations. For instance, a crossover operation
at points 2 on P1 and 4 on P2 will not violate our problem constraints.

The trees obtained after this crossover can be seen in Fig.4, and these are
valid parse trees since each element of the terminal set appears at most once.
Similarly we can find mutation points which generate valid parse trees.

The main problem here is to develop the appropriate data structures and
techniques to overcome the illustrated anomalies. The data structures and tech-
niques we used are not specific to our problem, but can be considered as a general
approach to solving problems by using genetic programming where each element
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Fig.3. a) An individual in mutation; mutation fragment is shown in dashed lines. b)
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Fig. 4. Valid off-springs after crossover.

of the terminal set can be used at most once.

Before presenting our solution, to get an insight of our problem, let us analyze
the search space. The search space for a GP, whose target language is LISP, is
the space of all possible LISP S-expressions that can be recursively created by
compositions of the available functions and available terminals for the problem.

In our problem the cardinality of the function-set is 4 and the cardinality of
the terminal-set is 6. We define a valid tree as follows:

— each of the internal nodes should be an element of the function-set

— each of the leaf nodes should be an element of the terminal-set,

— consists of at most 11 nodes

— leaf nodes should be distinct,

— its depth should be at least 1

— every node except the leaves must have exactly 2 children, leaves do not have
any children
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Note that the first two of the conditions given above are from the definition of
GP, and the last one is just a property of the function set used in 4-Op.

Any valid tree 1s a sample point in the search space. In order the find the
number of points in the search space we should count all the possible valid trees
that can be created. Given n terminal elements the number of different valid tree
topologies that can be generated is equal to the different paranthesizations of a
sequence of n numbers which is K(n — 1). This is known as Catalan numbers
where:

1
n+1

K(n) = ( )C(?n,n) (1)

Here, C' denotes the combination operation.

The valid trees we can generate will have at least 2 and at most 6 leaves.
We will divide our computation into classes where class(n) contains the set of
trees with exactly n leaves. After determining all different valid tree topologies
in each class, we are going to compute the number of different valid trees we can
create using the given function-set and terminal-set. For an illustration consider
the valid tree topology shown in Fig.5. The numbers in each node represents
the number of different choices we can insert into that node. Since there is no
restriction on the choices of the functions as terminals at each internal node
we have 4 choices. However, since we cannot use a terminal-set element more
than once, at each external (leaf) node we have a decreasing sequence of choices.
Therefore, in for the valid tree topology shown in Fig.5, there are 4 % 4 x 4 % 6 %
5% 4 x 3 = 23040 different valid trees.

(2)

Fig.5. A valid tree topology. The numbers represent the number of different choices
for a node.

Let us now compute the number of all valid trees we can create given a specific
terminal-set and function-set whose cardinalities are 6 and 4, respectively.
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class(2): K(I)=1 1*x(4+6x5)=120

class(3): Ix(2) 2 2% (4x4+6x5x4)=2608

class(4): K(3)=5 5+ (4d*4x4*x6xb+4%3)=115200

class(b): K(4) =14 14x(4*x4+4x4x6x5%x4*3x2) = 2580480
class(6): K(5) =42 42x(4*4+4x4x4+x6xb*x4+3x2*1)= 30965760

For example, in class(4) there are 5 different tree topologies, and 115200
different valid trees. Therefore, we can create a total of 33,666,168 different
valid trees, i.e we have 33,666,168 sample points in the search space.

3 Solution

The easiest way to handle the anomalies discussed in the previous section is to
generate crossover and mutation operations as usual and then discard the invalid
parse trees. However when we implemented this solution, we saw that it is a very
inefficient way to handle our problem, because about half of the population were
formed with such invalid parse trees and we had to discard all of them.

Random keys, developed by Bean and Norman could be another solution
[1, 2]. Random keys are developed to overcome the difficulty of genetic algorithms
maintaining feasibility from parent to off-spring. To illustrate the use of random
keys, consider a simple genetic algorithm approach to the traveling salesman
problem. A candidate solution to a TSP is a tour through n cities. Two such
tours for a map of five cities are 2-1-3-5-4 and 4-2-3-1-5. Consider a crossover
operation after the second city, then resulting off-springs are 4-2-3-5-4 and 2-1-3-
1-5. Neither of these is a valid tour. As it can be seen in TSP a city cannot occur
in a solution more than once, at first glance we may think that this is exactly
the same problem we have in 4-Op, so that we can use random keys to overcome
anomalies described in section two. However what makes our problem different
is that, in GAs the strings have constant lengths but in GP the parse trees
have variable sizes. This difference causes improper probabilistic distribution of
terminal-set elements and we may have repetition of keys in later generations.

However we were able to develop another technique and a suitable data
structure to overcome this problem. Before explaining our solution let us define
some notions.

The function S(T, node): returns the set of terminal-set elements appearing
at the leaves of the tree rooted at node whose infix order numbering is node in
a tree T'. Fig.6 gives the values of this function on an example tree.

We can state the necessary and sufficient conditions to guarantee having valid
off-springs after crossover and mutation operations. Let T'1 and T2 be two parse
trees. An off-spring obtained by crossover operation applied to x of T'1 and y of
T2 is a valid tree if

(S(T1,1) = 8S(T1,2))NS(T2,y) =0 (2)

A crossover operation using map-trees is shown in Fig.7. In this example, the
crossover points are 4 on T1 and 6 on T2.
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/@\' S(T,1)={5,3,10,1}

S(T,3)={3,1,10}

é é) S(T,6)={10}

Fig. 6. Values of the function S(7, node) on an example tree.

(S(T1,1) — S(T1,4)) N S(T2,6) = {{5,3,25,50} — {3,25}} N {2, 8}
= {5,50} N {2, 8}
=0.

Therefore, Off-T'1 is a valid tree. However, since

(S(T2,1) — S(T2,6)) N S(T1,4) = {{3,5,8,2,25} — {2,8}} N {3, 25}
={3,5,25} N {3,25} = {3,25}
?é Qa

Off-T2 is not a valid tree.
Also let S(T'm, T'm) be the set of terminal elements of the mutation subtree
and z be the mutation point on T'1. The resulting off-spring is a valid tree if

(S(T1,1) — S(T1,z)) N S(T'm, Tm) = @ (3)

In our implementation, we first check if the crossover points are valid for
parents T'1 and T'2. If they are not valid for both of them we generate randomly
two other crossover points and continue the process until we can generate a valid
offspring at least for one of the trees. If the crossover is valid for only one of the
trees then we generate the valid offspring and reproduce the remaining tree.

It is not possible to implement the set operations using only the parse trees
because of the time efficiency reasons, so we have used another data-structure.
For each parse tree, we also store the map-tree. A node of a map-tree stores the
set of terminal-set elements occuring in the leaves of the subtree rooted in that
node. A parse tree and its corresponding map-tree are shown in Fig.8.

The set operations are carried out on this tree more efficiently. It can be
easily seen that the map tree can be constructed by exchanging every node of
the parse tree with the set returned by S(T, node).
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Fig.7. A crossover operation using “map-tree.” Crossover points are 4 on T1 and 6
on T2.
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Fig.8. A parse tree, and its corresponding map-tree.
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Other than crossover and mutation anomalies, creating the initial random
population is another problem that we have encountered. Since the individuals
in the initial population are created randomly, this may easily lead to forming
illicit parse trees where there is a repetition of terminal-set elements. Preventing
such parse trees in the initial population is easier than preventing mutation and
crossover anomalies. The 1dea is that, for each individual in the population, after
choosing a terminal-set element randomly, this element is discarded from the set
so that repetition of elements is prevented.

4 Empirical Evaluation

We have used 110 randomly generated input data in order to test and examine
the results of our technique. In these experiments the population size used is 250,
mutation rate is 10% and number of generations examined is 20. 10% mutation
rate can be considered rather high since in genetic programming applications
the mutation rate is usually zero. However the search space of our problem is
relatively small and the loss of genetic information due to randomness of muta-
tion can be recovered by crossover operations. On the other hand 10% mutation
rate in this problem provides a means for recovering from local maximas and
leads to a better examination of the search space.

In Table 1, for the following five input data sets, the values of the average
fitness and best fitness versus generation numbers are given. In these five selected
examples we can have an insight of how our program approaches to the target
value in each generation. The data sets are:

Data set 1: Input integers are {2,4,6,7,25,75} and target value is 458
Data set 2: Input integers are {1,3,5,9,25,50} and target value is 846
Data set 3: Input integers are {1,4,8,9,25,50} and target value is 359
Data set 4: Input integers are {4,6,7,9,25,75} and target value is 793
Data set 5: Input integers are {2,3,7,9,25,100} and target value is 458

In Table 2 the test results for the 110 random input data sets are grouped
according to fitness measure. As it can be seen in Table 2, in 40% of the test
results we have found an exact solution. If we consider that some input data sets
do not contain exact solutions, we can claim that these test results are successful.

The graphs given in Fig.9 and Fig.10 show the average of “average fitness”
values versus generation number and average of “best fitness” values versus
generation number. In these figures the fitness of a tree is computed as the
absolute value of the difference between the target value and the value of the
expression represented by the given tree. As it can be seen in Fig.9 after the
dramatic fall in the first generation, although there is a fluctuation due to the
high mutation rate (10%), the average of “average fitness” of the population
shows a decreasing behavior throughout the generations. In Fig.10 the average
of “best fitness” values decreases steadily, and after nineteen generations the
value of the average of “best fitness” reaches to 1.5.
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Table 1. Average and best fitness values versus generation.

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Gen Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best

0 2250.8 11 2746.5 46 4027.4 9 4446.7 14 52104 8
1479.11 41266.8 21 339.2 9 1833.4 7 996.5 8
2 3504 4 867.8 21 996. 9 514. 7 2849.0 8
3 260.0 2 808.8 4 271.2 9 373.8 7 495.3 8
4 206.3 2 473.6 4 282.7 9 426.8 7 5554.6 4

6 672.7 501.2 4 477.0 292.1 0 685.5

2 1 4
7 1043.9 1 839.3 4 320.2 1 - -1196.8 3
8 667.4 1 398.7 4 2094.9 1 - - 1426.0 3
9 174.7 1 365.1 4 276.6 1 - - 33114 3
10 123.2 1 233.3 4 206.1 1 - - 2225.6 3

13 126.0 01004.9 199.1 - - 905.1

4 1 3
14 - - 537.0 4 190.9 1 - - 1065.7 3
15 - - 4319 4 157.5 1 - - 1536.2 3
16 - - 425.3 4 2441 1 - - 152.3 3
17 - - 451.1 4 185.3 1 - - 1914 3
18 - - 537.6 4 135.0 1 - - 157.6 3
19 - -1241.1 4 283.7 1 - - 255.5 3

Table 2. Fitness measures by grouping.

Fitness Measure Number of Times

0 44
1 31
2 12
3 7
4 4
5 6
6 0
7 0
8 0
9 1
10 1
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Fig. 9. Average of “average fitness” versus number of generations.
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5 CONCLUSION AND FUTURE DIRECTIONS

The genetic programming paradigm provides a way to solve a wide variety of
different problems from many different fields. These problems can be reformu-
lated as the problems of program induction. When we have a problem whose
search space is well characterized and if we have also a good heuristic to solve
the problem possibly genetic programming would not give a better result. How-
ever 1t i1s very convenient to use genetic programming when we do not know
how to approach to the problem. Various applications of GP on many different
subjects provide considerable evidence of the generality of the GP paradigm.

In standard GP the user determines the elements in the function set and the
terminal set. But he/she can not put a restriction on the number of times of
their usage, i.e. on the number of times of the occurrences in the parse trees.
Restrictions on some problems make standard GP inapplicable. 4-Op problem is
one of them and it puts a restriction on the number of times of using the terminal-
set elements. More specifically a terminal-set element can be used at most once.
Our technique makes GP applicable to 4-Op problem. In the experimental results
we have observed that our program has given 40% exact solutions and after
about eight generations the average of “best fitness” is below two. These results
indicate that our technique is effective in the solution of this kind of problems.

Our technique is not specific to 4-Op problem. It can be extended, without
changing the idea behind it, to problems that limit the use of not only terminal-
set elements but also function-set elements. It can be used for all problems where
the elements of the terminal or the function-set are to be used for a specific
number of times.
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