Generalized Vertical Partitioning of Signature Files
Seyit KOCBERBER! Fazli CANZ2*

I Department of Computer Engineering and Information Science, Bilkent University
Bilkent, 06533 Ankara, Turkey

2 Department of Systems Analysis, Miami University, Oxford, OH 45056, USA
e-mails: seyit@bilkent.edu.tr, fc74sanf @miamiu.acs.muohio.edu

BU-CEIS-9513

September 18, 1995

Abstract : A new signature file method, called Generalized Multi-Fragmented Signature File (GMFSF),
is presented. The new method provides a unified framework for other vertical partitioning signature files.
The performance of GMFSF is measured with a prototype information retrieval system using a database
of 152,850 MARC records. The experimental results agree with the theoretical analysis. The response
time of GMFSF decreases with an increasing number of query terms and is independent of the number of
hits to the query. These features make the method competitive with inverted files, and the experiments
further show that GMFSF performs better than inverted files for the non-zero hit conjunctive queries with

more than three terms.

1. INTRODUCTION

Recent developments in the data storage technology, e.g., optical disks, enable the
storage of formatted and unformatted data, such as text, voice and image in the same
database. The growing size of the databases necessitates the development of efficient file
structures and search techniques for such multimedia environments [1,9].

Signature files provide a space efficient fast search structure by eliminating most of
the irrelevant records by comparing the record signatures and the query signature without
retrieving the actual records. In this paper, an instance of any kind of data will be
referred to as a record. An attribute of a record, without loss of generality, will be
referred to as a term. In signature approach, record terms are encoded in a bit string
called a record signature. During the generation of signatures each term is hashed into a
bit string of size F by setting m bits to 1 (on-bit) where F > m. The result is called a term
signature. Record signatures are obtained either by concatenating or superimposing the
signatures of the record terms.

In superimposed signature files, the length of the record signature (F) and term

signatures are the same and F' >> m. For a database of N records, the signature file can be

*To whom all correspondence should be addressed voice: (513) 529-5950, fax: (513) 529-1524

KOCBEBER, CAN: Generalized Vertical Partitioning of Signature Files 2

viewed as an N by F bit matrix. Similar to records, query signatures are obtained by
superimposing the query term signatures. In this study, we consider only superimposed
signatures and conjunctive queries.

Several signature generation and signature file methods have been proposed to obtain
a desirable response time and space overhead. A survey of the proposed methods can be
found in [T, 37].

In this study, a generalized multi-fragmented signature file (GMFSF) method is
proposed for vertical partitioning of signatures. In vertical partitioning, N by F database
signature bit matrix is stored column wise. The size of each column depends on the
partitioning scheme. In GMFSF, a signature file consists of sub-signature files with
different signature widths (column sizes). Depending on its size each sub-signature file is
stored in either the bit-sliced (column size = 1) or frame-sliced (column size > 1) format.
The other vertical partitioning approaches, namely bit-sliced (BSSF) [7], generalized
frame-sliced (GFSSF) [6], and multi-fragment (MFSF) [5] signature file methods are
special cases GMFSF.

A prototype information retrieval (IR) system is implemented based on the proposed
method GMFSF. The performance of GMFSF is measured analytically and
experimentally. Also, a comparison with the inverted files in terms of response time,
space overhead, and inversion time is provided. The experiments show that GMFSF
obtains better response times than the inverted file for queries with more than three terms
and its space overhead is 13% less than that of the inverted files.

The organization of the paper is as follows. Section 2 gives a description of the
signature files and existing vertically partitioned signature file methods. Section 3
describes the proposed signature file generation method. Section 4 gives the optimization
algorithm that searches the GMFSF configuration with the best response time. Section 5
presents the results of the experiments with real data. Section 6 covers the results of the

comparison with the inverted file method. Finally, Section 7 provides the conclusions.

2. VERTICALLY PARTITIONED SIGNATURE FILES

The query evaluation using signature files is conducted in two phases. In the first
phase the signature file is used, and record signatures are compared with the query
signature. The records whose signatures contain on-bits in the corresponding positions of
all on-bits of the query signature are selected as the result of the signature file processing
phase. Due to hashing and superimposition operations used in obtaining signatures, the

result of the first phase may contain false drops: The record signature satisfies the query

KOCBEBER, CAN: Generalized Vertical Partitioning of Signature Files 3

although the actual record does not. Therefore, in the second phase of query evaluation,
the actual records are accessed to resolve possible false drops [1, 3].

Off-bits of a query signature have no effect on the result, since only the on-bits of the
query signature are compared with the corresponding record signature bits. Vertical
partitioning of a signature file provides the elimination of the slices corresponding to the
off-bits of the query signature in query evaluation. Retrieving only the slices
corresponding to the on-bits of the query signature reduces the amount of the data to be
read; hence, this improves performance. Usually a small subset of the vertical slices of
the signature file is needed for the query evaluation.

Short descriptions of the vertical partitioning methods BSSF, GFSSF, and MFSF are
given below. In this study one signature is produced for each record. In the text D
indicates the average (expected) number of terms per record. The meanings of the
important symbols used in this paper are provided in Table I.

Table I. Definition of Important Symbols (related equation no.)

Symbol Meaning
cffdd,) cumulative false drop probability for a t term query if i on-frames are processed (eqs. 2, A.4)

f number of fragments

k; number of frames in ith fragment

m; number of bits to be set by each term in a frame of ith fragment

n; number of frames selected in each fragment to set bits

rfd; false drop probability for a t term query if all on-frames are processed (eq. 1)
Si size of each frame in ith fragment (in bits)

ffdg,y frame false drop probability for a t term query if only one on-frame of ith fragment
is processed (eq. 9)

t number of query terms

tmax maximum number of terms in a query

Bgize size of a disk block (in bytes)

D average number of terms in a record

F size of a signature (in bits)

F; size of ith fragment of F (in bits)

FW(Qi)t number of on-frames in ith fragment for a t term query (eq. A.1)
N number of records in database

P maximum number of records in first result screen

Py probability of submission of a t term query

Pgize size of a record pointer (in bytes)

PB number of record pointers in record pointer buffer

RB average number of disk block accesses required to retrieve a record
RT; response time for a t term query (eq. 3)

Sp sequentiality probability of logically consecutive disk blocks

Thitop time required to perform bit operations on a disk block

Tread time required to read a disk block

Trecchk time required to determine whether a record is found relevant by first phase
Tgecan time required to scan a record to test it with query

Tseek time required to position read head of disk

TR expected response time (eq. 10)

W(Qi): number of on-bits in an on-frame of ith fragment for a t term query

KOCBEBER, CAN: Generalized Vertical Partitioning of Signature Files 4

2.1 Bit-Sliced Signature Files : BSSF(D, F, m)
In BSSF each term sets m distinct bits in a bit string of length F and the file is stored in
bit-sliced format [7]. In the file, the size of a slice is N bits.

2.2 Generalized Frame-Sliced Signature Files: GFSSF(D, F, m, k, n)
In GFSSF a signature is divided into k equal sized s bits wide frames (s = F/k). Each

term first randomly selects n frames, then randomly sets m bits (not necessarily distinct)

in each of the selected frames [6]. In this method, the size of a frame is s- /N bits and
each frame is stored separately as a sequential signature file. For k = F, the frames
become bit-slices of BSSF. A bit-sliced signature file BSSF(D,F,m) is a special case of
GFSSF with the parameters (D,F,1,F,m) [6].

GFSSF provides improvement over BSSF [6] by minimizing the number of the seek
operations. However, it requires the optimization of the signature file for a specific ¢
value that is undesirable.

2.3 Multi-Fragment Signature Files: MFSF(D, f, { (F;, m;) | 1<i<t 1))

In MFSF, a signature file is regarded as the combination of f sub-signature files,
fragments, such that F = F; + F>---+Fy (f< F). Each term sets m; bits in the ith fragment

such that m =mj+mp---+my (m; < F;, 1 <1 <) [5]. Each sub-signature file is a BSSF

with the relaxation of optimality condition. According to the optimality condition half of
the bits in the record signature need to be on-bits [2, 7].

For BSSF, since the query weight (number of on-bits in query signature) will
increase as the number of the terms used to construct the query increases, the time
required to complete the first phase of the query evaluation will also increase. MFSF
solves this problem by using a partial query evaluation technique. The technique employs
a stopping condition that tries to complete the first phase of query evaluation without
using all on-bits of the query signature. The aim of the stopping condition is to reduce
the number of expected false drops to an acceptable level that will also provide the
lowest response time within the framework of MFSF.

In MFSF, sub-signature files, fragments, have an increasing on-bit density value. The
query evaluation starts by using on-bits from the lowest on-bit density fragment and
continues with the higher on-bit density fragments of the query signature until the
stopping condition is satisfied.

The stopping condition may leave unused on-bits in the query signature. Therefore,
the number of on-bits in the query signature may be reduced by decreasing m; values of
the fragments. This produces record signatures with on-bit densities lower than 0.5, i.e.,

the optimal value. The optimal value minimizes the number of false drops if all on-bits

KOCBEBER, CAN: Generalized Vertical Partitioning of Signature Files 5

of the query signatures are used [2, 7]. In the case of MFSF reducing the on-bit density
of the record signatures satisfies the stopping condition with fewer numbers of bit-slice
processing and shortens the query processing time.

Optimizing the number of the on-bits in a query signature for a specific ¢ value
(number of query terms) will produce non-optimum response times for other ¢ values.
Therefore, MSFS approach tries to minimize the expected query response time for a
given distribution of ¢ values, not for a specific t value. By this way, it minimizes the
average query response time. The performance improvement provided by MSFS depends
on the distribution of # values and up to an 80% improvement over BSSF is possible by
employing similar partial query evaluation techniques for both methods [5].

A bit-sliced signature file with the parameters (D,F,m) is a special case of MFSF with
the parameters (D,1,{(F,m)}) without the relaxation of the optimality condition [5].

3. GENERALIZED MULTI-FRAGMENTED SIGNATURE FILES (GMFSF)

The GMEFSF approach combines the concepts introduced in GFSSF and MFSF. A
GMESF consists of f non-equal sized fragments as in MFSF such that F = F; + F>---+Fy
(f < F). Each fragment is treated as a separate GFSSF and contains k; (1 < k; < F;) equal
sized frames. Each term sets bits in all fragments. To set bits in ith fragment, first n;
frames are selected then in each selected frame m; (1 < m; < F//k;) bits are set. A signature
generation scheme in GMFSF is defined as GMFSF(D.f,{ (F;,m;.k;,n;) | 1<i<f}). The
size of the frames in the fragments are

s+ N where s;=F|k;, 1<i<f, 1< f<F.

The signature generation methods BSSF, GFSSF, and MFSF are special cases of
GMFSF. The representations of the signature generation schemes of these methods in
GMFSF are given in Table II.

Table II. Representations of BSSF, GFSSF, and MFSF in GMFSF

Signature Generation Equivalent Representation
Method Signature Generation Scheme in GMFSF
BSSF (D,F,m) (D, 1, {(F,1,F, m)})
GFSSF (D, F, m, k, n) (D, 1, {(F,m,k,n)})
MEFSF (D, f, { (Fi, mj) |l 1<i<f) (D, f, {(Fi, 1, Fj, mi)| 1<i<f 1))

3.1 False Drop Probability

Three different false drop probability types are used to describe the false drop calculation
method for GMFSF. The first one is rfd, (record signature false drop probability) for a t
term query. For rfd, all on-bits of the query signature and corresponding record signature
bits are compared. The second one is ffd(i) (frame false drop probability) which is the

false drop probability if only one frame from ith fragment of the query signature is used

KOCBEBER, CAN: Generalized Vertical Partitioning of Signature Files 6

in the query evaluation for a # term query. The third one is cffd(i) (cumulative frame
false drop probability) which is the false drop probability after processing i frames for a ¢
term query. It is computed by the product of the ffd(i) values of the frames used in the
query evaluation.

The bits set in each fragment is determined independent of other fragments.

Therefore, the record false drop probability of the whole signature for a 7 term query is
f
rfd, = [1rfd, of fragment i (1)
i=1

Since each fragment of GMFSF is a GFSSF, rfd; of the ith fragment can be computed by
the formulas given in or m; k;,n;). However, these formulas are
impractical for the partial query evaluation method described later in Section 3.3. For the
partial query evaluation we have to know the expected false drop probability after using i
frames from a fragment. Therefore, we will compute the false drop probability as

follows.

h
cffd,, = ffdf,,,,, -Hffd FW(Q,), (2)

(r,t)

r=1

h
where i=d+ Y FW(Q,), h<f,and 0<d<FW(Qy, ;)

r=1
The derivation of equation 2 is given in the appendix. Equation 2 reduces to the false
drop probability computation formulas of MFSF for k; = F; (1<i< f).

3.2 Response Time
We define the response time as the time needed to find and display the first P (if exists)
relevant records, where P is the maximum number of records shown in the first result
screen.

The (query) response time, R7, given below contains the signature file processing
time (Tphasel;) and the time required to resolve false drops and access the first P

relevant records (Tphase2,).

RT; = Tphase I, + Tphase 2, (3)
where
steps
Tphasel, =) (Read(size;)+ size; - Tyirop) (4)
i=1

Tphasel; contains reading and processing of steps frames from the signature file. The
number of the evaluation steps depends on the number of the query terms and whether
the partial evaluation method described in Section 3.3 will be used. The frame used in the

ith evaluation step occupies size; disk blocks and these disk blocks are assumed to be

KOCBEBER, CAN: Generalized Vertical Partitioning of Signature Files 7

logically consecutive. This means that the byte position of the jth disk block of the frame
18 pos+(j—1)-B,;,, where pos is the position of the first byte of the frame in the

ize
signature file and Byiz is the size of a disk block in bytes. Tpjsop is the time required to
perform the bit operations on a disk block.

The false drop resolution time for one record, CT, is computed as follows.

CT =(1-PB/N): Read([%—l) + Read(RB) + Ty (5)
size

The above equation can be explained as follows. To check a record, the record pointer is

obtained, the record is read, and the record is scanned to test whether it matches the

query. PB record pointers, each occupying Psize bytes, are read into a buffer of PB- Fy;,,

bytes long at the database initialization stage. Since this is a one time cost, it is excluded
from the cost calculations. The probability of finding a requested record pointer in the
buffer is approximately equal to PB/N. For PB = N, i.e., all record pointers are stored in
main memory, and the cost of finding the record pointers is zero. T.,, is the time
required to compare a record with the query.

For the second phase of query evaluation, it is assumed that P relevant documents
will be retrieved after resolving all false drops. Accordingly the time required to

complete the second phase of a # term query is computed as follows.
Tphase2, = (N -cffd +ret) - CT+N-T,_ .« (6)
qrcl lf qrcl < P

(steps,t)

, and g, << N

where ret = .
P otherwise

T, occnk 18 the time required to inspect whether a record is identified as relevant by the
first phase of the query evaluation. The total number of accessed records contains the
expected number of false drops after processing steps frames from the signature file and
ret relevant records. g,,; is the actual number of the relevant records and is assumed to be
a small fraction of N. For large g,,; values, almost all of the first P records found in the
first phase will also be actually relevant to the query. Therefore, the false drop part of the
equation can be ignored.

Read(b) incorporates the sequentiality probability, SP, to the estimation of the time
required to read b logically consecutive disk blocks and is computed as follows.

Read(b)=Tpp; - (1+(b—=1)-(1=SP))+b T,y (7)

For example, if sequentiality probability is 0.2, to read 10 disk blocks, 8.2 disk seek
operations will be required. The first disk block of each request will always require a

seek operation. The remaining 9 disk blocks will require 7.2 disk seek operations.

KOCBEBER, CAN: Generalized Vertical Partitioning of Signature Files 8

3.3 Partial Evaluation of Queries

Obtaining the Iowest possible rfd, value requires retrieval and processing of FW(Q),
frames (see equation A.3 in Appendix). On the other hand, reducing the false drop
probability below a certain value for a given N value is practically unnecessary. For
example, consider a database with the parameters N = 109, FW(Qq); = 21, and ffd(1.t)
(slice false drop probability of the first fragment) = 0.5. After processing the first 21
frames with at least one on-bit (on-frame) from the query signature, the expected number
of false drops will be approximately zero.

10°.0.5%1=0.477=0
We can stop the first phase of the query evaluation at this step even though there are
unprocessed on-frames in the query signature.

A stopping condition is derived in [5] based on this observation. The stopping
condition states that the first phase of the query evaluation must end after processing
steps bit-slices if the false drops to be eliminated by processing the next bit-slice can be
eliminated in a less time by accessing the actual records. The stopping condition given in
[5] is generalized for GMFSF as follows.

RFDsteps+1 CT < Read(SiZesteps+1) + Sizesteps+1 : Tbitop (8)

The undefined variables of expression 8 are defined as follows.
RFD,,,, = N-cffd — N - cffd =N cffd (= 1fd)

. h+1 if d<W(Q,,,),
next =
h+2 otherwise (if h+2 > f query evaluation is completed)

(steps,t) (steps+1,t) (steps,t

h is determined as

h
steps =d+ Y FW(Q,),

r=1
with the constraints A< f, 0<d<FW(Q,, 1),
fid ., , < ftd for1<r<f (9)

(r+1,t)
The constraints given in expression 9 guarantees that the stopping condition is reached in
a minimum number of evaluation steps by forcing the usage of the frames with lower ffd
values first. RFDgeps+ 7 18 the number of false drop records that can be eliminated upon
the processing of one more frame after processing steps frames. steps frames are obtained
by using all of the on-frames of the query signature starting from the first fragment and
including the hth fragment. In addition to this, d frames are used in the query evaluation
from the h+1st fragment. If there is an unprocessed on-frame in the h+1st fragment, the

next frame of query evaluation will be selected from it, otherwise the frame will be

KOCBEBER, CAN: Generalized Vertical Partitioning of Signature Files 9

selected from the h+2nd fragment. If there are only h+1 fragments, the query evaluation
stops before reaching the stopping condition.

A proof is given in [5] which guarantees that once the stopping condition is satisfied,
it will be valid in subsequent steps for unchanging frame sizes. In GMFSF the frame
sizes may be different in different fragments. To guarantee the validity of the stopping
condition for all subsequent evaluation steps after it is satisfied, instead of sizegeps+1 in
expression 8, the minimum frame size in the signature file must be used.

The on-frames used in query evaluation are selected from the query terms using a
round robin approach (the first on-frame comes from the first query term, the second on-

frame comes from the second query term, and so on). For the configurations where the

number of the processed on-frames is less than ¢ which may exist for small N and

max’
large t,,,, values, the stopping condition must be modified to process at least ¢,,,, on-

frames. This ensures that each query term contributes to the query evaluation.

4. SEARCHING THE OPTIMUM CONFIGURATION
In most of the real IR systems, multi-term queries are the norm. Therefore, in the
optimization of the signature file parameters the submission of queries with varying
number of terms must be considered. Given the occurrence frequencies of the queries
with different number of terms used to construct the query, the expected response time
can be computed as follows [5].

1R="$R I, (10)

t=1

where RT,, given in equation 3, is the time required to evaluate a ¢ term query, P, is the
probability of submission of a ¢ term query, and ¢,,,, is the maximum number of terms
that can be used in a query.

Minimizing the cost function, TR, with the stopping condition given in expression 8
requires determination of the values of the parameters f, F;, k;, n;, and m; (1 <i <f). The
heuristic search algorithm outlined in Figure 1 is used to search the optimum
configuration and to determine the 7R value for this case.

The algorithm assumes ¢,,; = 0. The stopping condition is independent of the actual
number of hits to the query. Therefore, the optimized response time for the zero hit
queries will also be the optimized response time for non-zero hit queries provided that
qre1 << N. For large q,,; values, the query evaluation may be stopped before reaching the
stopping condition given in expression 8. During query evaluation, the number of the
candidate relevant records and the expected number of false drops at this step may be

used to predict the g,,; value. The query evaluation algorithm may test the stopping

KOCBEBER, CAN: Generalized Vertical Partitioning of Signature Files 10

condition dynamically by watching the reduction in the expected false drops. However,
the experimental results show that counting the relevant records in the result may take as
much time as evaluating a frame.

In the algorithm joining of two fragments to form one fragment is initiated when

decrease m; or decrease n; is selected and the corresponding parameter value in the

selected fragment is one. Join Fragments, increase F;, and decrease F; operations require

random selection of another fragment. After adjusting the F; value of a fragment, k; value

is also adjusted such that mod(F;, k;)= 0. To prevent trapping in a local minima, a
sufficient number of initial configurations must be tried. The results given in this paper

are obtained with 80 initial configurations.

Algorithm SearchConfiguration
f < Select randomly the number of fragments (1 < f < F).
Set F; values randomly 1<i<f) where F'= Fj+ Fy+--+Fp.

Set k; values randomly such that mod(F;, k)= 0, (1 <i<Hf).
Set m; values to 1 (1 <i<f).
Set nj values to 1 (1 <i <o),
Mark all fragments as not-tried.
minimum cost < infinity.
while there are not-tried fragments
1 ¢ Select randomly a not-tried fragment (1 <i <f).
Select randomly an applicable operation among the operations split,
increase m;, decrease mj, increase Fj, decrease F j» increase n;, decrease n;.
if an applicable operation exists
Apply the operation and obtain candidate configuration.
if total cost, TR, of the candidate configuration is less than minimum cost
accept it as the new configuration, minimum cost <— TR.
Mark all fragments as not-tried.
else
Mark fragment i as tried.
else
Mark fragment i as tried.

Figure 1. Algorithm to search optimal fragmentation scheme.

The expected response time depends on the distribution of the number of query
terms. The examination of the performance improvement of MFSF over BSSF [5]
reveals that the results for uniform distribution of number of query terms are also a good
example for other term distributions. Therefore, we will assume uniform distribution for
the number of query terms for analytical and experimental tests.

The expected response times of zero-hit queries for the SP values 1, 0.5, and 0.0 are
plotted in Figure 2. SP = 0.0 is the typical situation in multi-user environments. Even if

the files are fully sequential (if possible), disk read and write requests originating from

KOCBEBER, CAN: Generalized Vertical Partitioning of Signature Files 11

other users will move the read head and the next request probably will require a disk seek
operation. However, memory capacity is very high in these environments; therefore,
buffering of the data in main memory will reduce the response time. The values of the
environment variables used by the optimization algorithm are given in Table III.

Figure 2 shows that for SP = 1.0, the response time is a linear function of N. For SP <
At these points

1.0, the sharp rises in the response time occur with a period of 8- By,
the last disk blocks of each frame become full and increasing N by one requires an
additional disk block for each frame. The increase in response time is incurred by the

increase in the evaluation steps to reach the stopping condition. This is due to the

increase in N and the amount of data to be read for each frame.

14,000 1 — - - — SP=1.0, Bsize=4,096
12,000 T SP=0.5, Bsize=4,096
10,000 + SP=0.0, Bsize=4,096
— — — SP=0.0, Bsize=12,288

8,000 1 _'_'_’_,..r-r""'

6,000 +
4,000 1

Response Time (ms)

2,000 T
0

0 250,000 500,000 750,000 1,000,000
(N) Number of Records

Figure 2. Expected response time for GMFSF with respect to varying N values (F = 960).

The slope of the response time line increases for decreasing SP value. To see the
effect of disk block size on the response time, response time values for SP = 0.0 and
B, = 12,288 are plotted in Figure 2. As a result, we can say that to alleviate the
performance decrease for SP values less than one, the disk block size must be increased.
If the disk block size is large enough to hold a frame, the performance is independent of
the SP value.

The response time for N = 100 for various F values are plotted in Figure 3. The
signature sizes of 512, 1024, and 2048 corresponds to 10.5%, 21%, and 42% space
overhead, respectively. The decrease in the response time becomes insignificant
(especially for SP > 0.5) for the space overhead greater than 20%. Therefore, the
simulation runs and the experiments with real data use F = 960 that corresponds to a 20%

space overhead.

KOCBEBER, CAN: Generalized Vertical Partitioning of Signature Files 12

— 24000 1, SP=1.0

g . — - - —SP=0.5

£ 20,000 N

o . aeaaa SP=0.0

£ 16,000 P el

= N, Tt

9 12,000 - TNl

g e T e

g 8000t T Tree—ee ..

& 00T T T e

2 4,000 ¥
0 + + + + + {
512 768 1024 1280 1536 1792 2048

(F) Signature Size in bits

Figure 3. Expected response time for GMFSF versus F (N = 10°).

5. EXPERIMENTAL EVALUATION OF GMFSF

To test the estimated performance of GMFSF with real data, a 33 MHz, 486 DX personal
computer with a hard disk of 201 MB running DOS operating system is used. Since DOS
provides a single-user non-preemptive programming environment, the processing time
can be measured by using the real clock of the system. Also, the file allocation process
can be controlled to obtain different SP values. We expect that a multi-user system can
offer a computing power and I/O speed equivalent to our experimental environment if no
better. So the results of the experiments can be achieved in multi-user environments
without a performance degradation.

The values of the parameters Ty, Treaqs T

scans Lrecehie and T, are determined

experimentally. For the disk drive used in the experiments, the value of T, increases as
the size of the file on which the seek operations are performed increases. An average
T,..r value is obtained by taking the average of T, values for different file sizes.

Parameter values used in the simulations and experiments are given in Table III.

Table III. Parameter Values for the Simulation Runs and Experiments

tmax =10 maximum number of terms in a query

Bgize =4096 size of a disk block (in bytes)

D =27 average number of terms in a record

F =960 size of a signature (in bits)

P =1 maximum number of records in first result screen

Pge =4 size of a record pointer (in bytes)

PB =1024 number of record pointers in record pointer buffer

RB =1 average number of disk block accesses to retrieve a record

Thitop =0.616 time required to perform bit operations on a disk block (ms)
Tread =3.42 time required to read a disk block (ms)

Trecchk = 0.00012 time required to test a result bit of first phase (ms)

Tgean =45 average time required to match a record with query (ms)
Teeek =80 time required to position read head of disk (ms)

KOCBEBER, CAN: Generalized Vertical Partitioning of Signature Files 13

The test data used in the experiments are imported from BLISS (Bilkent University
Library Information Services System) which uses MARC records to store bibliographic
information of the collection of the university library. MARC records contain variable
sized information about the bibliographic materials and are widely used by library
automation systems. The test data contains 152,850 records and the size of the data file is
91 MB. Average record length is 613 bytes and on the average each record contains
25.63 terms. MARC records are aligned according to disk block boundaries such that
reading of each record requires only one disk block access (RB = 1) unless the MARC
record is larger than a disk block. This alignment increases the size of the data file by
10%.

Response time is measured by taking the average for 500 randomly generated zero-
hit queries. The number of terms in the queries is determined according to the uniform
probability distribution, since it provides typical experimental results [5]. The maximum
number of the query terms is 10. Therefore, the test query set contains 50 occurrences of
each value of the number of query terms.

Three experiments are performed to compare the expected performance of GMFSF
with the performance obtained using real data. In the experiments only the conventional
DOS memory is used and buffering is disabled. The experiments and the results obtained
are presented below. In this section expected (simulation) response times are obtained by

equation 10.

5.1 Experiment I: Finding the Optimum D Value
The MARC records used as the test data are in different sizes and the number of the
terms occurring in the records varies. The average number of the terms is 25.63, where
57% of the records have 26 or less terms, i.e., D = 26 covers 57% of the records. This
means 43% of the record signatures may contain more on-bits than the optimized number
of on-bits assumed by the simulation. The extra on-bits in actual record signatures may
cause more false drops than the estimated false drops and may decrease the performance.
To see the effect of using a D value different from the average number of terms per
record, the response time is measured for four different D values. The results are given in
Table IV. The expected and observed false drop values are for single term queries. An
increasing D value decreases the difference between the observed response time and the
estimated (simulation) response time. The query evaluation algorithm expects higher on-
bit densities for increased D value since F is fixed. Consequently, more frames are used

in the query evaluation and the response time increases. We take D = 27, covering 61%

KOCBEBER, CAN: Generalized Vertical Partitioning of Signature Files 14

of the records, since D = 27 obtains the best observed response time value in the test

environment.

Table I'V. Response Time and False Drop Values for Various D Values

Percent of Response Time (ms) False Drops
D Covered Records Expected Observed Expected Observed
25 53% 584 885 2.44 4.27
26 57% 597 754 1.47 3.19
27 61% 604 728 2.13 2.52
28 65% 616 817 1.47 3.44

5.2 Experiment II: Testing the Expected Response Time

The expected and the observed response time values for five different N values are
plotted in Figure 4. Except for the smallest and largest database sizes, the expected and
observed response time values are very close. The deviation is due to the fact that T, is
proportional to N. For example, T, value for N = 32,768 is less than the average T,
value. Therefore, the observed response time is less than the expected response time. On
the other hand, T,,; value for N = 152,850 is larger than the average T,,; value and the
observed response time is greater than the expected response time. Experimental results
validate equation 10. They also show that a response time of 1.6 seconds can be achieved

for 100 records using a disk drive with 80 ms seek time (refer to Figure 2).

800 T
—~ 700)K/X
g

600 + .-
=t A +
g5+ XTTTE
o LT
., 400 T +--
é 300 T >K/ - -4 - Expected
2 200 ¢+ == Observed
()
& 100 +

0 + + + + J
0 32,768 65,536 98,304 131,072 163,840

(N) Number of Records

Figure 4. Expected and observed response time.

Our further experiments show that the optimized file parameters obtained for a given
N value remains effective for large database increases. For example, we used the
optimized signature file parameters for N= 98,304 for the complete database. This
increased the observed response time of the latter case by only 2% with respect to its
optimized case. We have similar observation in the other experiments; actually the

largest deviation from the optimized case is reported above. Therefore, we can say that

KOCBEBER, CAN: Generalized Vertical Partitioning of Signature Files 15

for most environments the need for GMFSF reorganization/reoptimization will be
infrequent. This is due to the fact that stopping condition for the query evaluation process

is determined dynamically according to the current N value.

5.3 Experiment III: Testing the Effect of Sequentiality Probability

An SP value of 1.0 is obtained by fully optimizing the disk with Norton Disk Doctor
(NDD). NDD reorganizes the files on the disk such that each file occupies physically
consecutive disk locations. The SP values lower than 1.0 are obtained by randomly
fragmenting the free space on the disk, and copying the file to the disk. The value of SP
for the fragmented file is determined experimentally. For this purpose, first the reading
times of fully sequential and fragmented versions of the same file from the beginning to
the end are recorded. The difference between fragmented and sequential reading times is
divided by average T, value of the same file to find the number of the seek operations
generated by the fragmentation of the file. The ratio of the number of the seek operations
to the number of the blocks required to store the file gives the value of SP. The SP values

less than 0.6 necessitates a larger disk capacity than the capacity of the disk used for the

experiments.
Table V. Response Times for Different SP values
Sequentiality | Response Time (ms) | Response Time (ms)
Probability Experimental Simulation

1.000 535 534
0.870 679 644
0.735 794 755
0.660 800 820

The tests for the sequentiality probability are performed for N = 93,304 that gives the
closest expected and observed response times in the previous experiment. The results of
the experiment are given in Table V. The expected and observed response time values are

very close to each other, and the response time increases for decreasing SP values.

6. COMPARING PERFORMANCE OF GMFSF AND INVERTED FILES
To compare GMFSF and inverted files, an inverted file generation and search program
are implemented in the C language with the C library of Code Base that offers indexing
and sorting functions.

The same record pointer file parameters are used for both methods. The inverted file
system contains two files. The first file is used to store the unique terms, total number of

the postings, a part of the posting list, and if it exists a pointer to the secondary posting

KOCBEBER, CAN: Generalized Vertical Partitioning of Signature Files 16

record for each term. The portion of the posting list stored with the term is called the
prime posting list. The size of the prime posting list is selected such that the posting list
of 90% of the terms can be obtained without additional seek and read requests.
Increasing the size of the prime posting list also increases the space overhead. The
second file is used to store the secondary posting records. The size of the secondary
posting records is selected such that the posting lists of the 6% of the terms can be read

with only two seek operations.

6.1 Experiment I: Comparing Signature File and Inverted Index Creation Times

For increasing database sizes, signature file creation times and inverted index creation
times are given in Figure 5. The programs written for signature and inverted file creation
are open to improvement. For example, the inversion may be performed more efficiently
by using the FAST-INV algorithm that provides maximum utilization of available main
memory [4]. The space overhead given in Table VI for inverted file starts with 45% and
decreases as database size increases since the terms introduced by earlier records are also
used by new records. The unique numbers of the bibliographic material such as ISBN,
and ISSN are not included in the index. A recent study shows that the space overhead for
inverted files can be reduced to less than 10% [10]. However, the decompression
operation needed during query processing will increase the response time. The space
overhead for the signature file is 20% for all record numbers, i.e., is always less than that

of the inverted file.

1000 T +
g 750 +/
= T —+— Inverted index /
= 2 X
g 2 e K== Signature
.% é 500 + A+
§ g / X
L 250 T S

*,,/X
0 T + + + J
0 32,768 65,536 98,304 131,072 163,840
(N) Number of Records

Figure 5. Inverted index and signature file generation times.

Another factor affecting the space overhead for inverted files is the maximum
number of the characters in a term which is set to 10 and results truncation of 8% of all
term occurrences. For maximum term length of 15, the space overhead for N= 152,850 is
36%.

KOCBEBER, CAN: Generalized Vertical Partitioning of Signature Files 17

Table VI. Inverted File Statistics

Number of Number of Total Number Space Inversion
Records Unique Terms of Terms Overhead | Time (minutes)
32,768 73,679 737,934 45% 76
65,536 111,170 1,568,021 40% 220
98,304 135,890 2,446,565 36% 518
131,072 154,126 3,334,523 34% 771
152,850 166,216 3,916,856 33% 920

The inversion time increases more rapidly for larger N values. The reason for this is
the sorting of the terms extracted from the records. Since our aim is to compare the
methods in the same environments, we limit the available memory to the conventional
DOS memory. Both methods can perform better with higher memory capacities. For the
test environment (N= 152,850) signature file generation requires 33% of the inversion
time. A buffer area of 512 bytes is used for each bit of the record signature. After
processing 4096 records, the buffers are dumped to the disk. Consequently, increasing

the buffer size or decreasing the signature size decreases the signature file creation time.

6.2 Experiment II: Comparing Response Times

The response time of GMFSF decreases with the increase in number of query terms (7)
since more frames are used from low on-bit density fragments for increased ¢ values. For
inverted files, it increases with t. The response times of both methods are plotted in
Figure 6 for t values between one and nine to find the possible cross-over point.
Optimizing the signature file parameters for each number of query terms, ¢, value is
unrealistic. Therefore, the signature file is optimized for the ¢ values 1 to 3, and 4 to 9.

The queries with more than 9 terms result in the same response time for GMFSF.

2000 T +

> 1750 + \+ ‘—‘>K—‘ Inverted File
E 1500 ¢ —> = GMFSF SP=1.0
] Sl —
£ 1250 ¢ xm.._,x —+F— GMFSF SP=0.77)K/X
= oo RN X
2 500 1 />K —t + : ; .
o) X“*—-X — .
& 250 + — % ¢ X

0 j " t t t t + + |

0 1 2 3 4 5 6 7 8 9

(t) Number of Query Terms
Figure 6. Response times for GMFSF and inverted file (N = 152,850, F = 960).

KOCBEBER, CAN: Generalized Vertical Partitioning of Signature Files 18

Another factor that affects the response time for inverted file is the number of the hits
for the queries. Instead of controlling the hit numbers in the result, we control the hit
numbers for each query term. One-hundred query terms are selected among the unique
terms such that the subset obtained reflects the posting list statistics of all unique terms.
For example, for the test database 52% of the unique terms have a posting list length of
one. Therefore, we select sample query terms such that 52 terms have a posting list
length of one. For the experiments the secondary posting records of the same term are
stored sequentially which is the situation after creating the inverted file. Therefore, long
posting lists can be read with only one additional seek operations. In real applications,
additions to the posting lists cause non-sequential secondary posting list records.

For each ¢ value, 500 queries are generated by randomly selecting the query terms
from the sample query term set. Our aim is to measure the response time for non-zero hit
queries. Therefore, we continue the query evaluation for inverted file even the result
contains no relevant records to the evaluated part of the query. We limit the number of
retrieved relevant records with one (P = 1) as in [6]. After anding more than two terms,
almost all of the result sets of the test queries are empty.

The results show that GMFSF provides a shorter response time for non-zero hit
queries with more than three terms. For SP < 1.0, the cross-over point requires higher
number of query terms than SP = 1.0. However, increasing the disk block size, By,
reduces the effect of lower SP values on the response time (refer to Figure 2). For zero-
hit queries the response time of inverted file depends on the technique used to obtain the
empty result set.

Creation of bit map equivalents of posting lists may require shorter time compared to
inverted file creation. The bit map file for the test database requires 3GB of disk
memory. Compression of the bit maps reduces the space overhead, but the query
evaluation time will increase to decompress the data [10]. Furthermore, during query
processing we still have to access the pointer file to find the position of the bit map of the
query terms. Only 4261 terms (3% of terms) of the test database have a posting list
longer than 100, and only three of them are included in the 100 test query terms.
Therefore, switching to bit map storage for long posting lists may reduce the space
overhead, but its effect on the response time will be insignificant due to pointer file disk

aCCesses.

7. CONCLUSION
A new signature file method, called generalized multi-fragmented signature file

(GMEFSF), is presented. The new method provides a unified framework for other vertical

KOCBEBER, CAN: Generalized Vertical Partitioning of Signature Files 19

signature file partitioning methods and employs a new partial query evaluation strategy
that dynamically avoids the complete use of the on-bits of query signatures.

The performance of GMFSF is measured with a prototype information retrieval
system using a database of 152,850 MARC records. The experimental results agree with
the theoretical analysis. It is shown that the method provides desirable response times for
multi-term queries. Using GMFSF an average response time of 1.6 seconds can be
obtained for a database with 100 records using a disk drive with 80 ms seek time.

Unlike a recent work on vertical partitioning [6, p. 285], in GMFSF the response time
decreases with an increasing number of query terms. This is due to our partial query
evaluation strategy. Furthermore, the response time of GMFSF is independent of
number of hits to the queries. These are desirable characteristics. A comparison with
inverted files shows that GMFSF has less space overhead, and for queries with more than
three terms it provides shorter reponse time. The experimental results also show that the
need for GMFSF reorganization will be infrequent.

In our future research we will test GMFSF on larger databases. The inverted file
approach and GMFSF will be compared using real queries submitted to BLISS. Another
research topic will be the adaptation of GMFSF to parallel processing environments and

its performance evaluation.

APPENDIX

Derivation of False Drop Estimation Formula for GMFSF

For a step-by-step query evaluation and false drop computation, we need to know the

decrease in the false drop probability for the usage of each frame in the signature file

processing. The expected number of on-frames in the rth fragment (/< r < f) of a ¢ term

query signature can be computed by the formula used to compute signature weight.
FW(Q,) =k, (1-(1-n.Jk.)') (A.1)

At most FW(Q,), frames can be used in the query evaluation from the rth fragment. By

using the on-frames of the lower numbered fragments first, i on-frames used for a query

evaluation are distributed among the fragments such that

h
i=d+ YLFW(Q,) (A2)

r=1

where h< f, 0<d<FW(Qui1)

The total, number of on-frames in a query signature will be

FW(Q) = LFW(Q,) (A.3)

r=1

KOCBEBER, CAN: Generalized Vertical Partitioning of Signature Files 20

The expected false drop probability after processing i on-frames can be approximated

by the multiplication of the false drop probabilities of the processed frames.

h
offd;,, = ffdf,,,,, - [T (A4)

(r,t)

r=1

where ffd(r,1) is the probability of accidentally matching an on-frame in the rth fragment
of the query signature with the corresponding record signature frame. ffd(r,:) is computed
by the multiplication of two probabilities. The first one is the probability of being an on-
frame of a record signature frame corresponding to a query signature on-frame. The
second one is the probability of matching the bits in the query signature frame and the
record signature frame.

ffd,, =(1-(1-n,/k,)”) -op " (AS)

r

E(D,k-(1=(1="7/)°),n,)

op,=1-(1-m,/s,) (A6)

W(Q) =s,-(1—(1—-m,/s,) E-EW(Crhnr))

S N e
E(t,k,n)=§1'[i]'(r) (11

op, 1s the expected on-bit probability (on-bit density) in the record signature frame.
W(Q,); is the expected number of on-bits in an on-frame of the rth fragment of the query
signature. E(t,k,n) computes the expected number of terms which will select a frame if

each of ¢ terms select n frames among k frames by using binomial distribution.

REFERENCES

[1] D. Aktug and F. Can, Signature files: An integrated access method for formatted and unformatted
databases, submitted to ACM Comp. Surveys (under revision).

[2] S. Christodoulakis and C. Faloutsos, Design considerations for a message file server, IEEE Trans.
on Software Engineering 10 (2) (1984) 201-210.

[3] C. Faloutsos, Signature files, in Information Retrieval Data Structures and Algorithms, edited by
W. B. Frakes, R. Baeza-Yates, Prentice Hall , Englewood Cliffs, N.J. (1992) 44-65.

[4] E.Foxand W. C. Lee, FAST-INV: A fast algorithm for building large inverted files, Tech. Rept.
Tr-91-10, VPI&SU, Department of Computer Science, Blacksburg, Va. 2461-0106, 1991.

[5] S. Kocberber and F. Can, Vertical Fragmentation of superimposed signature files using partial
evaluation of queries, Tech. Rept.,, BU-CEIS-9501, Department of computer Engineering and
Information Science, Bilkent University, 1995 (anonymous ftp to gopher.cs.bilkent.edu.tr
pub/tech-reports/1995/BU-CEIS-9501.ps.z).

[6] Z. Lin and C. Faloutsos, Frame-sliced signature files, IEEE Transactions on Knowledge and Data
Engineering 4, (3) (1992) 281-289.

[7] C.S. Roberts, Partial-match retrieval via the method of superimposed codes, in: Proceedings of the
IEEE, 67 (12) (1979) 1624-1642.

KOCBEBER, CAN: Generalized Vertical Partitioning of Signature Files 21

[8] R. Sacks-Davis, A. Kent and K. Ramamohanarao, Performance of multikey access method based
on descriptors superimposed coding techniques, Information Systems 10 (4) (1987) 391-403.

[9] G. Salton, Automatic Text Processing: The Transformation Analysis, and Retrieval of Information
by Computer, Addison-Wesley, Reading, MA. (1989)

[10] J. Zobel, A. Moffat, and R. Sacks-Davis, An efficient indexing technique for full-text database
systems. In Proceedings of 18th VLDB Conference, Vancouver, British Columbia, Canada, (1992)
352-362.

