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Abstract

A program schema is a template program with a fixed control and data flow, but without specific indications
about the actual parameters or the actual computations. A program schema and the constraints on its place-
holders encode a programming methodology, and they are thus an interesting means of guiding many software
engineering tasks. First, I propose a notation and terminology for schemata and their manipulations. Second,
from a series of divide-and-conquer programs, I synthesize four increasingly powerful divide-and-conquer
schemata and their constraints. Third, I outline a vision of schema-guided program synthesis and report on
particular synthesis strategies that are guided by various schemata. Finally, I discuss the related work and out-
line directions for future work.

1 Introduction

Programs can be classified according to their synthesis methodologies, such as divide-and-conquer,
generate-and-test, top-down decomposition, global search, and so on, or any composition thereof. Informal-
ly, a program schema is a template program with a fixed control and data flow, but without specific indica-
tions about the actual parameters or the actual computations. A program schema thus abstracts a whole
family of particular programs that can be obtained by instantiating its place-holders to particular parameters
or computations, using the specification, the program synthesized so far, and the constraints of the schema.
It is therefore interesting to guide program synthesis by a schema that captures the essence of some meth-
odology. This reflects the conjecture that experienced programmers actually instantiate schemata when pro-
gramming, which schemata are summaries of their past programming experience.

In order to be more precise, we have to settle for a particular programming language (in Section 1.1), so
that we may then define a corresponding language for schemata (in Section 1.2). I finish this introduction
by specifying, in Section 1.3, all the programming problems referred to in this paper.

1.1 Logic Algorithms

I believe it is beneficial to decompose the program development stage into two sub-stages: (1) synthesis of
an abstract algorithm, with prime concern about its logical correctness w.r.t. the specification, but not so
much concern about its time or space complexity; and (2) implementation of the algorithm into a concrete
program written in some programming language, with concern about achieving operational correctness
w.r.t. the specification and about maximizing its time or space efficiency. Note that [ use the term “synthesis”
in a very large sense, that is without any bias as to what extent it is automated or manual. The advantages
of this approach are twofold. First, an algorithm is not subjected to the computational model of the target
programming language, nor to its deficiencies or even to its intended underlying machine architecture. Sec-
ond, the algorithm implementation stage, now that it is clearly separated, may explicitly re-use the huge
body of existing and ongoing research on algorithm transformation, algorithm implementation, and pro-



gram transformation. The truly creative effort thus goes into the synthesis of a first, correct algorithm. More-
over, the ensuing transformation is often easier to perform than the synthesis from scratch of an optimized
algorithm. The disadvantage of this approach is however that algorithm complexity considerations cannot
always be clearly dissociated from the algorithm synthesis process: sometimes, at the implementation time,
itis “too late” to improve an algorithm. Special attention needs thus to be paid to make the synthesis of low-
complexity algorithms possible, if not likely, rather than a mere pot-shot.

In this paper, I explore these issues in the logic programming framework, and focus on the concept of
logic algorithm, as originally introduced by Deville [19] [20], and later also advocated by others [10] [11]
[43] [74]. Informally, a logic algorithm is an algorithm expressed in (first-order) logic. For pragmatic rea-
sons (for example, the ease of implementation into Prolog programs), I propose the following more restric-
tive formal definition:

Definition 1: A logic algorithm defining a predicate r/n, denoted LA(r), is a closed well-formed formula
(wff) of the form:

VXIVXn V(Xl,...,Xn) (= $[X1,,Xn]

where the X; are distinct variables, and Bis a wff in prenex disjunctive normal form, whose only free vari-
ables are Xj,...,X,,. The atom r(Xy,...,X,) is called the head, and B[X,...,X,,] is called the body of the logic
algorithm.

Example 1: I now introduce a first programming problem that will be used throughout this paper. Infor-
mally speaking, a plateau is a non-empty list of identical elements. A compact list is a list of couples, where
the first term of each couple, called the value of the couple, is different in two consecutive couples, and the
second term of each couple, called the counter of the couple, is a positive integer. Throughout this paper,
natural integers are represented as successors (using the functor s/1) of zero (denoted by the constant 0). We
can now specify a list compression problem:

compress(L,C) iff C is a list of {v;c;) couples, such that the i™ plateau of L has c; elements equal
to v;, where L is a list and C a compact list.

A possible logic algorithm for compress/2 is as follows:

VL VC compress(L,C) <« JHL JHL; 3JHL, ITL 3ITC IV IN ITTC

L=[] C=[1
v L=[HL] C=[(HL, s (0))]
Vv L=[HL;,HL,|TL] A HL;#HL,

compress ([HL, | TL], TC)
C=[(HLq, s (0)}| TC]

HL,=HL,

compress ([HL, | TL], TC)

C=[(V,s (N))|TTC] A TC=[{V,N)|TTIC]

v L=[HLy, HL,|TL]

> > > > > > > >

Logic Algorithm 1: LA(compress) &

Such a logic algorithm is clearly easy to implement into, say, a Prolog program. A logic algorithm is truly
multi-directional (multi-modal, reversible), but preserving this at the Prolog level is tricky and thus usually
done by deriving correct permutations of literals and clauses for each directionality (mode) required by its
specification [16]. (The specification above doesn’t have any such information.)

In the following, I drop the universal quantifications in front of the heads, as well as any existential quan-
tifications at the beginning of bodies of logic algorithms. Moreover, for convenience and when appropriate,
I often write logic algorithms in a more compact form, using De Morgan’s laws in order to merge disjuncts.
By extension, a logic algorithm LA(r) can also designate a set of logic algorithms, provided the involved
predicate-symbols feature a “uses”-hierarchy rooted in r/n.

Note that logic algorithms take the “natural” form of what one would expect to be a logic program. In-
deed, the equivalence symbol is necessary to state when r/n is true as well as when 7/ is false. Logic algo-
rithms thus correspond in fact to the notion of completed normal programs [12]. Hence, reasoning on logic
algorithms is equivalent to using normal programs, but reasoning on their completions. Implementing logic
algorithms into normal programs is thus nothing but “de-completion” [10].



1.2 Logic Algorithm Schemata

We may now proceed to the definition of a schema language. Informally, in a first approximation, a logic
algorithm schema is a second-order logic algorithm, and its place-holders are first/second-order variables.
A particular logic algorithm, called an instance of the schema, is then obtained by instantiating the variables
of the schema.

Example 2: Here is a logic algorithm schema for the generate-and-test methodology:
R(X,Y) & Generate(X,Y) A Test (Y)

The logic algorithm LA(sort):
sort (L,S) & permutation(L,S) A ordered(S)

is an instance of this generate-and-test schema, namely via the second-order substitution { R/sort, X/L, Y/S,
Generate/permutation, Test/ordered}. &

Reality is more complex, however. Function-variables and predicate-variables (whose symbols start with
uppercase letters, just like for first-order variables) may have any arity, and this calls for schema-variables
(whose symbols start with lowercase letters, but they should not be confused with functors and predicate-
symbols) to denote such arities. Conjunctions, disjunctions, and quantifications of any length may appear,
and this calls for schema-variables to denote the lengths of such ellipses, and for notation-variables (whose
symbols also start with lowercase letters) to range across such ellipses. Permutations of parameters/
conjuncts/disjuncts/quantifications and unfold transformations may have to be performed in order to see
why a logic algorithm is an instance of some schema.

Example 3: Given the logic algorithm schema:
R(Xy, ., X, Y) &
P(Y, 29, .s2p)
AN Msisn Qi (Xi,25)
where n is a schema-variable and i is a notation-variable, it is not immediately clear why the logic algorithm
LA( foo):

foo(S,B,A) &
permutation (A, SA)
A reverse (B, RB)
A append (SA,RB, S)
A ordered(SA)

is an instance of it. A possible schema substitution is { R/foo, n/2, X|/B, X»/A, Y/S, P/append, Z\/RB, Z,/SA,
Qy/reverse, Q,/sort}. But the sort/2 atom must also be unfolded into the conjunction of the permutation/2
and ordered/1 atoms (as in LA(sort) of Example 2), and a series of permutations of parameters and conjuncts
are furthermore required to actually obtain this instance. ¢

A wff-schema language is thus needed to write realistic logic algorithm schemata. The formal definitions
of such a language and of its semantics are beyond the scope of this paper. Finally, there may be constraints
on the possible instances of the predicate-variables (for instance in comparison to a specification): algorithm
instances are guaranteed correct w.r.t. their specifications if the instantiated constraints hold.

Definition 2: A logic algorithm schema defining a predicate R/n is a wff-schema of the form:
vX,..VX, RX,...X,) < BX...X,]

and a set S of wff-schemata, called constraints, relating R and the predicate-variables of B, where n is a
schema-variable or a constant, the X; are distinct variables, R is a predicate-variable, and Bis a wff-schema
in prenex disjunctive normal form, whose free first-order variables are X|,...,X,,. All predicate-variables are
implicitly existentially quantified. The atom-schema R(Xj,...,X,,) is called the head, and B[X;,...,X,] is
called the body of the logic algorithm schema. ¢

Hereafter, I drop the universal quantifications in front of the heads, as well as any existential quantifica-
tions at the beginning of the bodies of logic algorithm schemata.

A logic algorithm schema without function-variables, predicate-variables, schema-variables, and
notation-variables is a logic algorithm.
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Figure 1: Specifications, algorithms, and schemata

Definition 3: An instance of a logic algorithm schema is a logic algorithm obtained by the following se-
quence of operations:

(1) permutation of the parameters, conjuncts, disjuncts, and quantifications of the schema;

(2) application of a schema substitution to the resulting schema, such that all function-variables,
predicate-variables, and schema-variables are instantiated to first-order objects, and such that the
constraints are satisfied;

(3) application of unfold transformations.

This process is called instantiation of a schema. The reverse process is called classification of the algorithm,
and yields a schema called a cover of that algorithm. The process of classifying several algorithms into a
same schema is called schema synthesis (or algorithm abstraction). Conversely, the process of instantiating
a given schema into several algorithms is called schema analysis. The process of synthesizing several algo-
rithms from a specification is called algorithm synthesis. This is a part of software engineering. Conversely,
the process of “reverse-synthesizing” specifications from an algorithm is called algorithm analysis. This is
a part of reverse engineering. See Figure 1 for an illustration of these processes. ¢

An algorithm synthesizer, whether human or (semi-)automated, should be able to synthesize a whole fam-
ily of algorithms from a single specification. The different decisions taken at the choice-points during syn-
thesis then provide an interesting algorithm classification. A popular idea is to benchmark the ability of a
synthesizer on the sorting problem, whose specification is deceptively simple, and yet gives rise to a tre-
mendous variety of different algorithms. Classification through synthesis of sorting algorithms has been
done by Broy [9], Clark and Darlington [13], Follet [28], Green and Barstow [31], Lau [47] [49],
Smith [62], and so on. Moreover, the ability to find new algorithms might be considered another benchmark
of the ability of a synthesizer.

In order to facilitate the “visual” classification of logic algorithms, I introduce the following purely syn-
tactic criterion for the writing of logic algorithms:

Definition 4: A canonical representation of a logic algorithm w.r.t. a covering schema exactly matches the
layout of that schema.

Example 4: A possible canonical representation of LA( foo) with respect to the schema of Example 3 is:

foo(S,B,A) &
append (SA,RB, S)
A reverse (B,RB) A ( permutation (A, SA) A ordered(SA) ) ¢



Note that a canonical representation is not necessarily unique, because of the possible permutations of
parameters. The permutations of parameters as in a schema can’t be imposed at the instance level, because
there is no possible control over how problems are actually specified. I thus can’t introduce a concept such
as the normalized representation of a logic algorithm. Almost all logic algorithms in this paper are canonical
representations w.r.t. some schema in this paper.

Note that one may distinguish between synthesis schemata and transformation schemata: the former are
useful for guiding algorithm synthesis, whereas the latter are useful for guiding algorithm transformation.
But as nothing prevents the use of transformation schemata for guiding algorithm synthesis, the boundary
between these two kinds of schemata is a subjective one, just as for the boundary between synthesis and
transformation. For the sake of this paper, I assume the following purely syntactic criterion for distinguish-
ing between synthesis and transformation: if the input and output languages are the same, then it is trans-
formation, otherwise it is synthesis. Examples of transformation schemata are discussed in Section 4.5.

1.3 Specifications

A specification of a problem is a statement describing what the problem is and how to use a corresponding
program. Ideally, a specification does not indicate how fo solve the problem, but the question whether this
is desirable, or even feasible!, is beyond the concerns of this paper, so I here admit virtually everything as
a specification. Also, since I am here only concerned about the synthesis of algorithms, I drop most of the
information about how to use a corresponding program, such as required call-modes. Throughout this paper,
the used specification format (or schema!) is as follows:

R(X;,....X,) iff /implies R[X;,....X,,]
where (X|,....X,,) € dom(R).

where R is a predicate-variable designating the predicate-symbol to be used, the X; are distinct parameters,
sentence R describes the specified relation (which may be different from the intended relation),
and dom(R) is the domain of R, The symbols “iff”, “implies”, “where”, “€”, ... should not be taken lit-
erally here, as the “iff / implies” and “where” statements may be written in any language: if they are in (some
subset of) natural language with ad hoc mathematical notations, then the specification is an informal spec-
ification, otherwise it is a formal specification. Equivalence specifications (with “iff”’) are the most frequent
specifications. Implication specifications (with “implies’) are for problems that just need to establish some
post-condition R&; in that case, we are not interested in the algorithm that always fails, but in “weaker” al-
gorithms (not necessarily the weakest algorithm, which would establish an equivalence with the post-
condition). Whatever the underlying language, equivalence specifications can be abstracted as 3-tuples
(R, dom(R), R[X,...,X,] ). Whenever I want to be independent of the actual specification language, I will
use this abstraction.

Formal specifications written in (some subset of) first-order logic have the description X [X|,...,X,,] of the
specified relation as a wff, whose free variables are X|,...,X,,. The symbols “iff” and “implies” may then be
replaced by “<” and “=", respectively. Such specifications are called logic specifications.

The domain dom(2R ) of a relation & is, in general, a subset of the Cartesian product of the types of its
parameters. Indeed, for example, the restriction of a parameter of type list to being non-empty need not nec-
essarily appear in the “iff” statement, but may also appear in the “where” statement. The domain dom(R )
of a parameter X in relation & is a subset of its type in &, The domain of a relation is, in general, a subset
of the Cartesian product of the domains of its parameters. But, for simplicity and without loss of generality,
I here only consider relation domains that are equal to the Cartesian product of the domains of the relation’s
parameters. The reasons for this will become apparent in Section 2.4.1. By abuse of language, I sometimes
talk about the domain of an algorithm or program.

Example 5: Suppose relation & has parameters X and Y of type integer, then we could have dom(R) =
{{M,N) | odd(M) A integer(N) A M < N }, and thus dom(R y) = { M | odd(M) }, while dom(R y)={ N |
integer(N) }. But dom(R)) < dom(R x) X dom(R_y). In order to handle & in the context of this paper, the
constraint M < N would have to be moved from the domain description to the relation description.

The main point here is that I treat domains as pre-conditions (that is, X < dom(R)). This means that no
algorithm has to verify whether its own parameters belong to its domain, though it must verify whether the
parameters it passes to another algorithm belong to the domain thereof.



Example 6: Here are informal specifications (because that’s enough for my purposes) of all the program-
ming problems referred to in this paper:

append(A,B,C) iff C is the concatenation of B to the end of A,
where A, B, C are lists.

compress(L,C) iff Cis a list of (v, c;) couples, such that the ih plateau of L has c; elements equal
to v;, where L is a list and C a compact list.

delOddElems(L,R) iff R is L without its odd elements,
where L, R are integer-lists.

efface(E,L,R) iff R is L without its first, existing occurrence of E,
where E is a term, L a non-empty list, and R a list.

firstPlateau(L,P,S) iff P is the first maximal plateau of L, and S is the corresponding suffix of L,
where L is a non-empty list, P a plateau, and S a list.

insert(E,L,R) iff non-descending list R is non-descending list L with E,
where FE is an integer and L, R are integer-lists.

integer(N) iff N is an integer,
where N is a term.

intList(L) iff L is an integer-list,
where L is a term.

length(L,N) iff N is the length of L,
where L is a list and N a natural integer.

member(E,L) iff E is an element of L,
where E is a term and L a non-empty list.

member(A,N,K,I) iff K is the /™ element of A,
where A is a non-descending integer-array indexed from 1 to integer N, and K is an integer.

merge(A,B,C) iff C is the merger of A and B,
where A, B, C are non-descending integer-lists.
odd(N) iff N is odd,
where N is an integer.

ordered(S) iff S is non-descending,
where § is an integer-list.

partition(L,P,S,B) iff S (respectively B) contains the elements of L that are smaller than (respectively
bigger than or equal to) the pivot P,
where L, S, B are integer-lists and P is an integer.

permutation(L,P) iff P is a permutation of L,
where L, P are lists.

plateau(N, E, P) iff P is a plateau of N elements equal to E,
where N is a positive integer, E a term, and P a non-empty list.

reverse(L,R) iff R is the reverse of L,
where L, R are lists.

sort(L,S) iff S is a non-descending permutation of L,
where L, S are integer-lists.

split(L,E.S) iff F is the first half of L, and S is the second half of L,
where L, F, S are lists.

sum(L,S) iff S is the sum of the elements of L,
where § is an integer and L an integer-list.

Note that these specifications are restricted to the objectives of algorithm synthesis, because no procedural
requirements, such as required directionalities (modes), and no non-functional requirements, such as com-
plexity thresholds, are given. ¢



The rest of this paper is now organized as follows. In Section 2, I incrementally synthesize logic algorithm
schemata reflecting a divide-and-conquer synthesis methodology. In Section 3, I examine strategies for
stepwise and schema-guided synthesis of logic algorithms. Related work is discussed in Section 4, before
drawing some conclusions and outlining future work in Section 5.

2 Divide-and-Conquer Algorithm Schema Synthesis

In this paper, I mostly focus on the divide-and-conquer methodology, for the following reasons (cf. [62]):

* diversity: a wide variety of relations can be implemented by such algorithms;

* complexity: the resulting algorithms often have good time/space complexities;

o simplicity: the “simplicity” of this methodology makes it particularly convenient for (semi-)automated

algorithm synthesis.

In essence, the divide-and-conquer synthesis methodology solves a problem by the following steps: [15]

(1) divide a problem into sub-problems, unless it can be trivially solved;

(2) congquer the sub-problems by solving them recursively;

(3) combine the solutions to the sub-problems into a solution to the initial problem.
Hence the name of the methodology. In the following, I focus on applying this methodology to data-
structures, rather than to states of partial computations.

This methodology description is a little rough, though, and calls for further details. First, in Section 2.1,
I manually synthesize a set of divide-and-conquer logic algorithms in a form suitable for schema synthesis.
In Section 2.2, T then incrementally synthesize various versions of a divide-and-conquer logic algorithm
schema from these logic algorithms. Next, in Section 2.3, I justify some of my schema synthesis decisions.
Section 2.4 lists the constraints that instances of these schemata have to satisfy in order to actually be correct
divide-and-conquer algorithms. In Section 2.5, I discuss various issues related to divide-and-conquer sche-
mata. Finally, in Section 2.6, I compare the divide-and-conquer methodology to other methodologies.

2.1 A Set of Divide-and-Conquer Logic Algorithms

I now synthesize logic algorithms for some of the problems of Section 1.3, following the divide-and-
conquer methodology, and using the other problems as primitives, whenever appropriate. Also, the logic
algorithms may look at little bit convoluted sometimes, but this is on purpose, as it facilitates the subsequent
schema synthesis, and actually makes these algorithms be in canonical representation w.r.t. some schema
synthesized hereafter.

2.1.1 Logic Algorithms for the compress/2 Problem

Let’s first synthesize a few logic algorithms for the compress/2 problem. I use this problem to go step-by-
step through the divide-and-conquer methodology, and to define some terminology all along.

Step 1: Selection of an induction parameter. The first step is the selection of an induction parameter, that
is the parameter to which the divide (decomposition) operator is applied. Only parameters of inductive types
(such as integer, list, tree, ...) are eligible as induction parameters. I hypothesize that no parameter is a tuple,
that is that procedure declarations are “flattened” out.

Definition 5: A simple induction parameter is composed of exactly one parameter. A compound induction
parameter is composed of at least two parameters.

Many problems can be implemented by algorithms with induction over a simple induction parameter. Se-
lection heuristics, such as the Functionality Heuristic and the Directionality Heuristic, can be found in [20].
In the following, when talking about a logic algorithm LA(7), I sometimes write LA(7-X) to show that X was
selected as induction parameter. Note however that the predicate defined by LA(7-X) still is r, and not r-X.

Example 7: For the compress/2 problem, suppose that L is selected as (simple) induction parameter. Alter-
native decisions will be taken later in this sub-section.

Step 2: Synthesis of structural form-identifying formulas. Structural forms are terms. The second step
starts with the selection of minimal and non-minimal forms of the induction parameter, such that every min-
imal form “represents” a problem that can be trivially solved, and every non-minimal form “represents” a



problem that needs to be solved by the divide, conquer, and combine operators. A minimal form is thus a
form to which at least one computation starting from a non-minimal form eventually reduces the induction
parameter. Moreover, all these forms must partition the domain of the induction parameter. This amounts to
selecting a well-founded relation (wfr) over the domain of the induction parameter, as conveyed in the fol-
lowing definition:

Definition 6: Given a wfr “<” over the domain D of the induction parameter, the minimal forms of the in-
duction parameter are the minimal elements of the well-founded set (D,<), and the non-minimal forms of
the induction parameter are the non-minimal elements of (D,<). A structural form-identifying formula is a
wif that decides whether or not a given term is of a given form.

The selected wir is used in the total correctness proof of the synthesized algorithm with respect to its spec-
ification. Wfr selection heuristics, such as the Intrinsic Heuristic and the Extrinsic Heuristic, can be found
in [20]. The second step concludes by the “synthesis” of a structural form-identifying formula for each ob-
tained form. [ use quotes here because this may amount to a selection from a database of predefined domain-
specific wifs rather than to actual synthesis based on specification information.

Example 8: For the compress/2 problem, suppose that is-the-tail-of is selected as wir over list, which is
the domain of L. This means that the empty list, denoted [], is the unique minimal form of L, and the non-
empty list, denoted [_|_], is the unique non-minimal form of L. Weaker relations, such as has-less-
elements-than or is-a -suffix-of, are also suitable, but it is best to start with strong relations and relax them
if needed. Possible form-identifying formulas are thus L =[] and L = [_|_] (or L # [], or length(L,N) A
N > 0), respectively.

Step 3: Synthesis of a divide operator. The third step consists of the synthesis of an operator that divides
(decomposes) the induction parameter into values (called zails) that are smaller than it, according to the wfr
selected at the second step. This is only applicable if the induction parameter is of a non-minimal form.
Other values (called heads) allow the reconstruction of X from its tails. There are at Ieast three strategies
according to which the induction parameter, say X, can be decomposed:

* intrinsic decomposition: X is decomposed into 4 > 1 heads and ¢ > 1 tails in a manner reflecting the
definition of the type of X; for example, L = [HL|TL];

* extrinsic decomposition: X is decomposed into 4 > 0 heads and ¢ > 1 tails in a manner reflecting the
definition of the type of some other parameter than X, or reflecting the intended relation; for example,
partition(L,P,S,B);

* logarithmic decomposition: X is decomposed into & = 0 heads and 7 > 2 tails of about equal size; for
example, split(L,F,S).

An intrinsic decomposition reflects a wfr selected via the Intrinsic Heuristic, and an extrinsic or logarithmic
decomposition reflects a wfr selected via the Extrinsic Heuristic (see [20]). None of these three strategies is
superior to the others. In the following, when talking about a logic algorithm LA(r), I sometimes write LA(r-
int/ext/log-X), in order to show that X was selected as induction parameter, and that the intrinsic/extrinsic/
logarithmic decomposition strategy was applied. Again, the predicate defined by LA(r-int/ext/log-X) still is
r, and not r-int/ext/log-X.

Once a decomposition strategy selected, a corresponding decomposition operator has to be “synthesized.”
I again use quotes here because this may amount to a selection from a database of predefined domain-
specific operators rather than to actual synthesis based on specification information.

Example 9: For the compress/2 problem, suppose that the intrinsic decomposition strategy is selected, and
that L = [HL|TL] is then selected as a decomposition operator. Alternative decisions will be taken later in
this sub-section.

Step 4: Synthesis of the conquer operator. The fourth step consists of the synthesis of the conquer oper-
ator. This is a mere syntactic operation, as it reduces to the generation of a conjunction of recursive calls,
one for each tail of the induction parameter that is computed by the divide operator. This yields tails of all
the other parameters.

Example 10: For the compress/2 problem, with the decisions taken in the previous three examples, the
atom compress(TL,TC) is synthesized, introducing a unique tail 7C of the other parameter C. So far, the syn-
thesized logic algorithm thus is:



compress (L,C) &
L=[]
v L=[_I_1A L=[HL|TL]
A compress (TL, TC) 3

Step 5: Synthesis of the combine operators. The fifth and last step is the synthesis of the combine opera-
tors, which formalize how the other parameters relate to the induction parameter, for each of its structural
forms. There may be alternative (but not necessarily mutually exclusive) ways to do so for a given form.
The overall results are structural cases, and here take the form of conjunctions of literals.

Definition 7: A structural case is a minimal case if the induction parameter is of a minimal form, and a non-
minimal case if the induction parameter is of a non-minimal form.

This step is (surprisingly) not creative either, as everything just follows from the previous steps and from
the specification. Domain-checking literals have to be added to ensure that all predicates are correctly used.
This is important in view of achieving correctness of the logic algorithm w.r.t. its specification.

Example 11: For the compress/2 problem, we proceed as follows:
* if L is of the selected minimal form (L = []), then C must be empty, too (C =[]);

* if L is of the selected non-minimal form (L = [_|_]) and is intrinsically decomposed via L = [HL|TL]
such that compress(TL,TC) holds, then:

— if TL is empty or TL is non-empty and starts with a term different from HL, then C must be
[KHL,s(O)TC];

— if TL is non-empty and starts with a term identical to HL, then C must be [{V,s(s(N)))| TTC], where
TC = [(V,s(N)| TTC].

The structural cases are mutually exclusive here, because given a list L, there is only one compact list C
corresponding to L. No domain-checking literals have to be added. Hence the following logic algorithm for
compress(L,C), after minor re-arrangements:

=3

A C=[]

A L=[HL|TL]

A (TL=[]) Vv (TL=[HTL|TTL]
A compress (TL, TC)

A HC=(HL, s (0))

A C=[HC|TC]
A

A

A

A

A

compress (L, C)
=[]

v L=[_I_]

A HL#£HTL)

v L=[_|_] L=[HL|TL]

TL=[HTL|TTL] A HL=HTL
compress (TL, TC)

HC=

C=[{V, s (s (N)))ITTC] A TC=[{V, s (N) )| TTC]
Logic Algorithm 2: LA(compress-int-L) &

Example 12: The following other logic algorithm for compress(L,C) has been synthesized by extrinsic de-
composition of C. I decomposed C into something smaller in a way reflecting the type of L, namely [list.
Since every element of L represents an increment by 1 of the counter in an element of C, the idea was to
decompose C by decrementing, if possible, the counter of its first element by 1. This decomposition was
non-trivial, but considerably facilitated the rest of the synthesis. Note that there is (surprisingly) no usage
of #/2, because of the domains-as-preconditions approach: C is assumed to be a compact list.

compress (L,C) &
C=I[1] L=[]
v C=[_1_] decompose (C, HC, TC)

A
A
A
A\
A\

compress (TL, TC)
HL=HC
L=[HL|TL]
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decompose (C,HC,TC) &
C=[{(V,s(0))|T] A HC=V A TC=T
v C=[V,s(s(N)))IT] A HC=V A TC=[{V, s (N))|T]

Logic Algorithm 3: LA(compress-ext-C) &

Example 13: The following other logic algorithm for compress(L,C) has been synthesized by intrinsic de-
composition of C:

compress (L,C) &
C=I[1 A L=[]
v C=[_I|_1A C=[HC|TC]
A compress (TL, TC)
A
A

HC=(E,N) A plateau(N,E,HL)
firstPlateau (L, HL, TL)
Logic Algorithm 4: LA(compress-int-C) &

Example 14: The following last logic algorithm for compress(L,C) has been synthesized by extrinsic de-
composition of L. I decomposed L into something smaller in a way reflecting the type of C, namely compact
list. Since every element of C represents a “summary” of a plateau of L, the idea was to decompose L by
extracting its first maximal plateau as head HL of L, and the corresponding suffix as tail 7L of L. This de-
composition was non-trivial, but considerably facilitated the rest of the synthesis.

compress (L,C) &
L=[1] A C=[]
v L=[_|_]lA firstPlateau(L,HL,TL)
A compress (TL, TC)
A plateau (N,E,HL) A HC=(E,N)
A C=[HC|TC]
Logic Algorithm 5: LA(compress-ext-L) &
Synthesis is not necessarily a linear process where one goes from Step 1 to 5. Especially the first three
steps have a lot of choice-points to which synthesis may backtrack, either because it fails at a later step (for
instance, because the selected wir is too strong) or because alternative algorithms need to be synthesized.

2.1.2  Other Logic Algorithms

I now synthesize a few more logic algorithms for selected other problems. I give only brief information
about the synthesis decisions, but add useful comments and terminology where appropriate.

Example 15: The following logic algorithm for delOddElems(L,R) has been synthesized by intrinsic de-
composition of L:

delOddElems (
L=[]
v L=[_|_]

L,R) &
A R=[]
A L=[HL|TL]
A odd (HL)
A delOddElems (TL, TR)
A HR=_
A R=TR
A L=[HL|TL]
A —odd (HL)
A delOddElems (TL, TR)
A HR=HL
A R=[HR|TR]
Logic Algorithm 6: LA(delOddElems-int-L)

This logic algorithm is typical for all filtering problems. 1t is a complete-traversal logic algorithm: all ele-
ments of the induction parameter are visited for a specific solution. Moreover, it is a single-loop logic
algorithm: only one traversal of the induction parameter is being performed at any moment. Finally, it is a
semantic-manipulation logic algorithm: some—if not all—constituents of the induction parameter are shuf-

v L=[_[_]
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fled around conditionally, as their values are relevant, or even new constituents are used, for the construc-
tion of the other parameters. The non-minimal cases are mutually exclusive, because given a list L, there is
only one list R that is L where certain elements have been filtered out (the reverse is not true). A logic algo-
rithm synthesized by intrinsic decomposition of R would be quite different from the one above. ¢

Example 16: The following logic algorithm for efface(E,L,R) has been synthesized by intrinsic decompo-
sition of L:

efface(E,L,R) &
L=[_] A L=[HL] A E=HL A R=[]
vV I=[_, _[_T A~ L=THLITL]
A HL=E
A E=HL A R=TL
vV I=[_, _[_T A~ L=THLITL]
A HL#E

A efface(TE,TL, TR)

A HE=_ A HR=HL

A E=TE A R=[HR|TR]

Logic Algorithm 7: LA(efface-int-L)

Note that the non-minimal form gives rise to two structural cases, one of them without recursion. This logic
algorithm is a prefix-traversal logic algorithm: only the first few elements of the induction parameter are
visited for a specific solution. The non-minimal cases are mutually exclusive, because given a list L and a
term E, there is only one list R that is L without its first occurrence of E (the reverse is not true). Also note
that E could have been used instead of TFE in the recursive atom, because E and TE are “later” unified any-
way. Such a parameter is called an auxiliary parameter, because it has nothing to do with the “inductive
nature” of the problem. Induction on an auxiliary parameter is obviously a bad idea. I will come back to
auxiliary parameters in Section 2.5.2. The reader is invited to synthesize a logic algorithm by intrinsic de-
composition of R, and to compare it with the one above. ¢

Example 17: The following logic algorithm for member(E,L) has been synthesized by intrinsic decompo-
sition of L:

member (E, L) &

L=[_] A L=[A] A E=A
v L=[_,_|_1 A L=[HL|TL]
A true
A E=HL
v L=[_,_I_1 A L=[HL|TL]
A true
A member (TE, TL)
A HE=_
A E=TE

Logic Algorithm 8: LA(member-int-L)
Parameter E is an auxiliary parameter. Note that the non-minimal form gives rise to two cases, one of them
without a recursive atom. This is also a prefix-traversal logic algorithm. However, the non-minimal cases
are not mutually exclusive: a non-empty list may have more than one member. Overall, thus, all the ele-
ments of the induction parameter are eventually visited, but upon backtracking only. &

Example 18: The following logic algorithm for merge(A, B, C) has been synthesized by intrinsic decompo-
sition of the compound induction parameter {A,B):
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merge (A,B,C) &
A=[]
\Y B=[]
vV A=[_I_1 A B=[_I_]

C=B
C=A

decompose (A, B), HAB, (TA, TB))
true

merge (TA, TB, TC)

HC=HAB

A C=T[HC, HCJTC]

decompose ({A, B), HAB, (TA, TB)) &

A=[HAB|TA] A B=[HB|_] A HABS<HB A TB=B
v A=[HA|_] A B=[HAB|TB] A HAB<HA A TA=A

> > > > > >

>

Logic Algorithm 9: LA(merge-int-(A, B))

Note that there are two minimal forms and one non-minimal form. Parameters A or B alone as induction
parameter do not lead to linear-complexity algorithms. This is however possible with C alone. ¢

Example 19: The following logic algorithm for plateau(N,E, P) has been synthesized by intrinsic decom-
position of N:

plateau(N,E,P) &
N=s (0) E=_ A P=[E]
vV N=s(s(_)) N=s (TN) A HN=N
true
plateau (TN, TE, TP)
HE=A A HP=A
E=TE A E=HE A P=[HP|TP]

> > > > > >

Logic Algorithm 10: LA(plateau-int-N)

Parameter E is an auxiliary parameter. Note the intricate way in which HP is unified with the appropriate
term. A logic algorithm synthesized by intrinsic decomposition of P would be quite similar to the one
above. ¢

Example 20: The following logic algorithm for sort(L,S) has been synthesized by intrinsic decomposition
of L, yielding the Insertion-Sort algorithm:

sort (L,S) &

L=[] A S=T1
v L=[_|_]1A L=[HL|TL]
A sort (TL,TS)
A HS=HL

A 1nsert (HS, TS, S)
Logic Algorithm 11: LA(sort-int-L) {Insertion-Sort}

The following other logic algorithm for sort(L,S) has been synthesized by extrinsic decomposition (reflect-
ing the intended relation) of L, yielding the Quick-Sort algorithm:

sort (L,S) &

L=[] A S=T1
v L=[_|_]A L=[HL|T] A partition(T,HL,TL;,TL,)
A sort (TL,,TS;) A sort(TL,,TS,)
A HS=HL

A append (TS, [HS|TS,]1,S)
Logic Algorithm 12: LA(sort-ext-L) {Quick-Sort}

The following third logic algorithm for sor#(L,S) has been synthesized by logarithmic decomposition of L,
yielding the Merge-Sort algorithm:
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sort (L,S) &

S=L

S=L

split (L, TL;, TL,)

true

sort (TL,, TSy) A sort(TL,,TS,)
true

merge (TS, TS,, S)

Logic Algorithm 13: LA(sort-log-L) {Merge-Sort}

> > > > > > >

Note that there are two minimal forms and one non-minimal form.
All these sorting algorithms are multiple-loop logic algorithms: at least two nested traversals of the in-
duction parameter are being performed at some moment. &

Example 21: The following logic algorithm for split(L,F,S) has been synthesized via a slightly different
methodology, namely first generalization of the initial problem by introduction of an additional parameter,
then synthesis by structural induction for the new problem, and finally expression of the old problem in
terms of the new one.

split (L,F,S) &
split(L,L,F,S)

split (L,M,F,S) &
F=[] A S=L
F=[] A S=L
M=[HM;, HM, | TM] A L=[HL|TL]
true
split (TL,TM, TF, TS)
HF=HL A HS=_
F=[HF|TF] A S=TS
Logic Algorithm 14: LA(splif)
Note that there are two minimal forms and one non-minimal form for split/4. This is a structural-
manipulation logic algorithm: some—if not all—constituents of the induction parameter are shuffled
around unconditionally, because their values are irrelevant, for the construction of the other parameters. ¢

> > > > > > >

2.2 Divide-and-Conquer Logic Algorithm Schema Synthesis

I now incrementally synthesize four versions of a divide-and-conquer logic algorithm schema, starting from
the logic algorithms of the previous section. Each new version covers a larger set of logic algorithms.

2.2.1  First Version: Binary Predicates, One Case Each, No Subcases

Let’s first restrict ourselves to binary predicates, and examine a most basic methodology that already yields
solutions to many problems.

A divide-and-conquer algorithm for a binary predicate r over parameters X and Y works as follows. Let
X be the induction parameter. If X is minimal, then Y is (usually) easily found by directly solving the prob-
lem. Otherwise, that is if X is non-minimal, decompose X into a vector HX of heads of X and a vector TX
of tails of X, the tails being of the same type as X, as well as smaller than X according to some well-founded
relation. The tails TX recursively yield tails TY of Y. The heads HX are processed into a vector HY of heads
of Y. Finally, Y is composed from its heads HY and tails TY.

For further discussion, let’s quantify the vectors as follows. There are i heads of X, 4" heads of ¥, and ¢
tails of X, hence ¢ tails of Y. Thus:

#HX = h
#HY =h'
#TX =#TY =1t

Note that A, &', t are schema-variables, not constants.
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R(X,Y) &
Minimal (X) A Solve (X,Y)
\% NonMinimal (X) A Decompose (X, HX, TX)
A R(TX, TY)

A Process (HX, HY)
A Compose (HY, TY, Y)

Logic Algorithm Schema 1: Divide-and-conquer (version 1)

Process
2 HX <——> HY
Decompose Compose
X
TX €<—> TY
R Y

X

Solve

Figure 2: Dataflow and control-flow in divide-and-conquer algorithms

Logic algorithms synthesized by this basic divide-and-conquer methodology are covered by Schema 1,
where R(TX,TY) stands for Aj<j<; R(TX;, TY)), and j is a notation-variable. The dataflow and control-flow
can be graphically represented as in Figure 2.

Example 22: Logic algorithms covered by Schema 1 are LA(compress-ext-C) (LA 3), LA(compress-int-C)
(LA 4), LA(compress-ext-L) (LA 5), LA(sort-int-L) (LA 11), and LA(sort-ext-L) (LA 12).

Technically speaking, the instance of a predicate-variable P/n of a schema is a predicate-symbol p/n. By
abuse of language, I will here also consider any definition of p/n as an instance of P/n, or even of P(X). A
definition of a predicate-symbol p/n is either the relation description P[X] of its specification, or the body
B[X] of some logic algorithm for p/n. Note that every logic algorithm body is a (first-order logic) relation
description, but not vice-versa. As allowed by operation (3) of Definition 3 (schema instantiation), I unfold
predicate-variable instances as often as possible into logic algorithms (namely when they are non-recursive
conjunctions of literals).

Example 23: The instance of Minimal/l in LA(compress-ext-C) (LA 3) actually is some predicate-symbol,
say minCompress/1, such that minCompress(C) is defined by C = []. By abuse of language, the wff C =[]
is also seen as an instance of Minimal/1, or even of Minimal(X), for LA(compress-ext-C). In LA(compress-
ext-C), the call to minCompress/1 has effectively been transformed away by unfolding its definition.

I prefer the verb “decompose” to “divide”, and that the “combine” operation is here actually split into a
“process” operation and a “compose” operation for non-minimal forms, and renamed “solve” for minimal
forms. The reasons for this departure from the “classical” terminology are that the new terminology has
more concepts and that it actually reveals the often symmetric roles of parameters X and Y (see Figure 2).

Also note the convenient parameter naming-scheme suggested by the schema (and actually used through-
out this paper): given the user-determined names of the parameters of R, all parameters introduced by the
schema have names derived from them by prefixing them with either “H” (for “head”) or “T” (for “tail”)
and possibly suffixing them with integers (to identify them in case there is more than one head or tail). The
nouns “head” and “tail” are to be taken in a very general sense here: heads and tails are whatever is obtained
through decomposition of parameters, with tails (but not necessarily heads) being of the same type as the
decomposed parameter, and tails being used in recursive calls. So the head and tail of a list are not neces-
sarily the first element and remaining elements of that list. This convention and the layout of the schema, if
used systematically, allow a very straightforward understanding of my algorithms. Other variables may ap-
pear inside the definitions of the predicate-variables of the schema: unless these definitions are themselves
covered by some divide-and-conquer schema, the naming of these internal variables is unconstrained here.
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R(X,Y) &
Minimal (X)
V. Vic<e NonMinimal (X)

A Solve (X,Y)

A Decompose (X, HX, TX)

A Discriminatey (HX, TX, Y)
A R(TX, TY)

A Processy (HX, HY)

A Composey (HY,TY, V)

Logic Algorithm Schema 2: Divide-and-conquer (version 2)

For example, the choice of names for the internal variables E and N of the instantiation of Process in
LA(compress-int-C) (LA 4) was arbitrary.

2.2.2  Second Version: Adding Subcases and Discriminants

Many logic algorithms are not covered by Schema 1 because the non-minimal case is further partitioned
into subcases, each featuring a different way of combining partial solutions. An enhanced methodology is
as follows.

A divide-and-conquer algorithm for a binary predicate r over parameters X and Y works as follows. Let
X be the induction parameter. If X is minimal, then Y is (usually) easily found by directly solving the prob-
lem. Otherwise, that is if X is non-minimal, decompose X into a vector HX of heads of X and a vector TX
of tails of X, the tails being of the same type as X, as well as smaller than X according to some well-founded
relation. The tails 7X recursively yield tails TY of Y. The heads HX are processed into a vector HY of heads
of Y. Finally, Y is composed from its heads HY and tails TY. Subcases with different processing and compo-
sition operators may emerge: discriminate between them according to the values of HX, TX, Y.

If non-determinism of the problem requires alternative solutions, then discriminants should evaluate to
true. Discriminants may also be used to make the non-minimal form more precise when there is a single
non-minimal case. Logic algorithms synthesized by this enhanced divide-and-conquer methodology are
covered by Schema 2. A schema-variable ¢ represents the number of different subcases of the non-minimal
case. This new schema supersedes the previous schema if c is instantiated to 1 and the Discriminate,
predicate-variable is instantiated to true.

Example 24: Logic algorithms that are covered by Schema 2, but not by the previous schema, are
LA(compress-int-L) (LA 2) and LA(delOddElems-int-L) (LA 6).

2.2.3  Third Version: Adding Non-Recursive Cases

Many logic algorithms are not even covered by Schema 2, because the non-minimal case is partitioned into
arecursive and a non-recursive case, each of which is in turn partitioned into subcases. In the non-recursive
case, Y is (usually) easily found by directly solving the problem, taking advantage of the decomposition of
X into HX and TX. Let’s assume there are v non-recursive subcases and w recursive subcases, such that v +
w = ¢, where v, w are new schema-variables. Logic algorithms synthesized by this enhanced divide-and-
conquer methodology are covered by the following schema:

R(X,Y) &
Minimal (X)
V Vi<, NonMinimal (X)

Solve (X,Y)
Decompose (X, HX, TX)
Discriminate, (HX, TX,Y)
SolveNonMiny (HX, TX, Y)
Decompose (X, HX, TX)
Discriminate, (HX, TX,Y)
R(TX, TY)
Process) (HX, HY)

A Compose, (HY,TY,Y)

A
A
A
A

V' Ve_w<k<e NonMinimal (X) A

A

A

A

But this schema is very lengthy, and doesn’t sufficiently show the commonalities between the recursive and
the non-recursive subcases. I thus syntactically merge these subcases by separating their differences by a
second-order exclusive-or connective, denoted | ”. The result is Schema 3.
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Minimal (X)
V Vic<e NonMinimal (X)

Solve (X,Y)

Decompose (X, HX, TX)
Discriminate, (HX, TX,Y)

( SolveNonMiny (HX, TX, Y)

R(TX, TY)
A Process) (HX, HY)
A Composey (HY, TY,Y) )
Logic Algorithm Schema 3: Divide-and-conquer (version 3)

> > > >

Minimal (X) A Solve (X,Y)
V Vi<k<e NonMinimal (X) A Decompose (X, HX, TX)
A Discriminatey (HX, TX, Y)
A SolveNonMin, (HX, TX, Y)

R(TX,IY)
A Process) (HX, HY)
A Composey (HY,TY,Y) )

Logic Algorithm Schema 4: Divide-and-conquer (version 4)

Example 25: A logic algorithm that is covered by Schema 3, but not by the previous two schemata, is
LA(member-int-L) (LA 8).

2.2.4  Fourth Version: Generalizing to n-ary Predicates

Let’s now relax the requirement that predicate r be binary. But let’s keep the (so far implicit) restriction that
the induction parameter be simple. Supposing predicate r is n-ary (where n is a schema-variable), this new
setting implies that ¥ becomes a vector Y of n — 1 variables Y/-, and that vector TY becomes a vector TY of
n — 1 vectors TY,-, each of which is a vector of ¢ variables TYﬂ (where j, [ are new notation-variables). Sim-
ilarly, HY becomes a vector HY of n— 1 vectors H Y/-, each of which is a vector of /'(j) variables H Y ils where
h'/1 is a new schema function-variable. Thus:

#HX = h
#HY;=h'(j) (1<j<n-1)
#TX=#TY;=1t (1<j<n-1)
#Y =#HY =#TY =n -1
Logic algorithms synthesized by this enhanced divide-and-conquer methodology are covered by Schema 4,
where R(TX,TY) stands for A<, R(TX, TY1p....TY 1.

Example 26: Logic algorithms that are covered by Schema 4, but not by the previous three schemata, are
LA(efface-int-L) (LA 7) and LA(plateau-int-N) (LA 10).

2.2.5 More Versions

Notations are already getting complicated with the fourth version. But covering LA(sort-log-L) (LA 13)
calls for the support of arbitrary numbers of minimal and non-minimal cases (and not just 1 of each), while
covering LA(merge-int-(A,B)) (LA 9) in addition calls for the support of compound induction parameters,
and LA(split) (LA 14) would then still be uncovered (see [24]).

Another possible enhancement is to capture the idea of adding parameter(s) to the specified predicate and
adequately generalizing the specification. This is called descending generalization and is discussed by, e.g.,
Deville [20] and Summers [68]. The well-known non-naive algorithm for reverse/2 (namely with an accu-
mulator parameter) is an application of this technique:

reverse (L,R) &
reverse (L,R, [])
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reverse (L,R,A) &
L=11] A R=A
vV L=[_I|_IA L=[HL|TL]
A NewA=[HL|A]
A reverse (L, R, NewA)

Note however that the logic algorithm for reverse/3 is not a divide-and-conquer one: the accumulator is
“growing bigger” rather than “smaller”. Also, using the “result” parameter or the accumulator parameter as
induction parameter would defeat the purpose of the (introduction of the) accumulator. This shows that
problems with accumulator parameters cannot be solved by divide-and-conquer algorithms: another meth-
odology and schema are needed for such problems. Of course, if an accumulator-free problem is given in
the first place, then transformation by descending generalization can automatically infer the specification
and algorithm for the accumulator-version [20] [21], without having to use that other methodology.

Summers [68] presents another technique of parameter introduction. However, the so-generalized prob-
lems do have (slightly generalized) divide-and-conquer algorithms. LA(split) (LA 14) is an example of ap-
plication of this technique. The underlying schema could still be considered a synthesis schema, rather than
a transformation schema, as it is not possible to synthesize a logic algorithm for split/3 that is covered by
one of the given schemata.

Another observation is that no post-processing operator is applied to parameter Y. For instance, specifica-
tions such as:

average(L,A) iff A is the average value of L,
where A is an integer and L is a non-empty integer-list.

are beyond the scope of the given schemata, and must be solved via a different approach. The average/2
problem could be solved by a top-down decomposition:

average (L,A) &
sum(L,S) A length(L,N) A div(S,N,A)

plus optimization by loop-merging the algorithms for sum/2 and length/2. Another solution would be to ex-
tend the divide-and-conquer schemata accordingly, as in [55].
The remainder of this discussion is mostly about the third or fourth version.

2.3 Justifications

A series of decisions have been made during the schema synthesis above. Let me justify them now.

First, NonMinimal(X) can be replaced by ~Minimal(X), but only if this preserves their mutual exclusion
over the domain of the induction parameter (see the constraints in the next sub-section).

The distinction between NonMinimal and Decompose may seem artificial at first sight. Indeed, in many
of the logic algorithms of Section 2.1, their instances can be unified, such as in LA(compress-int-L) (LA 2).
But the mission of NonMinimal only is to detect a non-minimal form, whereas the mission of Decompose
is to decompose a form that is known to be non-minimal. This is also reflected in the different parameters to
the corresponding predicate-variables. Sample logic algorithms that clearly illustrate these differences are
LA(compress-ext-L) (LA 5), LA(efface-int-L) (LA 7), and LA(sort-ext-L) (LA 12).

Note that the elements of HX (respectively HY) may be of the same type as X (respectively Y). Indeed,
there is no reason why, say, HL should be an integer when L is a list of integers. This is illustrated by
LA(compress-ext-L) (LA 5), where HL is a list.

One may also wonder about the differences between NonMinimal and the Discriminate;. The mission of
NonMinimal is to detect a non-minimal form, without considering the value of the induction parameter,
whereas the mission of the Discriminatey, is to detect subforms (that lead to subcases), which usually only
goes with considering the value of the induction parameter. These two functionalities can of course be
merged into a single predicate-variable, as shown in Schema 5. This reflects a slightly different methodol-
ogy, because the notion of non-primitive form (which only has recursive cases) replaces the notion of non-
minimal form (which may have non-recursive cases). Note that, even when ¢ = 1, NonPrimitive;(X,Y) can
here definitely not be replaced by — Primitive(X,Y), because this would prevent the coverage of non-
deterministic algorithms. Now, I believe that my original distinction is important. Moreover it allows a da-
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R (X, =3
Primitive (X, Y) A SolvePrim(X,Y)
V Vyck<e NonPrimitivey (X,Y¥)A Decompose (X, HX, TX)
A R(TX, IY)

A Process, (HX, HY)
A Compose, (HY,TY,Y)

Logic Algorithm Schema 5: Divide-and-conquer (version 4')

tabase approach to instantiating NonMinimal (because there are not so many possible instances), which is
impossible for the Discriminate;, or NonPrimitive, (because the instances are problem-dependent).

The last two justifications should also clarify the distinction between Decompose and the Discriminate,,.

Instances of Solve may be defined by fairly complex formulas, including divisions into subcases and the
corresponding discriminating mechanisms, just as in non-minimal cases. But since this is relatively excep-
tional, I preferred to keep the schema simple, and always treat such a formula as the instance of a single
predicate-variable.

Such is however not the case with the SolveNonMin,,, where Decompose and Discriminatey, are explicitly
present: this is for reasons of symmetry with the recursive non-minimal cases. This even implies that in-
stances of the SolveNonMin; may use the variables HX and TX introduced by Decompose, rather than start
from scratch with a non-decomposed X.

Instances of Solve and the SolveNonMin, are fundamentally different in nature from instances of the
Process; A Composey, conjunctions. In the former, Y can be anything, even totally unrelated to X, HX, TX.
In the latter, Y must be in terms of TY at least, because otherwise there would be no point in computing TY.
So if it turns out impossible to compose Y in terms of TY, then the corresponding recursive non-minimal
case should be “downgraded” into a non-recursive one before trying to solve Y in terms of X, HX, TX.

Finally, what is the point in isolating the Process, from the Compose;? They could indeed be merged into
ProcessCompose, (HX,TY,Y), which often eliminates the intermediate construction of HY, and human syn-
thesizers tend to do so anyway. But the instantiations of the Process;, are not always trivial or irrelevant, as
illustrated by LA(compress-int-C) (LA 4) and LA(plateau-int-N) (LA 10), so I believe the distinction is im-
portant, especially that it further stresses the symmetry between X and Y.

In general, an algorithm synthesis strategy (see Section 3.1) might lead to the simultaneous instantiation
of several predicate-variables, in a way that the identification of the individual instances is not obvious. The
covering schema then is a more compact rewriting of the original schema, and similarly for its constraints
(see Section 2.4). The schemata and constraints given here have a maximum of information, but they may
be tailored to specific strategies by rewriting.

2.4 Constraints on Schema Instances

The schemata above can be instantiated in many ways. However, some constraints need to be verified by
schema instances in order to be “valid” divide-and-conquer logic algorithms and to be correct w.r.t. their
specifications. Such constraints result from correctness proofs of the schemata. I here list the constraints for
version 3 of the schema.

Given the specification { R, dom(R), R[X,Y]) of the top-level problem, the synthesis of a divide-and-
conquer algorithm defining R amounts to first reducing this specification toasetof 4 +3-c—v (=4 +2- ¢
+ w) new specifications of sub-problems:

{ Minimal, dom(Minimal), Minimal [X] )
{ NonMinimal, dom(NonMinimal ), NonMinimal [X] )
( Solve, dom(Solve), Solve[X,Y] )
( Decompose, dom(Decompose), Decompose[X, HX,TX])
( Discriminatey, dom(Discriminate,), Discriminate,[HX,TX,Y]) (1<k<c)
( SolveNonMiny,, dom(SolveNonMiny), SolveNonMin, [HX,TX,Y]) (1<k<v)
( Processy, dom(Processy), Process[HX,HY]) (v<k<c)
( Composey, dom(Compose;), Compose,[HY,TY,Y]) (v<k<c)
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and then synthesizing (not necessarily using the divide-and-conquer methodology!) algorithms for these
specifications, before finally assembling these algorithms according to a divide-and-conquer schema. It is
important to realize that instances of the predicate-variables are not (necessarily) directly derived, but are
rather the results of auxiliary syntheses from derived specifications. The specification reduction phase fea-
tures constraints on the derived domain descriptions (Section 2.4.1), constraints on the derived relation de-
scriptions (Section 2.4.2), and constraints on the instances of the schema-variables (Section 2.4.3).

2.4.1 Constraints on the Derived Domains

By merely looking at the schema, we can list the constraints on the domains of the derived specifications:

dom(Minimal ) = dom(NonMinimal) = dom(R x) (1

dom(Solve) = dom(R) (2)

dom(Decompose) = dom(R x) X dom(Processgrx) X dom(R x)" 3)
dom(Discriminate,) = dom(Processgy) X dom(R x)' x dom(R y) (1<k<c) @
dom(SolveNonMiny) = dom(Processgry) X dom(R x)' x dom(Ry) (1<k<v) 5)
dom(Processy) = dom(Processgry) X dom(Process, gy) (v<k<c) (6)
dom(Composey) = dom(‘Process; gry) X dom(R y)' X dom(R.y) (v<k<c) @)

Note that the domain of HX in Process;, is independent of k, as HX stems from the decomposition of X. The
constraints explain why I restricted, in Section 1.3, the domain of a relation to being equal to the Cartesian
product of the domains of its parameters.

2.4.2 Constraints on the Derived Relations

The constraints on the relations of the derived specifications are obtained from our knowledge of the divide-
and-conquer methodology. They are listed and justified hereafter. Unquantified variables are assumed to be
universally quantified. Quantifications are assumed to be over the domain of the quantified variable in the
involved relations.
The instance of X, that is the selected induction parameter, must be of an inductive type. This means that
type(X, T) N T € {integer, list, tree, ..., intList, intTree, ...} 8)
must be valid. Indeed, the decomposition of X into tails that are each smaller than X according to some wfr
would otherwise be impossible, and the divide-and-conquer methodology not applicable.

The minimal and non-minimal forms must be mutually exclusive over the domain of the induction pa-
rameter, because otherwise they wouldn’t reflect some wir, say “<”, over this domain. This means that

Minimal [X] v NoaMinimal [X] 9)
or, equivalently: Minimal[X] & —NonMinimal [X]
must be valid, where v denotes the exclusive-or connective. Of course, as I shall show in Section 2.5.1 be-
low, a rewriting of the synthesized algorithm may blur this mutual exclusion, which is thus only mandatory
during the synthesis of canonical representations of divide-and-conquer logic algorithms.
Only non-minimal forms can be decomposed, and the heads and tails obtained by decomposition must be
unique.This means that the formula
NonMinimal [X] = F'HX INTX Decompose[X,HX,TX] (10)
must be valid. The pre-condition part is a reasonable constraint, as it facilitates synthesis, especially in con-
junction with constraint (9), because no domain-checking literals must then be added for decomposition.
The full determinism of decomposition is not necessary for correctness reasons, but avoids redundant log-
ical consequences of the synthesized algorithm.
The decomposition of X must yield tails 7X; that are each smaller than X according to the well-founded
relation “<” underlying (9). This means that the formula
Decompose[ X, HX,TX,,..., TX;] = 3“<” Vie{l,...,t} TX;“<" X (11)

must be valid. It ensures “termination” of the algorithm in the all-ground mode.
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Note that a similar constraint cannot be imposed on the tails of ¥, because Y could be an auxiliary param-
eter and hence undecomposable (Y = TY), or Y could be the result parameter of a filtering problem (for ex-
ample, in LA(delOddElems-int-L) (LA 6), we have R = TR when odd(HL)), or for other reasons.

When the induction parameter X is non-minimal, then at least one of the ¢ subcases must apply after de-
composition. This means that the formula

Decompose[ X, HX, TX] = ke {1,...,c} Discriminate,[HX, TX,Y] (12)

must be valid. It ensures non-determinism of the algorithm, when needed.
Every subcase must be solved correctly. This means that the formulae

Minimal[X] A Solve[X,Y] = R[X,Y] (13)
Decompose[ X, HX, TX] A Discriminate,[HX,TX,Y]
A SolveNonMin,[HX,TX,Y] = R[X,Y] (1<k<v) (14)
Decompose[ X, HX, TX] A Discriminate,[HX,TX,Y] A~ R[TX,TY]
A Process[HX,HY] A Composg,[HY,TY,Y] = R[X Y] (v<k<c) (15)

must be valid. They ensure partial correctness of the algorithm in the all-ground mode.
Every element of the specified relation & must be solved by some subcase. This means that the formula

R[X,Y] = Solve[X,Y] v 3( Decompose[ X, HX, TX] A
(ke {1,...,v} SolveNonMin, [HX, TX,Y]) v
(ke {v+l,...;c} RITX,TY] A Processi|[HX,HY] A Compose,[HY,TY,Y]) ) (16)

must be valid. It ensures completeness of the algorithm in the all-ground mode.

If none of the variables TY is “used” in the instance of some Compose;, then non-minimal subcase k ac-
tually is non-recursive: its recursive calls may be dropped, and the instance of Process; (HX,HY) A
Compose (HY,TY,Y) may be seen as an instance of SolveNonMin,(HX,TX,Y), with HY as internal vari-
ables. The schema-variables v and w must then be updated to v + 1 and w — 1, respectively. This suggests a
technique of non-recursive non-minimal case detection: start with v =0 and adjust later.

Similarly, but in general, constraints on the dataflow may be added so as to ensure that the parameters in
the schema are actually “used” in computations. For instance, the TY must be used in the composition of ¥,
but the HY are optional in that composition. This can be done by parameter dependency graphs based on
call-mode information (state of the parameters at call-time), as in the SIERES system of Wirth and O’Rorke
[75], or, more powerfully, by construction-mode information (relationship between the parameters of a lit-
eral), as in the SYNAPSE system of Flener [24].

2.4.3  Constraints on the Schema-Variables

The constraints on the instances of the schema-variables (for all versions of the schema) are as follows:

n>1 a7
v2>0 (18)
w>1 (19)
h=0 (20)
h'>20, respectively: h'(j)=20 (1<j<n-1) (21)
t>1 (22)

Constraint (17) states that 0-ary relations cannot be solved by the divide-and-conquer methodology. Con-
straints (18) and (19) say that each non-minimal case must have at least one recursive subcase. Constraints
(20) to (22) state that every non-minimal form must be decomposable into at least zero heads and one tail.

2.5 Discussion

Let me now discuss various issues around the divide-and-conquer methodology and its schemata. First, in
Section 2.5.1, I explain the differences between minimal cases and non-recursive non-minimal cases. Then,
in Section 2.5.2, I define auxiliary parameters and comment on how to detect them and how to improve the
schemata accordingly. Finally, in Section 2.5.3, I develop the notion of logic algorithm inversion.
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2.5.1 Minimal Cases and Non-Recursive Non-Minimal Cases

As the logic algorithms of this paper exhibit, not all non-minimal cases are recursive. Indeed, prefix-travers-
al logic algorithms have non-recursive non-minimal cases. But some structural cases (for example, the sec-
ond case of Logic Algorithm 1) seem hard to classify. There are several potential reasons to this.

A first reason for non-recursive non-minimal cases is recursion elimination by partial evaluation. The re-
sult is a non-minimal case that looks like a minimal case. This is hard to detect, since the cases still exhibit
mutually exclusive structural forms. There is no limit to creating non-recursive non-minimal cases by par-
tial evaluation.

Example 27: LA(compress) (LA 1) is actually a rewriting of LA(compress-int-L) (LA 2). Indeed, we have
that TL=[] iff TC =[], so the rewriting is correct. But this rewriting is also misleading as the fact that there
really is only one minimal form and only one non-minimal form is not apparent at all.

Another reason is that non-recursive non-minimal cases of prefix-scan logic algorithms can often be
merged with their minimal cases. The resulting algorithm looks as if it had no minimal case. It exhibits cases
whose structural forms are not mutually exclusive, and is thus easy to detect as being a rewriting of the
“canonical” version.

Example 28: LA(efface-int-L) (LA 7) could be rewritten as follows:

efface(E,L,R)
L=[_1_]

g

L=[HL|TL]

HL=E

E=HL A R=TL

L=[HL|TL]

HL#E

efface (TE, TL, TR)

HE=_ A HR=HL

E=TE A E=HE A R=[HR|TR]

v L=[_,_I_]

> > > > > > > >

The form [_|_] is not minimal, as it overlaps with the other form. Its case rather results from a merger of
the minimal case and the non-recursive non-minimal case. ¢

It is important to understand that such logic algorithms with non-recursive non-minimal cases are the re-
sult of re-writing canonical representations of logic algorithms, rather than unpleasant aberrations.

2.5.2 Auxiliary Parameters

In Section 2.1.2 (e.g. in Example 16), I informally introduced the notion of auxiliary parameter. Intuitively,
an auxiliary parameter is a parameter that has nothing to do with the “inductive nature” of the relation. Note
that a parameter is auxiliary for a relation, and hence for all possible logic algorithms for that relation. Logic
algorithm synthesis by induction on an auxiliary parameter is obviously a bad idea. But, so far, I have com-
pletely ignored auxiliary parameters. This is justifiable by the observation that the identification of auxiliary
parameters is not necessary at all for correct algorithm synthesis. Indeed, as the logic algorithms of
Section 2.1.2 show, it is possible to write logic algorithms that don’t distinguish between auxiliary param-
eters and “ordinary” parameters. However, the (de)composition of an auxiliary parameter from (into) its
heads and tails may look cumbersome because an auxiliary parameter Y and its tail 7Y are eventually found
to be identical: Y = TY. But it is precisely this composition pattern that allows the subsequent detection of
auxiliary parameters, and their elimination from the decomposition machinery, so as transform the logic al-
gorithm into a more “graceful” and “natural” version.

Example 29: LA(efface-int-L) (LA 7) could be rewritten as follows:

efface(E,L,R) &

L=[_] A L=[HL] A E=HL A R=[]
v L=[_,_|_1 AN L=[HL|TL]
A HL=E

A E=HL A R=TL
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Minimal (X)
V Vi<k<e NonMinimal (X)

A Solve(X,Y,2)

A Decompose (X, HX, TX)

A Discriminate, (HX, TX, Z)

A SolveNonMiny (HX, TX, Y, Z)

R(TX,IY,Z)
A Process), (HX,HY, Z)
A Composek (ﬂrﬂr YI Z) )

Logic Algorithm Schema 6: Divide-and-conquer, with auxiliary parameters (version 4")

v L=[_,_|_] A L=[HL|TL]

HL#E

efface (E, TL, TR)

HR=HL

R=[HR|TR] *

> > > >

I call this late detection, because it only allows the transformation of the synthesized logic algorithm, rath-
er than a simplification of its actual synthesis process. The appearance of ¥ = TY in all recursive cases of a
logic algorithm is a formal definition of the notion of auxiliary parameter.

We should however not forget that just a casual glance at a specification will not always tell whether a
parameter is an “ordinary” or an auxiliary one. Things are even more difficult with automated algorithm
synthesis, and the surest way is indeed to ignore the potential existence of auxiliary parameters until a trans-
formation phase. But suppose now that knowledge about which parameters are auxiliary parameters is
available earlier during the algorithm synthesis process (for instance because the specifier declares them as
such, or because type heuristics detect them as such). It would then certainly be helpful to pre-compile the
needed subsequent transformations into a schema with an explicit consideration of auxiliary parameters and
modified constraints. The benefit would be smaller search spaces. The modified version 4 of the divide-and-
conquer schema is Schema 6, where Z is the vector of auxiliary parameters. Note that Y has disappeared
from the discriminants: this knowledge must otherwise be encoded as a synthesis heuristic.

Now, how could knowledge about which parameters are auxiliary parameters be available earlier during
the algorithm synthesis? There are basically two solutions:

* declaration: the specifier could declare them as such at specification time;

* early detection: a parameter that is not of an inductive type must be auxiliary; this heuristic is sound,

but not complete. Other (possibly interactive) heuristics could be elaborated.
These solutions allow faster synthesis and more “natural” synthesized algorithms.

2.5.3 Logic Algorithm Inversion

An interesting exercise is to compare logic algorithms synthesized by induction on different parameters, or
using different decomposition operators.

For a predicate r/n having X and Y as parameters of an inductive type, it is no surprise that LA(r-int-X)
and LA(r-ext-Y) are similar, and that LA(r-int-Y) and LA(r-ext-X) are similar [20].
Example 30: LA(compress-int-L) (LA 2) and LA(compress-ext-C) (LA 3) are quite similar, and so are
LA(compress-int-C) (LA 4) and LA(compress-ext-L) (LA 5), and so would be LA(sort-ext-L) (LA 12) and
LA(sort-int-S) (which is not in this paper).

Sometimes, LA(r-int-X) is similar to LA(r-int-Y), in addition to LA(r-ext-Y) and LA(r-ext-X), namely
when there is a one-to-one relationship between X and Y.
Example 31: LA(plateau-int-N) (LA 7) would be quite similar to LA(plateau-int-L) (which is not in this
paper), because N is the length of L. However, LA(compress-int-L) (LA 2) is not comparable at all to
LA(compress-int-C) (LA 4).

Such pairs of algorithms are called inversions of each other. This is often possible, in a relational frame-
work, due to a symmetrical role of parameters X and Y, and of their (de)composition operators: composing

Y from its heads and tails can indeed be seen as decomposing Y into these heads and tails (provided these
tails are smaller than Y according to some wifr, which is not necessarily the case for all composition opera-
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tors), and decomposing X into its heads and tails can be seen as composing X from these heads and tails,
because of the reversibility of logic algorithms. However, constraints (10) and (11) sometimes prevent such
an inversion. Indeed, the decomposition mode of Compose(HY,TY,Y) might be non-deterministic. For in-
stance, efface(HY,Y,TY), insert(HY,TY,Y), append(TYl,[HY| TY,1,Y), and merge(TY|,TY,,Y) may not be
used as instances of Decompose, but are suitable as instances of Compose. Or the decomposition mode of
Compose(HY,TY,Y) might not reflect a well-founded relation. For instance, ¥ = TY; may not be used as an
instance of Decompose, but is suitable as an instance of Compose. Such an instance may appear because Y
is an auxiliary parameter, or because Y would be part of a compound induction parameter for the inversion
(as in Logic Algorithm 9), or because Y is the result parameter of a filtering problem, or for other reasons.
Note that the inversion of a logic algorithm is not necessarily covered by the same schema.

Example 32: LA(compress-int-L) (LA 2) is covered by version 2, whereas its inversion, LA(compress-ext-
C) (LA 3), is covered by version 1.

2.6 Comparison With Other Synthesis Methodologies

Some issues about the divide-and-conquer methodology need to be discussed in order to show its generality
(Section 2.6.1), and to clearly distinguish it from some other methodologies, such as top-down decomposi-
tion (Section 2.6.2), the “Deville methodology” (Section 2.6.3), and Global Search (Section 2.6.4).

2.6.1 Precisions about the Divide-and-Conquer Methodology

The divide-and-conquer methodology is often believed to be restricted to algorithms that involve some
“sophisticated” synthesis decisions. A famous example is the Quick-Sort algorithm, where the decomposi-
tion operator partitions the given list into two sublists of elements that are greater (respectively smaller) than
a given pivot. However, such decisions only affect the complexity of the resulting algorithm, and are thus
not strictly necessary for the synthesis of correct algorithms. Hence, a decomposition operator that simply
(intrinsically) reduces a list into its head and tail is also acceptable. In the sorting problem, this leads to the
Insertion-Sort algorithm. In other words, the divide-and-conquer methodology is not restricted to the use of
extrinsic or logarithmic decomposition, but also encompasses intrinsic decomposition.

Even better, as implied by the phenomenon of logic algorithm inversion (see Section 2.5.3), “sophisticat-
ed” synthesis decisions as to the discovery of “good” extrinsic or logarithmic decompositions of a candidate
induction parameter can often be discovered automatically, and easily!, by performing an intrinsic decom-
position of some other parameter, precisely because the resulting algorithms are inversions of each other!
In a functional framework, one would select a “simple” (intrinsic) composition operator for that other pa-
rameter and reason backwards, using the constraints, in order to discover such a “good” extrinsic or loga-
rithmic decomposition operator for the input parameter (as shown in [62]). So there seems to be little need
to worry about the support of problem-dependent extrinsic or logarithmic decomposition, because the mere
support of problem-independent intrinsic decomposition often allows their automatic discovery in case syn-
thesis iterates over all candidate induction parameters. Of course, if both the decomposition and composi-
tion operators are not “simple,” then their discovery is more difficult.

Also, I wrote that step (1) of the divide-and-conquer methodology consists of “dividing a problem into
sub-problems, unless it can be trivially solved.” I have here taken the option that the “unless it can be triv-
ially solved” clause is applicable iff a minimal form of the domain of the induction parameter is reached.
An alternative interpretation would be that the clause may be applicable in even other cases. A good illus-
tration of this point of view is Sedgewick’s enhancement of Hoare’s original Quick-Sort algorithm: it
switches to Insertion-Sort once the unsorted list has less than, say, 15 elements.

An apparent disadvantage of the divide-and-conquer methodology is that it seems to lead to logic algo-
rithms, and hence logic programs, that are not tail-recursive, because of the very placement of recursion in
the schema. This argument can however be disputed because (automatable) transformation techniques exist
for obtaining tail-recursive versions of a program, and this in many cases [20].

2.6.2 The Top-Down Decomposition Methodology

The divide-and-conquer methodology should not be confused with the top-down decomposition methodol-
ogy, despite their almost synonymic names and their overall problem-reduction approaches. Indeed, the
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former is a very precisely defined methodology that, if applicable, always yields recursive algorithms,
whereas the latter is a rather vaguely defined methodology that always applies, but without necessarily
yielding recursive algorithms.

2.6.3 The “Deville Methodology”

What is the relationship between the divide-and-conquer methodology and the methodology of logic algo-
rithm construction by structural induction, as described by Deville [20]? Let’s summarize that methodology
first. It is based on structural induction. The principle of well-founded induction suggests synthesizing a
logic algorithm by induction over the structure of some parameter. The value of that induction parameter is
reduced to something smaller according to some well-founded relation, and a partial result is recursively
computed. If no reduction is possible, then the problem is solved directly. There are four steps to this syn-
thesis methodology:

Step 1: Selection of an induction parameter;
Step 2: Selection of a well-founded relation;
Step 3: Selection of the structural forms of the induction parameter;
Step 4: Construction of the structural cases.

A tool, called Logist, is being developed to assist a human synthesizer in following these steps [21]. Logist
is a component of the Folon environment [35], which also supports the surrounding stages of specification
acquisition and logic program derivation.

Fundamentally, there is no difference between the divide-and-conquer methodology and the Deville one:
both are based on the principle of well-founded induction. However, in practice, there are some differences.
The divide-and-conquer methodology, especially its formalization as a schema with constraints, is much
more prescriptive and much more precisely defined than Deville’s methodology. For example, the first-
order variables of a divide-and-conquer schema have well-defined scopes. A good illustration of this phe-
nomenon is that the logic algorithms of [20] are not covered by any of my divide-and-conquer schemata.
My schema instances usually look a little bit contrived compared to their more natural-looking hand-syn-
thesized counterparts in [20]. But it is precisely this extreme formalization that allows (partial) mechaniza-
tion of the synthesis process (and many opportunities for subsequent logic algorithm transformation and
optimization). The point thus merely is that both methodologies were formulated with different objectives
in mind: manual or semi-automated synthesis, respectively any kind of automation in synthesis.

2.6.4  The Global Search Methodology

Global search is an enumerative search that generalizes many known search strategies, such as binary
search, backtracking, branch-and-bound, heuristic search, constraint satisfaction, and so on. The class of
global search algorithms is described by Smith [63] [64]. In his words: “The basic idea of global search is
to [...] manipulate sets of candidate solutions [represented intensionally by means of descriptors]. The prin-
cipal operations are to extract candidate solutions from a set and to split a set into subsets. Derived opera-
tions include various filters which are used to eliminate sets containing no feasible or optimal solutions.
Global search algorithms work as follows: starting from an initial set that contains all solutions to the given
problem instance, the algorithm repeatedly extracts candidates, splits sets, and eliminates sets via filters
until no sets remain to be split.”

I here cast Smith’s functional programming results into the logic programming framework, even though
a constraint logic programming reformulation might be more appropriate. I will write LA(#-gs) to show that
LA(r) was synthesized via the global search methodology.

Example 33: Here is a global search logic algorithm for the member/4 problem:

member (A,N,K,I) &
A[1]<K<A[N] A member_gs(A,K,I,1,N)
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P(X) &
F(X,dg) A P_gs(X,dgp)
P_gs(X,D) &
Extract (X,D) A P[X]
v Split (X,D,E) A F(X,E) A P_gs(X,E)
Logic Algorithm Schema 7: Global search (with filter)

member_gs (A,K,I,V,W) &
V=I=W A A[I]=K
vV V<KW A W' is (V+W) div 2
A RKSATW'] A member_gs(A,K,I,V,W")
vV V<KW A V' is 1 + (V+W) div 2
A A[VT]<K A member_gs(A,K,I, V", W)

Logic Algorithm 15: LA(member/4-gs)

This is the well-known binary search algorithm.

In general now, given a specification { P, dom(?P), P[X]) and a filter F(X,D) that eliminates descriptors
D that do not contain any solution X, a global search algorithm defining P is covered by Schema 7, where
the involved sub-problem is specified as follows:

P_gs(X,D) iff P[X] A SatisﬁesA(X,D)
where X € dom(P) A De D A F(X,D)

The set of all solutions is either obtained implicitly upon backtracking, or explicitly (as in Smith’s original
formulation) by wrapping up the call to P in a set constructor, such as sefof/3 of Prolog.

Filters are only meaningful if P is called in a search-mode. For instance, if A, N, K are given (index search-
mode) for member/4, then the filter can be used to eliminate sub-arrays. But if only A and N are given (ele-
ment enumeration-mode), then the filter cannot be used, as all elements ought to be enumerated. Technically
speaking, “searching something” is thus not a problem, but only a possible mode of a problem.

Global search is distinct from divide-and-conquer, for various reasons [63]. Most importantly, global
search is done by iterated disjunctive decomposition (a solution lies in one subset or in another), whereas
divide-and-conquer algorithms work by recursive conjunctive decomposition (a solution is composed from
the solutions to all sub-problems). Also, any problem can be solved (not necessarily optimally) by global
search, but such is not possible with divide-and-conquer (due to constraint (19), we can’t just let the minimal
case(s) solve the entire problem).

Problems that do have divide-and-conquer algorithms (and hence global search ones) are such that there
is a homomorphism between algebras on the domains of their parameters [63] [65].

Example 34: In length(L,N), there is a quite obvious homomorphism between L and N. A divide-and-
conquer algorithm would exploit this, but a global search algorithm would degrade into a generate-and-test
algorithm, and hence be non-optimal: computing the length of a list is not optimally done by generating pos-
sible lengths and testing whether they are correct or not, because the testing sub-problem is then the same
as the overall problem.

Problems that do not have divide-and-conquer algorithms (but global search ones) are such that there is
no such homomorphism. A global search algorithm would exploit this, as it has less assumptions on the do-
mains of its parameters.

Example 35: In nQueens(N,S)—which holds iff list S is a permutation of list [1,2,...,N] such that the ith
element of S represents the line of the queen placed in the i column of an N X N chessboard, such that no
queen attacks another one—there is no such homomorphism.

However, my divide-and-conquer schemata and corresponding methodologies (from version 3 on) feature
an important and useful deviation from the “classical” divide-and-conquer methodology: the admission of
non-recursive non-minimal cases (which I showed in Section 2.5.1 to be technically different from minimal
cases) allows prefix-traversal algorithms, as well as suffix-traversal algorithms, or, in general, incomplete-
traversal algorithms, to be covered by my divide-and-conquer schemata. This means that search
“problems” can (to a certain extent) be solved by following such a hybrid divide-and-conquer methodology.
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Example 36: Consider member(A,N,K,I) again. It has hybrid divide-and-conquer algorithms, such as se-
quential search (by intrinsic decomposition), which is a slight specialization of LA(member-int-L) (LA 8),
as well as global search algorithms, such as binary search (see Logic Algorithm 15). The latter has a better
complexity in the index search-mode (given A, N, K), but they have the same complexity in the element
enumeration-mode (given A, N), and both are “bad” in the confirmation-mode (given A, N, K, I). The con-
junctive decomposition of divide-and-conquer algorithms prevents algorithms by extrinsic/logarithmic de-
composition of A, because an element does not necessarily belong to all sub-arrays of A obtained by such a
decomposition. In other words, Logic Algorithm 15 cannot be recast as a hybrid divide-and-conquer algo-
rithm, because it would not have recursive non-minimal cases.

Example 37: Now consider efface(E,L,R). It has hybrid divide-and-conquer algorithms, such as Logic
Algorithm 7 (which is by intrinsic decomposition), as well as global search algorithms, such as the follow-
ing (naive) Logic Algorithm 16:

efface(E,L,R) & {Pre-condition: member (E, L)}
true A efface(E, [],L,R)

efface(E,P,S,R) & {Pre-condition: —member (E,P)}
S=[E|T] A append(P,T,R)
vV (S=[F|S'] A F£E A append (P, [F],P')) A true A efface(E,P',S',R)

Logic Algorithm 16: LA(efface-gs)

The conjunctive decomposition of divide-and-conquer algorithms prevents algorithms by extrinsic/loga-
rithmic decomposition of L, because E must not be deleted from all sub-lists of L obtained by such a de-
composition. But Logic Algorithm 16 can be recast as a hybrid divide-and-conquer algorithm (it is actually
already covered by Schema 5), because its instance of Split is deterministic (given P, S, E). ¢

In general now, every global search algorithm (covered by Schema 7) with a true filter F and a determin-
istic instance of Split (given X and D) may be recast as a hybrid divide-and-conquer algorithm covered by
Schema 5 (and hence by Schema 4, after some rewriting), namely:

P(X) &
P_gs (X,dp)
P_gs(X,D) &
Extract (X, D) A P[X]
\Y true A Split (X,D,E)
A P_gs(X,E)
A true
A true

Conversely, every hybrid divide-and-conquer algorithm (covered by Schema 5, and hence by Schema 4,
after some rewriting) with decomposition yielding one tail (¢ = 1), with one non-minimal case (w = 1), and
with true processing and composition operators, may be recast as a global search algorithm (covered by
Schema 7), namely:

R(X,Y) &
R_gs (X, Y)

R_gs (X,Y) &
Primitive (X,¥) A SolvePrim(X,Y)
v ( NonPrimitive; (X,¥) A Decompose (X,HX,TX;) ) A true A R_gs(TXq,Y)

For instance, if E had been declared an auxiliary parameter, then LA(member-int-L) (LA 8) would also be a
global search algorithm.

To summarize, the class of hybrid divide-and-conquer algorithms has been deliberately designed to over-
lap with the class of global search algorithms. This hybrid feature of my divide-and-conquer schemata can
of course be switched off by simply tightening constraint (18) to v =0.
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3 Schema Analysis, or Schema-Guided Algorithm Synthesis

In this section, I first outline a vision of schema-guided logic algorithm synthesis (Section 3.1), and formal-
ize the criteria under which a known predicate may be re-used (Section 3.2). Then I report on particular syn-
thesis strategies that are guided by a divide-and-conquer schema (Section 3.3) or a global search schema
(Section 3.4).

3.1 A Vision of Schema-Guided Algorithm Synthesis

An interesting idea is to devise stepwise synthesis strategies where each step synthesizes instance(s) of some
place-holder(s) of a given algorithm schema. The schema thus actively guides the synthesis. A synthesis
strategy determines the order of instantiation of the place-holders of its attached schema, and hence the
order of “navigation” through the web of constraints attached to that schema.

Schema-independent methods can then be developed for the instantiation of place-holders. Such methods
may be merely based on databases of common instances. More sophisticated methods would perform actual
computations for inferring such instances. Possible modes of reasoning are deductive inference, inductive
inference, abductive inference, analogical inference, and so on. Such reasoning would be based on the spec-
ifications and the algorithm synthesized so far. Several methods of such a fool-box might be applicable at
each step, thus yielding opportunities for specifier interaction, or for the application of synthesis heuristics.

I thus here advocate a disciplined approach to algorithm synthesis: rather than use a uniform method for
instantiating all place-holders of a given schema (possibly without any awareness of such a schema), one
should deploy for each place-holder the best-suited method. I thus propose to view research on synthesis as
(also see [62]):

(1) the search for adequate schemata;

(2) the development of useful methods of place-holder instantiation; and

(3) the discovery of interesting mappings between these methods and the place-holders of these sche-

mata, these mappings being encoded in strategies.

As many methods would be schema-independent, or even place-holder-independent, one should also inves-
tigate synthesis strategies that are parameterized on schemata. In other words, the first synthesis step would
then be to select a schema, and the subsequent steps would be either a hardwired sequence (specific to the
selected schema) of applications of methods, or a specifier-guided selection of place-holders and methods.
My grand view of algorithm synthesis systems is thus one of a large workbench with a disparate set of highly
specialized methods and a set of schemata that cover (as much as possible of) the space of all possible al-
gorithms.

Note that this discussion is independent of the used specification formalism, and hence of the specifica-
tions’ properties (such as their correctness and completeness w.r.t. the intentions).

Backtracking within (the decisions taken at) synthesis steps yields entire families of algorithms for a
given specification. Such backtracking may be user-provoked, because s/he wants another algorithm of that
family, or synthesizer-provoked, because it encounters an error in an earlier decision or because its methods
lack the power to pursue an earlier decision. Thus, if no algorithm is synthesized at all, either the synthesizer
is not powerful enough, or the selected schema is inadequate, or the specification is not self-consistent.

Schema-guided synthesis is actually an answer to the combinatorial explosion of search-spaces of both
deductive synthesis (transformational synthesis) and proofs-as-programs synthesis (constructive synthesis)
[22] [24]. Indeed, the usage of a schema may be seen as the application of a macroscopic transformation
rule that embodies very-high-level synthesis decisions. And the usage of a schema may also be seen as a
proof tactic that embodies very-high-level algorithm knowledge, rather than just proof knowledge.

3.2 Re-Using Known Predicates

Every top-down synthesis sooner or later reaches sub-problems for which algorithms can be directly ob-
tained by re-using known predicates, rather than by breaking these sub-problems down into sub-sub-
problems whose algorithms are then assembled into algorithms for the sub-problems.

Definition 8: A primitive predicate (or primitive) is not formally specified in terms of other predicates: it
is used in the relation description of its own specification. Specifications of primitives are thus of the form:
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R(X) iff R(X),
where X € dom(R).

A known predicate is either a non-primitive predicate, whose specification has been made available to the
synthesizer, or a primitive predicate. ¢

Every synthesizer must at least have a way of re-using known predicates. This section formalizes the cri-
teria under which a known predicate P/m may be re-used for satisfying a logic specification of a predicate
R/n. There are at least two approaches to do this. In both approaches, we first need to make sure that the
domain of R/n is a “subset” of the domain of P/m (this establishes applicability of P/m, because domains
are here pre-conditions). Then, in the first approach, we just make sure that all correct solutions to R/n ac-
tually are solutions to P/m (this establishes completeness of using P/m). Additional solutions to P/m must
somehow be filtered out later in order to establish partial correctness of using P/m. Formally:

Definition 9: The logic specification { R/n, dom(R ), R [Y] ) reduces to the logic specification { P/m,
dom(P), P[X]) under substitution 0 iff the formula:

(Dg[Y] = Dp[X16) A (R[Y] = P[X]0) (23)

is valid, where dom(R) = {Y | Q)R[Y 1} and dom(P) = {X | Dp[X]}. This definition also applies when the
specification of R/n is an implication specification. &

Note that the first condition cannot be rewritten as dom(R ) < dom(‘P), because the arities m and n are not
necessarily the same. This approach is taken in Smith’s KIDS synthesizer [63] [64] (see Section 3.4).

Example 38: The logic specification

insert(E,L,R) <& permutation([E|L],R) A ordered(L) A ordered(R),
where integer(E) A intList(L) A intList(R).

reduces to the logic specification

efface(EM,S) < 3A AB append(A,[F|Bl,M) A —member(F,A) A append(A,B,S),
where list(M) A list(S).

under substitution {F/E, M/R, S/L}. Another illustration is given in Example 48. ¢

In the second approach, we immediately look for a condition that filters incorrect solutions to R/n out of
the solutions to P/m (this establishes partial correctness of using P/m). If the found condition is the weakest
such condition, then completeness of using P/m may be established. In general, we are interested in the
weakest “possible” such condition (under computational and complexity constraints, say), so as to avoid
finding false as an obvious condition. Formally:

Definition 10: The logic specification { R/n, dom(R), R [Y] ) reduces to the logic specification { P/m,
dom(P), P[X]) under substitution 8 and condition C[Y] iff the formula:

(DglY] = Dp[X10) A (P[X]B A C[Y] = R[Y]) (24)
is valid, where dom(R) = {Y | Dg[Y]} and dom(P) = {X | Dp[X]}. This definition also applies when the

specification of R/n is an implication specification. A logic specification trivially reduces to another one iff
it reduces to it under some substitution and the true condition. ¢

This approach is taken in Smith’s CYPRESS synthesizer [62] (see Example 42). The derivation of weakest
possible conditions is shown in [24] [27] [60]. This is akin to abduction [40].

Example 39: The logic specification of insert/3 reduces to the logic specification of efface/3 (see the pre-
vious example) under substitution { F/E, M/R, S/L} and condition ordered(L) A ordered(R). The condition
is the weakest and actually establishes an equivalence. Other illustrations appear in Example 45.

The following theorem states which correctness criteria are achieved through re-use. I here use correct-
ness criteria that are parameterized on a specification semantics S and an algorithm semantics A, as in [22].

Theorem 1: Let P(X) < B, [X] be alogic algorithm that is totally correct (w.r.t. S and A) w.r.t. its logic
specification { P/m, dom(?P), P[X] ). Then:
(1) If {R/n, dom(R), R[Y]) reduces to { P/m, dom(P), P[X]) under substitution 8 and condition C
[Y] such that P[X]0 A C[Y] & R[Y], then the logic algorithm Q(Y) < Bp[X10 A C[Y]is
totally correct (w.r.t. S and A) w.r.t. { R/n, dom(R), R[Y]).
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2) If {R/n, dom(R), R[Y]) reduces to { P/m, dom(P), P[X]) under substitution 8 and condition C
[Y]such that P[X10 A C[Y] = R [Y], then the logic algorithm Q(Y) & Bp[X10 A C[Y]is
partially correct (w.r.t. S and A) w.r.t. { R/n, dom(R), R[Y]).

Proof 1: Obvious (analogous to the proof of Theorem 5.1 in [62]).

Similar results can be established for the other specification reduction criterion and for implication spec-
ifications.

Example 40: Continuing from the previous example, the logic algorithm

insert (E,L,R) &
efface(E,R,L) A ordered(L) A ordered(R)

is totally correct (w.r.t. S and A) w.r.t. its logic specification iff the used logic algorithm LA(efface) is totally
correct (w.r.t. S and A) w.r.t its own logic specification. ¢

The decisions of when to try to re-use and which predicates to try to re-use are beyond the scope of this
section.

3.3 Divide-and-Conquer Synthesis Strategies

Looking at the sheer variety of possible divide-and-conquer logic algorithms, some of them in Section 2.1,
especially the automatic synthesis of logic algorithms looks like quite a formidable task. Indeed, the follow-
ing difficulties need to be tackled.

What induction parameter to select? How to discover compound induction parameters? How to decom-
pose the induction parameter? For a given problem, there are usually several potential induction parame-
ters, and for a given induction parameter, there are usually many potential decomposition operators. Ideally,
a synthesizer should be able to synthesize a whole family of possible algorithms for a given problem. For
instance, given the sort/2 problem, at least the three logic algorithms of Example 20 should be synthesized.

What are the structural forms? How many structural forms are there? that is: What well-founded relation
will be used in the correctness proof? While many logic algorithms have one minimal and one non-minimal
form, this does not always hold, as illustrated by LA(sort-log-L) (LA 13) and LA(split) (LA 14). The type
of the induction parameter is not sufficient to infer its structural forms: these actually depend on the domain
of the induction parameter, and are thus problem-specific.

Into how many subcases is each structural case divided? How to discriminate between these subcases?
Many of the logic algorithms listed in Section 2.1 fork their non-minimal case into subcases.

How to detect that recursion is useless in some non-minimal subcases? Sometimes, the desired result is
obtainable before reducing the induction parameter to a minimal form, and no recursion is then needed: this
happens for instance in LA(efface-int-L) (LA 7). The existence or not of useless recursion is dependent on
the selected induction parameter.

How to invent or re-use appropriate predicates? How to specify and implement invented predicates? The
combination of partial values 7Y into the overall value of Y often is a full-scale problem by itself, as illus-
trated by LA(compress-int-C) (LA 4) and the logic algorithms defining sort/2 (see Example 20). The same
holds for extrinsic and logarithmic decomposition operators.

How to discover which parameters are auxiliary parameters? Problems such as efface/3, member/2, and
plateau/3 have auxiliary parameters: unless this is declared somewhere, considerable synthesis effort may
go into detecting this. The logic algorithms listed in Section 2.1 for these problems actually are versions for
which neither declaration nor detection was done.

How to achieve a synthesis that yields logic algorithms that are totally correct w.r.t. their specifications
and/or intentions? This is a crucial problem.

And so on. The list of challenges is impressive. The answers depend of course a lot on the chosen speci-
fication language.

Let’s have a look now at several strategies for divide-and-conquer schemata, and then synthesize an al-
gorithm following one of them.

Example 41: Given Schema 4, a possible synthesis strategy would be the following fixed sequence of five
steps (vaguely reminiscent of the ones in Section 2.1):
Step 1: Synthesis of Decompose;
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Step 2: Synthesis of Minimal and NonMinimal,

Step 3: Syntactic introduction of the recursive atoms;

Step 4: Synthesis of Solve and the SolveNonMin;

Step 5: Synthesis of the Process;, Composey, and Discriminatey,.
This sequence of predicate-variable instantiations is quite “natural”. Steps 4 and 5 can be done in parallel.
Many alternative strategies exist, however. For instance, one might first synthesize an adequate composition
operator (for some parameter Y), and then reason backwards in order to infer the corresponding decompo-
sition operator (for parameter X). As a result, Step 1 would be interchanged with Step 5. A similar analysis
is made by Smith [62] for Schema 5. However, due to the multi-directionality (or reversibility) of the logic
algorithms defining the (de)composition operators, I can here claim that the given sequence and its first out-
lined alternative are isomorphic: synthesizing a composition operator Compose for parameter Y actually
amounts to selecting Y as the induction parameter and using Compose, in its reversed directionality, as a
decomposition operator for Y. In other words, these two strategies are the same. This can also be observed
from the dataflow diagram in Figure 2. Note that the recursive atoms need never be “discovered” (synthe-
sized), because they are mandatory and are thus merely syntactically introduced. ¢

Example 42: Smith’s CYPRESS synthesizer [62] features three strategies, the first two having been men-
tioned in the previous example. The third one is as follows (for Schema 5 actually):

Step 1: Synthesis of Decompose and the Composey;

Step 2: Synthesis of Primitive and NonPrimitive;

Step 3: Syntactic introduction of the recursive atoms;

Step 4: Synthesis of SolvePrim;

Step 5: Synthesis of the Process;.
Steps 4 and 5 can be done in parallel. Synthesis starts from a logic specification and deductively sets up
logic specifications for sub-problems, and recursively so on, until a re-use method can apply known
predicates. &

Example 43: Deville’s four-step synthesis methodology [20] (see Section 2.6.3) encodes the following
strategy (without actually mentioning a schema):

Step 1: Selection of an induction parameter;

Step 2: Synthesis of Decompose;

Step 3: Synthesis of Minimal and NonMinimal,

Step 4: Syntactic introduction of the recursive atoms,

synthesis of Solve, the SolveNonMin,, Process;, Composey, and Discriminate,.

The methodology is meant for synthesis by informal methods, from informal specifications, hence the ac-
cumulation in the fourth step. ¢

Example 44: Flener’s SYNAPSE synthesizer [24-27] (SYNthesis of Algorithms from PropertieS and Exam-
ples) encodes the following strategy (for Schema 4):

Step 1: Syntactic creation of a first approximation;

Step 2: Synthesis of Minimal and NonMinimal,

Step 3: Synthesis of Decompose;

Step 4: Syntactic introduction of the recursive atoms;

Step 5: Synthesis of Solve and the SolveNonMiny;

Step 6: Synthesis of the Process; and Composey;

Step 7: Synthesis of the Discriminatey,.
Steps 5 and 6+7 can be done in parallel. Synthesis starts from assumed-to-be-incomplete formal specifica-
tions (by examples and properties) and relies on a tool-box of knowledge-based, inductive, deductive, and
abductive methods. ¢

Note that these strategies could be enhanced with synthesis preferences and/or hints (from extended spec-
ifications or through dialogue): a certain induction parameter or decomposition strategy could be preferred
to a non-deterministic selection; an auxiliary parameter could be hinted at (because this is likely to speed
up the synthesis); once the induction parameter selected, a prefix-traversal could be hinted at; and so on.

Example 45: Let’s synthesize a logic algorithm defining sort/2, starting from the following logic specifi-
cation (assuming definitions of the used predicates are known):
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sort(L,S) & permutation(L,S) A ordered(S),
where intList(L) A intList(S).

The relation description of this specification already is a legal body for logic algorithms, so synthesis is not
strictly necessary. But let’s synthesize another, recursive logic algorithm.

Step 0: Select a schema and a strategy. Suppose we select version 4 of the divide-and-conquer schema
(Schema 4). We can thus instantiate schema-variable n to 2 which satisfies constraint (17), and predicate-
variable R to sort. Suppose we select the first strategy outlined in Example 41. There will thus be five more
synthesis steps.

Step 1: Synthesis of Decompose. First, we need to select an induction parameter, in accord with constraint
(8). Both parameters, L and S, are suitable candidates, so suppose we select L. This instantiates X to L, and
Y to S. A decomposition operator for L need not really be synthesized if the type of L, namely intList, is
known. Suppose such is the case, and that we have a knowledge-base with decomposition operators for all
decomposition strategies. Suppose then that the intrinsic decomposition strategy is selected, and that
intrDecList(A,HA,TA) is selected, which is specified as follows:

intrDecList(A,HA,TA) < A =[HA|TA],
where list(A) A list(TA).

This is a suitable operator, because intList is a sub-type of list. By abuse of language (see Section 2.2.1), L
= [HL|TL)] is the instantiation of Decompose(L,HX,TX), and HX is instantiated to HL, and TX to TL. This
instantiates schema-variables 4 and ¢ to 1, which satisfies constraints (20) and (22). Moreover, intrDecList
encodes the wir is-the-tail-of, hence satisfying constraint (11). Finally, by domain inference and constraint
(3), the domains of HL and TL are integer and intList, respectively.

Step 2: Synthesis of Minimal and NonMinimal. Constraints (10) and (1) set up the following logic spec-
ification for NonMinimal:
NonMinimal(L) = I'HL 3I'TL L=[HL|TL],
where intList(L).

This specification trivially reduces to the following supposedly known specification:

pseudoList(T) & T=[_|_],
where true.

hence instantiating NonMinimal(L) to L=[_|_]. Constraints (9) and (1) then set up the following logic spec-
ification for Minimal:

Minimal(L) < —L=[_|_],
where intList(L).

This specification trivially reduces to the following supposedly known specification:

emptyList(T) < T=[],
where true.

hence instantiating Minimal(L) to L=[].

Step 3: Syntactic introduction of the recursive atoms. A single recursive atom sort(TL,TS) is intro-
duced, hence instantiating TY to TS.

Step 4: Synthesis of Solve and the SolveNonMin;. Constraints (13) and (2) set up the following “specifi-
cation” for Solve:

L=1[] A Solve(L,S) = permutation(L,S) A ordered(S),
where intList(L) A intList(S).

This “specification” can easily be rewritten into a real logic specification, which trivially reduces to the logic
specification of emptyList/1, hence instantiating Solve(L,S) to S =[].

An initial hypothesis is that there are no non-recursive non-minimal cases: v = 0, which is the easiest way
to satisfy constraint (18). Hence there are no instances to be synthesized for the SolveNonMiny, so con-
straints (5) and (14) need not be verified. In general (but not in this case), this hypothesis may have to be
revised later.
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Step 5: Synthesis of the Processy, Compose;, and Discriminate;. Another initial hypothesis is that there
is one recursive non-minimal case: w = 1, which is the easiest way to satisfy constraint (19). This instantiates
c=v+w)to L.

Constraints (3), (4), (6), (7), and (15) set up a joint specification for Process|, Compose;, and
Discriminate;. Let’s call the involved predicate ProcCompDiscy. It has HL, TL, TS, S as parameters. Note
that HY can be abstracted away: constraint (21) need thus not be verified. The set up “specification” is:

ProcCompDisci{(HL,TL,TS,S) ~ permutation(TL,TS) A ordered(TS)
= permutation([HL|TL),S) A ordered(S),
where integer(HL) A intList(TL) A intList(TS) A intList(S).
This “specification” trivially reduces to the logic specification of insert/3 (see Example 38), hence instanti-
ating ProcCompDisc{(HL,TL,TS,S) to insert(HL,TS,S). Constraint (12) need not be verified as no discrim-
inant has been explicitly synthesized. The synthesized logic algorithm is equivalent to LA(sort-int-L)
(LA 11). It is partially correct by virtue of constraints (13) and (15).The verification of constraint (16) is left
as an exercise to the reader: it establishes the completeness of the synthesized logic algorithm. Upon back-
tracking, other logic algorithms can be synthesized. ¢

3.4 A Global Search Synthesis Strategy

In the global search methodology [63] [64], a logic specification is seen as an axiomatic theory, and called
a specification theory.

Example 46: The member/4 problem could be formally specified as follows:
R = member
dom(R)={(ANKI) | array(A,1,N,integer) A ordered(A) A integer(N)
A integer(K) A integer(l) }
RIANKI < A[ll=K A 1IN
where array(A,1,J,T) iff A is an array of elements of type 7, indexed from /to J. &

Definition 11: A global search algorithm is an axiomatic theory, or algorithm theory, which represents the
algorithm as an 8-tuple:
{ P, dom(P), P[X], D, dy(X), Satisfies(X,D), Split(X,D,E), Extract(X,D)

where the first three components (called the specification-part) are the same as in specification theories, D
is the domain of meaningful descriptors, d, (X) is the descriptor of the initial set of all candidate solutions
for X, Satisfies(X,D) is a wff deciding whether candidate solution X satisfies descriptor D, Split(X,D,E) is
a wff deciding whether descriptor E represents a subset of the solutions represented by descriptor D with
respect to values X, and Extract(X,D) is a wif deciding whether candidate solution X is directly extractable
from descriptor D. The last five components of an algorithm theory are called the algorithm-part. The con-
straints (called axioms) on the possible instances of the eight components of algorithm theories are as fol-
lows. First, Split must induce a well-founded ordering over the descriptors:

Split(X,D,E) = 3“<” E“<’ D (25)
the witness “<” of (25) is a well-founded relation over D (26)
Next, all solutions must satisfy the initial descriptor:
P[X] = Satisfies(X,dy (X)) (27
Finally, a candidate solution satisfies a descriptor iff it can be extracted after finitely many splits of that de-
scriptor:
Satisfies(X,D) < JE Split*(X,D,E) A Extract(X,E) (28)
I here omit the (obvious) definition of Split*. .
Example 47: The algorithm theory gs_binary_split_over_integer_subrange “encodes the binary split par-
adigm. It enumerates all elements of a subrange [L... U] of integers. [Descriptors] correspond to subsubrang-
es and are split roughly in half.” Formally:
P = gs_binary_split_over_integer_subrange
dom(P)={{LUJ) | integer(L) A integer(U) A integer(J) }
PILUJ] & LLJSU
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D ={ (VW) | integer(V) A integer(W) A LSVSW<U )
do(LUJ)=(LU)
Satisfies(LLUJ{VW)) & VSJ<W
Split(LUJ{VWHILVW)) & V<W A [V'=V A Wis(V+W)div2
v Visl+(V+W)div2 A W=W]
Extract(LUJ{ VW) & V=J=W
Other such algorithm theories, whose constraints are guaranteed to be satisfied, can be found in [63]. ¢

Definition 12: If a specification theory reduces to the specification-part of an algorithm theory under sub-
stitution 6, then the 0-extension of the specification theory into a new, concrete algorithm theory is obtained
by adding to it the 8-instances of the five components of the algorithm-part of the given, abstract algorithm
theory.

Example 48: The specification theory of Example 46 reduces to the specification-part of the abstract algo-
rithm theory gs_binary_split_over_integer_subrange (see Example 47) under the substitution 6 = {L/1, J/
I, U/N}. Indeed, formula of Definition 9, namely:

[array(A,1,N,integer) A ordered(A) A integer(N) A integer(K) A
integer(I) = integer(L)® A integer(U)0 A integer(J)0 ]
ATA[II=K A 1<SISN = (L<J<U)0]
is valid for 6. The obtained concrete algorithm theory is thus as follows:
R = member
dom(R)={(ANKI) | array(A,1,N,integer) A ordered(A) A integer(N)
A integer(K) A integer(l) }
RIANKI & A[ll=K A 1<I<N
D ={ (VW) | integer(V) A integer(W) A 1<V<SWEN)
do(LN,D =( LN)
satisfies(A,NI{VW)) & VSI<W
split(LNIL VWYL VW'Y & V<W A [VI=V A W=(V+ W) div2
v V=1+V+W)div2 n W=W]
extract(LNI{ VW) & V=I=W
Note that the algorithm-part does not involve all the parameters of R, This is because abstract algorithm the-
ories may have less parameters than specifications that are reduced to them. ¢

Filters are crucial to the efficiency of global search algorithms, as they are used to eliminate descriptors
that do not contain solutions. Using ideal filters (which eliminate all useless search by actually deciding
whether some descriptor D contains any solutions Y or not) would be too computationally expensive, so
approximations are needed. A necessary filter F satisfies the following implication:

VDe D VYe dom(R) [ R[Y] A Satisfies(Y,D) = F(Y,D) ] 29)
The contrapositive indicates that descriptors that don’t pass the filter cannot contain any solutions. Finding
“good” necessary filters is a problem-specific task (because filters are not components of global search the-
ories), and can be done by a generalized theorem prover [60].
Example 49: The derivation of a necessary filter from formula (29) for the concrete algorithm theory ob-
tained in Example 48, namely (after some rewriting):
VVWANKI [ integer(V) A integer(W) A 1< VSWSN A array(A,1,N,integer)
A ordered(A) A integer(N) A integer(K) A integer(I) A A[I]=K A 1 <I<N
AVSISW = IANKI{VW)) ]
could yield:
FANKI{VW)) & A[VISK<A[W]
assuming that sufficient background knowledge for array/4 and ordered/1 is available. Indeed, by the con-
trapositive of the implication above, any ordered sub-array of A described by the indices { VW) cannot
contain an index 7 such that A[/] =K unless K is in that sub-array. ¢
Now, given a filter F(X,D) and an algorithm theory { P, dom(?P), P [X], D, EZQ (X), Satisfies(X,D),
Split(X,D,E), Extract(X,D) ), the corresponding global search algorithm schema is obtained through
Schema 7 (see Section 2.6.4). Note that the predicate-variable Satisfies of the algorithm theory is only used



34

in the specification of the sub-problem P_gs, but not in the algorithm for P_gs. Synthesis thus “merely” con-
sists of theorem proving tasks. The following synthesis strategy instantiates all place-holders and satisfies
all constraints of the schema at the same time:
(1) Reduce the given specification theory to the specification-part of some pre-defined abstract algo-
rithm theory, using formula (23). This reveals a substitution, say 6.
(2) Obtain the corresponding 6-extension, that is, a concrete algorithm theory.
(3) Derive a necessary filter F' via formula (29) for the obtained algorithm theory.
(4) Assemble the filter ' and the components of the obtained algorithm theory into a concrete algorithm,
according to Schema 7.
Strictly speaking, there is thus no synthesis per se, as a generic algorithm is simply instantiated in one of a
finite set of predefined ways. Algorithms synthesized in this fashion are complete (by a variant of
Theorem 1) and partially correct (by the elimination of incorrect solutions through a “call” to P [X] “after”
Extract(X,D)) w.r.t. their logic specifications, but usually not of an optimal complexity, due to the usually
high level of genericity of the predefined abstract algorithm theories. So there are usually a lot of optimiza-
tion opportunities (via simplification, partial evaluation, finite differencing, and so on) [63].

Example 50: For the member/4 problem formally specified in Example 46, the first two synthesis steps are
illustrated in Example 48. The third synthesis step is shown in Example 49. The final step yields the follow-
ing logic algorithm:

member (A,N,K,I) &
A[1]<K<A[N] A member_gs(A,N,K,I,{1,N))

member_gs (A,N,K, I,{V,W)) &
V=I=W A A[I]=K A 1<I<N
v split (1,N,I,{V,W), V', W)
A A[V']<KSA[W'] A member_gs (A,N,K,I,{V',W"))

split (1, N, I,(V, W), V', W")) <
V<W A
[ V'=VAW' is (V+W) div 2
v V' is 1 4+ (V+W) div 2 A W'=W ]

This is the well-known binary search algorithm, but there are many simplification and optimization oppor-
tunities. An improved version is Logic Algorithm 15. ¢

All these ideas, and more, are implemented in the KIDS (Kestrel Interactive Development System) synthe-
sizer of Smith [63] [64].

4 Related Work

Algorithm/program schemata are an old, and ever popular, idea of computer science. They have been pro-
posed for a huge variety of applications, such as proving program properties (Section 4.1), programming
tutors (Section 4.2), manual synthesis (Section 4.3), (semi-)automatic synthesis (Section 4.4), and transfor-
mation (Section 4.5).

4.1 Proving Program Properties

Some properties of programs can be proven independently of their actual computations. Hence the idea of
abstracting away these computational details, and proving such properties for the resulting schemata. This
makes proofs of properties at the instance level easier, as it suffices to show that the program is covered by
a schema that is known to have the desired property. Sample properties are termination, divergence, equiv-
alence, isomorphism, and so on. An early survey of this research was made by Manna [51]. Note that his
schemata are first-order schemata, and that their instances are defined via (Herbrand) interpretations. This
semantics-based approach is of course also perfectly acceptable. It is sufficient for the study of schemata,
but not as a tool for algorithm synthesis. Indeed, unlike our second-order approach, it doesn’t permit the
concept of instantiation of a schema, and is thus less “constructive” for synthesis purposes.
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4.2 Programming Tutors

In the field of logic programming tutors for beginners, Gegg-Harrison [30] proposes a hierarchy of fourteen
logic program schemata. They are second-order logic expressions (as each is the most-specific generaliza-
tion of a class of programs), and embody the otherwise rare feature of arbitrary arities of predicates. Most
are specialized versions of my divide-and-conquer schemata, in the sense that they have less predicate-vari-
ables and that they are data-structure specific and already partly instantiated (induction parameter of type
list, fixed forms, fixed decomposition operators, fixed number of cases, fixed discriminants, etc.).

4.3 Manual Synthesis

In the area of manual or computer-aided algorithm synthesis by experts, Deville and Burnay [20] [21] sug-
gest an ancestor version of my divide-and-conquer schemata. It roughly corresponds to a highly instantiated
version 1 (no discriminants, most schema-variables are instantiated to 1).

A similar study is made by O’Keefe [55], who phrases specifications of problems in an algebraic way.
The functions of such specifications can be directly plugged into given divide-and-conquer logic program
schemata. Several schemata may be applicable according to the properties (associativity, commutativity, ex-
istence of left identities, and so on) of the specification’s functions.

Yokomori [76] also studies the similarity between logic programs, and indicates how programming prob-
lems can be solved by analogy, using his logic program forms.

Barker-Plummer [1] discusses a system based on clichés that assists experienced programmers in the con-
struction of Prolog programs. His clichés are data-structure- specific second-order sentences. Here, as in the
previous two approaches, synthesis is done by successively instantiating a cliché’s placeholders. This is in
a way related to Kwok and Sergot’s implicit definitions of logic programs [44].

A different approach is taken by Brna et al. [8], Lakhotia [45], Sterling and Kirschenbaum [66],
Vasconcelos [72], and many others (see the related work sections of these papers), who synthesize algo-
rithms by repeatedly applying programming techniques to skeletons, which yields extensions. Separate ex-
tensions of the same skeleton may be composed [67] into a single algorithm. Skeletons are partly pre-
instantiated algorithm schemata defining just a control flow for a specific data-type (such as recursing down
or up a data-structure; other examples are parsers and meta-interpreters), and techniques are standard pro-
gramming practices (such as adding extra parameters or computations) that do not alter the control flow of
a skeleton. Extensions may themselves be seen as skeletons, to which further techniques may be applied,
hence yielding a stepwise enhancement methodology. So synthesis is done by explicit manipulation of an
entire skeleton, rather than of its individual place-holders. Also, the schemata presented in this paper blur
the distinction between skeletons and techniques, which may be inadequate in certain contexts.

Marakakis and Gallagher [52] synthesize logic programs by top-down design, where each refinement step
introduces an instance of a data-structure-independent program schema (an abstraction of control flow) or
of an abstract datatype operation. They have five schemata, two of which are particular cases of version 1
of my divide-and-conquer schemata, the other three being conjunctive decomposition, disjunctive decom-
position, and backtracking.

None of the approaches in the previous two subsections considers constraints on schemata. This also
holds for the next subsections, unless otherwise indicated.

4.4 (Semi-)Automatic Synthesis

The field of (semi-)automatic algorithm/program synthesis has naturally seen a lot of interest in schemata.
The promise of schema-guidance is a disciplined synthesis that exploits useful knowledge about algorithm
synthesis methodologies. I here only discuss approaches to synthesis of logic algorithms/programs from
logic specifications with known-to-be-incomplete information about the intentions (Section 4.4.1) or from
assumed-to-be-complete information (Section 4.4.2).

4.4.1 Synthesis from Incomplete Specifications

The area of synthesis from incomplete specifications (such as examples) features two sub-areas that take
different approaches to using schemata, namely trace-based synthesis and model-based synthesis [24] [22].
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Trace-based synthesis. Trace-based synthesis (an early survey is in [61]) from incomplete specifications
proceeds in two steps:

(1) trace generation: trace(s) are generated from the given example(s);

(2) trace generalization: the trace(s) are generalized into a recursive program.

The idea of such a two-step decomposition seems to stem from Sikléssy and Sykes [59]. The first step usu-
ally yields trace(s) according to some (divide-and-conquer) schema, such as in [3] [4] [5] [7] [34] [42] [58]
[59] [68]. There are two algorithmic approaches to the second step, depending on the number of examples
(and hence the number of traces): either a single “long” trace is folded onto itself using a function merging
mechanism [3] [4] [5], or a recurrence relation is detected between several “short” traces [68] [42]. The
other approaches to the second step are guided by heuristics [7] [34] [58] [59]. The Basic Synthesis Theorem
of Summers’ THESYS system [68] constituted a major breakthrough, as it provided a firm theoretical foun-
dation to synthesis from examples: basically, it encodes a (rather primitive) divide-and-conquer schema and
relates it to the generated traces.

Initially restricted to the functional programming paradigm, the trace-based approach seems to have been
abandoned in the late 1970s, and was dormant for a decade before it was revived by several researchers in
the logic programming community.

Flener’s SYNAPSE system [24-27] (also see Example 44) synthesizes logic algorithms from specifications
by examples and properties, the latter being disambiguating generalizations of examples. The synthesis is
guided by (a hardwired) version 4 of the divide-and-conquer schema of this paper. It features a mix of in-
ductive, abductive, and deductive inference, and follows the tool-box approach outlined in Section 3.1.

Le Blanc [50] formalizes and generalizes Kodratoff ez al.’s follow-up research (the BMWk algorithm [42],
with an implicitly underlying simple divide-and-conquer schema) on Summers’ ideas [68], but in a term
rewriting framework. This is very close to, though a subset of, Flener’s approach cited above, but there are
no properties, no background knowledge, no constructive induction, and, as of now, rather severe restric-
tions on the class of synthesizable algorithms (only structural manipulation algorithms). Idestam-
Almquist’s work on recursive anti-unification [36] is also close to the BMWk algorithm.

Ling et al.’s CILP system [46] is also related to the above-cited works. Their schemata are, as of now, quite
restrictive divide-and-conquer ones. Background knowledge (but not properties) are used in a different way
(based on inverting implication) compared to SYNAPSE, but they solve the predicate invention (or: construc-
tive induction) problem in the same way as SYNAPSE, namely by recursively invoking the entire synthesizer
on a projected set of new examples.

Hamfelt and Fischer-Nilsson [33] propose METAINDUCE, a meta-programming approach to logic program
synthesis from examples: a simple data-structure-specific second-order divide-and-conquer schema is in-
stantiated through a call to a meta-interpreter that proves that the conjunction of examples follows from an
instance of that schema. Their system is very close to a subset of SYNAPSE, because there are no properties
and the schema is, as of now, rather primitive: in fact, the system can be seen as a very elegant re-
implementation of the core of SYNAPSE.

Hagiya [32] also re-formulates Summers’ recurrence relation detection mechanism in a logic framework,
using higher-order unification in a type theory with a recursion operator. The method is even extended to
synthesizing deductive proofs-by-induction from concrete sample proofs.

The work of Jorge and Brazdil [38] [39] is another approach to trace-based synthesis of logic programs.
Their specifications by examples are augmented with partial execution traces, called algorithm sketches.
This is also related to the old techniques of synthesis-from-traces (e.g., Biermann’s Trainable Turing Ma-
chine [2]), which actually underlie the second step of trace-based synthesis from incomplete specifications.

As van Lamsweerde [71] observes, this kind of synthesis from examples actually is a precursor to EBL
(Explanation-Based Learning), a branch of Machine Learning. Indeed, the goal of EBL in general, and EBG
(Explanation-Based Generalization) in particular, is the elaboration of a concept description from a very
small number of examples, in the presence of much background knowledge. EBL/EBG proceeds by first seek-
ing an explanation of why the example describes an instance of the intended concept (using background
knowledge), and then generalizing that explanation. Rules of deductive, abductive, and analogical inference
are typically used in EBL/EBG, in contrast to the rules of inductive inference used in empirical learning: EBL/
EBG reflect thus analytic learning, as opposed to empirical learning (which is from many examples, with
little background knowledge, and only by induction).
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Model-based synthesis. Model-based synthesis from incgmplete speciﬁc.:aFions (also known as Inductive
Logic Programming (ILP) [54]) proceeds by refining a logic program until its least Herbrand model coin-
cides with its intended interpretation. Surprisingly, this strand of research has long ignored the interest of
schemata. Shapiro’s Model Inference System (MIS) [57] was one of the early systems in this approach, but
it was almost only a decade later that schemata were found to be interesting for organizing search spaces
for such systems. Schemata are a form of syntactic bias (which is any means of restricting hypotheses spaces
in learning).

The XOANON system of Tinkham [70] is based on the insight that synthesis need not start from the empty
program, but could actually start from the most-specific schema that is believed to be applicable. The search
space is thus extended to a second-order space, at the bottom of which are logic programs, and at the top of
which are logic program schemata. If synthesis starts from a “good” schema, then the improvement in syn-
thesis speed is shown to be exponential.

A similar approach is taken for the MISST system (MIS with Skeletons and Techniques) of Sterling and
Kirschenbaum [66], who develop a new clause generation operator for MIS that is based upon the view of
logic programs as skeletons to which programming techniques have been applied (see Section 4.3).

The RDT (Rule Discovery Tool) component of Kietz and Wrobel’s MOBAL system [41], as well as its pre-
decessor system BLIP, also propose controlling the clause search space by syntactic rule models (or schema-
ta) and even by task-oriented predicate topologies (which is similar to the structured background knowledge
in SYNAPSE). Feng and Muggleton [23] investigate a similar formalism. Contrary to the previously men-
tioned two approaches, there is not necessarily a focus here on learning recursive concept descriptions
(only). As a consequence, the used schemata tend to be quite application-specific (and hence arises the ques-
tion as to their acquisition) or to cover the entire clause space (and hence to be useless).

This is symptomatic for a lot of ILP research, which caters a lot more to classification (learning of non-
recursive concept descriptions) than to synthesis (learning of recursive descriptions). If an ILP-style system
is adapted to learn recursive descriptions (only), this often happens through the use of schemata and results
in a trace-based synthesizer.

Wirth and O’Rorke [75] stop just short of defining schemata for their SIERES system: they only constrain
the dataflow of hypothesis clauses by means of argument dependency graphs (using mode information), but
not the control flow nor the parameters.

De Raedt and Bruynooghe’s CLINT learner has been augmented with the CIA component [17], which per-
forms constructive induction by analogy: previously learned clauses are abstracted into second-order clause
schemata that are then used to speed up future learning sessions (by initially restricting the focus to clauses
that are instances of known schemata) as well as to invent new concepts (by trying to group learned con-
junctions of literals according to bodies of schemata and asking the user to name, if possible, that concept).
This system is however argued to be inadequate for algorithm synthesis, and it only features single-clause
schemata anyway.

Tausend [69] proposes a graph-based unifying representation for syntactic biases, including schemata and
other, more abstract or more procedural, restrictions that are not surveyed here.

4.4.2  Synthesis from Complete Specifications

In the sub-area of synthesis from complete specifications, the use of schemata seems even less established.

Schemata are one of the pillars of Dershowitz’ environment, which supports the evolution of programs.
There, (imperative) programs (with assertions in annotations) are constructed and debugged either from
scratch, or, better, by analogy-guided modification of another program, or, ideally, by synthesis through
instantiation of some schema that abstracts previously constructed programs.

The Programmer’s Apprentice project [56] was based on the notion of clichés, which are application-
specific schemata.

The CYPRESS system of Smith [62] (also see Example 42) interactively synthesizes totally correct divide-
and-conquer algorithms from logic specifications, and is even able to cope with specifications whose do-
mains are not precisely enough constrained. The underlying schema is as follows:
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if Primitive (X)
then SolvePrim(X)
else Compose o (G X F) o Decompose (X)
fi
The differences with my Schema 5 (a rewriting of version 4) are that:

* this schema is set in the functional programming paradigm, and hence less powerful, as it distinguishes
between input and output parameters and does not allow for partial or multi-valued functions (rela-
tions); this is also reflected in the implicit — Primitive(X) instead of a NonPrimitive(X);

* there is only one non-minimal (or rather: non-primitive) case (c = 1);

* Decompose must here yield one head (2 = 1) and one tail (= 1);

* the processing-operator G may only be F or the identity function id,

* the notion of auxiliary parameter is not discussed at all;

To be fair, Smith [62] mentions actually having a more general schema, but I have not had access to it (yet)
and don’t know whether CYPRESS supports it.

The KIDS (Kestrel Interactive Development System) synthesizer of Smith [63] [64] (also see Section 2.6.4
and Section 3.4) interactively synthesizes and optimizes global search, local search, and divide-and-
conquer algorithms from logic specifications. Much effort has been put into transformation techniques for
optimizing the synthesized algorithms. KIDS is believed to be very close to the break-even point where its
usage is more economical than manual algorithm synthesis by an expert.

The previous two systems are noteworthy because they do involve constraints on instances. They synthe-
size functional programs. As of now, I am not aware of any full-fledged schema-guided synthesis systems
for logic programs. Example 45 outlines how this could be done (in an approach similar to CYPRESS).

However, the system of Lau and Prestwich [48] can be seen as performing schema-guided synthesis, be-
cause the specifier must also produce a folding problem, which defines the head and the required recursive
calls of the step case clauses of the program to be synthesized. This is akin to giving a partial and data-
structure-specific divide-and-conquer schema (where R and Decompose are instantiated. and the other
predicate-variables are omitted). By means of a non-deterministic choice from a typed database of folding
problems, this specifier hint could be eliminated, like in SYNAPSE. In any case, this approach allows the syn-
thesis of entire families of algorithms from a single specification [49].

Also, the Periwinkle system of Kraan et al. [43] is definitely schema-based, but their logic program sche-
mata are not finegrained enough to more effectively guide the synthesis. They take a novel approach: a logic
program is synthesized as a by-product of the planning of a verification proof of the specification. This proof
is performed, at the object level, in a sorted, first-order logic with equality. The proof is however first
planned, at the meta-level, while initially having the actual body of the extracted program represented by a
second-order variable (this is called middle-out reasoning). As the planning proceeds by applying tactics to
a conjecture (this is tantamount to applying transformation rules), the program becomes gradually instanti-
ated. This requires an extension of the used Clam proof planner. Replacing the second-order variable that
represents the entire program by a more sophisticated second-order expression (or schema) should result in
schema-guidance, but this hasn’t been done yet.

4.5 Transformation

The borderline between logic program synthesis and transformation is quite vague (and a matter of defini-
tions, on which there is no consensus anyway), and similarly for the difference between synthesis schemata
and transformation schemata. I here distinguish synthesis and transformation as outlined in Section 1.2.

Deville and Burnay [20] [21] discuss transformation schemata that encode the techniques of structural
and computational (descending or ascending) generalization of the initial problem, given an algorithm for
that problem. The necessary eureka-discovery techniques are discussed as well.

Fuchs and Fromherz [29] introduce the interesting idea of pre-compiling standard sequences of transfor-
mations at the program level into a single abstract transformation at the schema level. A concrete transfor-
mation of a program P is then performed by three steps: classification (abstraction) of P into a covering
schema S; selection of an applicable transformation schema having S as input and some schema S’ as output;
instantiation (specialization) of S’ into a program P’ according to the substitution revealed at the first step.
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Only the second step need be interactive, which provides for high-level user decisions, but of course also
for heuristic choice.

The work of Waldau [73] is a first step towards proving the validity of transformation schemata.

5 Conclusions and Future Work

In this paper, I have given a brief semi-formal introduction to algorithm schemata. Focusing mostly on the
divide-and-conquer methodology, I have incrementally synthesized four increasingly powerful data-
structure-independent schemata and their constraints from a series of divide-and-conquer logic algorithms.
Finally, I have proposed a vision of stepwise, schema-guided algorithm synthesis mechanisms, where each
variable of a schema is instantiated using the best-suited method from a tool-box of such methods. Different
synthesis strategies exist for each schema, which allows a lot of flexibility.

I have shown that algorithm schemata are used in a widespread variety of areas, including (semi-)auto-
mated algorithm synthesis. This is quite natural, as algorithm schemata are a powerful way of embodying
our knowledge about algorithms. Surprisingly, though, schemata are not as broadly used across all existing
synthesis approaches as I believe they ought to be. For instance, in the branch of induction-based synthesis,
schemata had almost disappeared until recently. One of the reasons could be that Inductive Logic Program-
ming (ILP) in general seems to be more focused on classification (of concepts) than on synthesis (of recur-
sive programs), and it is little wonder that concept schemata are hardly existent, and thus often considered
with skepticism. Similarly, in the branch of deduction-based synthesis of logic programs, schemata have
curiously attracted little attention. I think that deduction-based synthesis paradigms, such as proofs-as-
programs synthesis or deductive/transformational synthesis, would gain a lot from schema-guided ap-
proaches, as their search spaces can then be significantly pruned. I don’t think it is a coincidence that the by
far most powerful synthesizer, namely Smith’s KIDS [63] [64], is schema-guided.

It must also be observed that most of the research is going into investigating divide-and-conquer schema-
ta. This is not a bad thing in itself, as the covered class of algorithms is very interesting and large. But the
published schemata tend to be extremely simplified ones, namely often at best the equivalents of my version
1. The notion of (explicit) constraints on schema instances is mostly absent, hence a loss of an important
way of encoding and using programming knowledge. In order to be more useful, I think that more sophis-
ticated and realistic divide-and-conquer schemata, as well as schemata encoding other methodologies,
should also be supported and their constraints identified and verified.

Finally, a powerful and standard syntactic representation of schemata and constraints is sorely needed.
The work of Tausend [69] goes into this direction, though for a slightly more general purpose (namely a
unified representation of syntactic bias in learning). However, her graph-based representation is not very
adequate as a means of communication, and thus loses out on the advantages of second-order expressions,
which are syntactically very close to first-order algorithms/programs. In view of having a theory of sche-
mata and a formalization of the accompanying notions of instantiation and classification, a language for
schemata needs to be developed and its semantics defined. I hope that this paper gives some ideas towards
achieving these goals.
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