LEARNING SOIL CLASSIFICATION USING CFP

Hakime Giilay Unsal and H. Altay Guvenir
Department of Computer Engineering and Information Science,
Bilkent University, Bilkent, 06533 Ankara

{unsal,guvenir}@cs.bilkent.edu.tr

Abstract- The paper presents an application of the Classification by Feature Partitioning
(CFP) algorithm to the problem of soil classification. CFP is an exemplar based, incremental
and supervised learning algorithm. Learning in CFP is accomplished by storing the objects
separately in each feature dimension as disjoint partitions of values. Application of the CFP
algorithm to soil classification, one of the important problems of soil engineering and civil
engineering, is described. The classification helps the soil engineer by giving general guidance.
In many soil engineering problems there are no rational expression available for the analysis
for the solution.

1. INTRODUCTION

The paper presents an application of the Classification by Feature Partitioning (CFP) al-
gorithm to the problem of soil classification. CFP is an exemplar based, incremental and
supervised learning algorithm. In exemplar-based learning examples are stored in memory
verbatim. The CFP technique makes several significant improvements over other exemplar-
based learning algorithms. The CFP method stores the instances as factored out by their
feature values. The CFP partitions each feature into segments corresponding to concepts.
Therefore, the concept description learned by the CFP is a collection of feature partitions. In
other words, the CFP learns a projection of the concept on each feature dimensions.

Each feature contributes the classification process by its local knowledge. Final classification
is based on a voting among the predictions of the features. The CFP algorithm significantly
reduces the classification complexity, over other exemplar-based techniques. The strength of
the contribution of a feature in the voting process is determined by the weight of that feature.

Classification of soil plays an important role in many civil engineering problems. Relative
ability of expert systems and numerical classification to improve soil classification systems are
discussed in [2]. Dale et. al. conclude that numerical classification has a potentially useful part
to play in establishing soil classes and generating rules for assignment in expert systems. Here
we show that CFP can be used to learn an appropriate representation for soil classification in
the form of feature partitions.



The rest of the paper describes the details of the CFP algorithm, the process of soil classifi-
cation, and the application of CFP to a particular soil data set.

2. THE CFP ALGORITHM

An instance is defined as a vector of feature values plus a label that represents its class.
The CFP algorithm learns partitions of the set of possible values for each feature. For each
partition, lower and upper bounds of the feature values, its associated class and the number of
instances it represents are maintained. Initially, a partition is a point (lower and upper limits
are equal) on the line representing the feature dimension. A partition can be extended through
generalization with other neighboring points in the same feature dimension. Classification is
carried out according to a voting scheme where each feature contributes a weighted vote.

The training process of the CFP algorithm has two steps: learning feature weights and learning
feature partitions. For each training example, the prediction of each feature is compared
with the actual class of the example. If the prediction of a feature is correct, the weight
of that feature is incremented by A (global feature weight adjustment rate); otherwise, it is
decremented by the same amount.

The second step in the training process is to update the partitioning of each feature-space
using the given training example. If the feature value of a training example falls in a partition
with the same class, then simply its representativeness value (number of instances represented
by that partition) is incremented. If the new feature value falls in a range partition with a
different class than that of the example, the CFP algorithm specializes the existing partition
by dividing it into two subpartitions and inserting a point partition (corresponding to the new
feature value) in between them. On the other hand, if the example falls in an undetermined
partition, the CFP algorithm tries to generalize a near partition with the feature value. If one
of the nearest partitions to the left and the right of the new example is in D; (generalization
limit) distance and of the same class as the example, then it is generalized to cover the new
feature value. Otherwise, a new point partition that corresponds to the new feature value, is
inserted [7].

A version of CFP called GACFP has been implemented to learn these parameters of the CFP
using a genetic algorithm [4].

No similarity and distance metricis used for prediction in CFP. Prediction process is performed
according to local knowledge of each feature. The classification process of the CFP is based on
a voting taken among the predictions made by each feature separately. For a given instance
e, the prediction based on a feature f is determined by the value of e;. If ey falls properly
within a partition with a determined class then the prediction is the class of that partition. If
e falls into the border of more than one partitions, then among all the partitions at this point
the one with the highest representativeness value is chosen. If e falls in a partition with no
known class value, then no prediction for that feature is made. The effect of the prediction of
a feature in the voting is proportional with the weight of that feature. All feature weights are
initialized to one, before the training process begins. The predicted class of a given instance is
the one which receives the highest amount of votes among all predictions. Figure 1 illustrates



Figure 1. Voting in the classification.

the voting mechanism used in the classification through an example. Consider a test example e
of class Cy with feature values z1, x4, x3, and z4. The prediction of the first feature is C;. The
second feature does not predict any class value (undetermined). The prediction of the third
feature is (. The forth feature value z4 of e falls into the border of two partitions. In this
case the representativeness values are used to determine the class value. Since the partition of
class 'y has a greater representativeness value than that of C partition, the prediction of the
forth feature is C5. Final prediction of the CFP depends on the values of the feature weights
(wy’s). If wy > (w3 +w,y) then CFP will classify e as a member of Cy; otherwise the prediction
would be (.

The sample complexity and training complexity analysis of the CFP algorithm with respect to
PAC-learning theory (Probably Approximately Correct learning) shows that, it requires small
number of examples and a small amount of memory to learn a given concept, compared to
many other similar algorithms [3]. Another outcome of this analysis is that, the CFP has
a low learning complexity. Empirical evaluation of the CFP algorithm on various real-world
data is given in [8]. Here we add a new domain (soil classification) to test the performance of

the CFP.

Most real-world data sets contain missing attribute values. Previous learning systems usually
overcame this problem by either filling in missing attribute values, or looking at the probability
distribution of values of attributes. Most common approaches are compared in [6], leading to
a general conclusion that no one approach is uniformly superior to others. In contrast, CFP
solves this problem very naturally. Since CFP treats each attribute value separately, in the
case of an unknown attribute value, it simply leaves the partitioning of that feature intact.

There are several types of noise that may exist in a data set. One possible type of noise is
the classification noise. Here the attribute values of an instance represent a valid point in the
instance space, however the associated classification is incorrect. In order to cope with this



type of noise one must be able to differentiate misclassified instances from correctly classified
ones. The CFP algorithm can remove partitions that are believed to be introduced by noisy
instances. A new parameter, called confidence threshold (or level) (CT), is introduced to con-
trol the process of removing the partitions from the concept description. If the new training
example falls in a partition with a different class than that of the example in a feature, the
CFP algorithm specializes the existing partition by dividing it into two subpartitions and
inserting a point partition, corresponding to the new example, in between and distributes the
representativeness value of the old partition to the newly formed partitions. If the representa-
tiveness values of any of the resulting subpartitions drop below the confidence threshold times
the observed frequency of its class, then that subpartition is removed from partition list of the
feature; see [7] for details.

Depending on the noise level of the data set and the number of the irrelevant attributes, the
value of the confidence threshold changes between 0 (do not remove any partition) and 1
(remove a partition if its representativeness value drops below the observed frequency of the
its class).

The main subject of this paper is the application of CFP algorithm to the problem of learning
to classify soil.

3. SOIL CLASSIFICATION

The characteristics of soil in a construction site plays a very important role in the solution of
many civil engineering problems. It is essential that a standard language should exist for the
description of soils. The description should include the characteristics of both the soil material
and the in-situ soil mass. The principal material characteristics are particle size distribution
(or grading) and plasticity. These properties can be determined either by standard laboratory
tests or by simple visual and manual procedures. Secondary material characteristics are the
color of the soil, and the shape, texture and composition of the particles [1].

Measuring the fundamental soil properties such as permeability, compressibility and strength
can be difficult, time consuming, and expensive. In many soil engineering problems, such as
pavement design, there are no rational expressions available for the analysis for the solution [5].
For these reasons, sorting soils into groups showing similar behavior may be very helpful Such
sorting is soil classification. Soil classification permits us to solve many types of simple soil
problems and guide the test program if the difficulty and importance of the problem dictate
further investigation.

The Corps of Engineers has developed a frost of susceptibility classification in which, on the
basis of particle size, one can classify soil in categories of similar frost behavior. The Bureau of
Public Roads of USA developed a classification for soils in highway construction. The Corps of
Engineers and FAA each developed a classification for airfield construction. In 1952 the Bureau
of Reclamation of USA and the Corps of Engineers developed a “unified system” intended for
use in all engineering problems involving soils. In 1987 Tirk Standartlari Enstitisi published
TS1500 “Classification of Soils for Civil Engineering Purposes,” which is based on the unified
system [9]. Unified soil classification is shown in Table 1.



The classification of of soil into classes ML, CL, OL, MH, CH and OH is done according to
the plasticity chart given in Table 1. Plasticity index [, is computed as

I,=LL-PL

where LI is liquid limit and PL is plasticity limit.

4. APPLICATION OF CFP TO SOIL DATA

The data set used in this experiment was compiled from the records of the Geotechnics Labo-
ratory of Department of Civil Engineering of Middle East Technical University. The data set
contains 96 instances (cases) of 7 different classes (CH, CL, MH, OH, SC, SP and SW). In

the classification the following features were used:

P200 Cumulative percentage passing 80um sieve

P4 Cumulative percentage passing 4mm sieve

LL Liquid limit

PL Plasticity limit

Dy The soil diameter at which 10% of the soil weight is finer
D5 The soil diameter at which 30% of the soil weight is finer
Deg The soil diameter at which 60% of the soil weight is finer

DC&O Existence of dark color and odor

All of these features have continuous values except the last one which is boolean valued.
Depending on the values of the first two attributes, technicians performed either LL and PL
tests, or diameter tests. Also depending on the value of PL and LL, in some cases the color
and odor of the soil is checked. The data set contains 50% unknown feature values. The
distribution of instances to classes is given in Table 2. The values in parentheses indicate the
numbers used to represent the classes by CFP.

In the experiment we used 75% of the data in training and remaining 25% in testing. The
CFP achieved 92% (22 out of 24 test instances) accuracy on the soil data with the following
parameter values:

Weight adjustment rate: 0.08
Generalization limits: 30 (P200), 8 (P4), 5 (LL), 1 (PL),

0.1 (D10), 0.5 (Ds3g), 1.2 (Deo), 0 (DC&O)
Confidence level: 0.01

The final picture of the CFP containing the partitions formed at the end of the test is given in
Figure 2. The minimum and maximum values found each feature are shown on both sides of
the feature partitions. For example, the minimum and maximum values of the second feature
(P4) in the training data are found to be 74.01 and 100, respectively. The feature values of
the last test example are given under the heading of “value.” This instance has unknown

values for the last four features. Individual predictions of each feature are shown under the
heading of “Predict.” The result of the voting is presented on top as the “PREDICTION.”



able 1: Unified Soil Classification
Coarse- Gravel Clean Cy>4dandl < C, <3 GW
Grained More gravels | C, < 4dand/orl < C, <3 | GP
More | than half | Gravels Fines ML or MH GM
than > 4mm | with fines Fines CL or CH GC
half Sand Clean Cy,>6andl < C, <3 SW
> 80um More sands Cy < 6and/orl < C, <3| SP
than half Sands Fines ML or MH SM
< 4mm | with fines Fines CL or CH SC
Fine- | Silts and | Inorganic | I, > 7 and above A-line | CL
Grained Clays I, < 7 and below A-line | ML
More LL <50 | Organic Dark color and odor OL
than Silts and | Inorganic I, above A-line CH
half Clays I, below A-line MH
< 80um | LL > 50 | Organic Dark color and odor OH

Table 2: Class distribution in the soil data set.

CH(1)

CL2)

MII(3) | OL(4) | SC(5) | SP(6) | SW(7)

46

28

3

11 2




Figure 2. Result of CFP for the soil data set.



The actual class value of the instance is also shown as the “CLASS.” The last test instance is
correctly predicted to be class 1 (CH). The numbers above and below the partitions represent
the class number of the corresponding partition. The final weights of features are displayed
by the CFP; for example, the weight of the first feature (P200) is found to be 0.920. The CFP
determined that the liquid limit is the most important feature with the weight value of 4.751.
The least significant feature is the existence of dark color and the odor, whose weight is 0.025.
These results closely agree with the human experts in the field.

5. CONCLUSION

This paper presents an application of CFP to learning to classify soil. Soil classification has
proved to be a valuable tool to the soil engineer [5]. It helps the engineer by giving him general
guidance through making available in an empirical manner the results of field experience. In
many soil engineering problems there are no rational expression available for classification of
soil.

It is shown that the CFP algorithm has successfully learned to classify soil examples. The
representation of classification knowledge learned by CFP, feature partitions, are closer to that
of an expert, than the decision tree given in Table 1. For example, given the values of Dy,
Dsg, Dego, an expert can easily determine the as SP, SC or SW, without considering the values
of other attributes. Also if the soil has dark color and odor, an expert can directly determine
that the soil is of type OH.

Feature weights are used to cope with the problem of attributes with different importance in
classification. Here CFP determined that liquid limit plays the most important role in the soil
classification.

Finally, we conclude that the representation of classification knowledge in the form of feature
partitions with their relative weights is also applicable to the problem of soil classification.
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