Ozgiir Ulusoy

BILKENT UNIVERSITY

Department of Computer Engineering
and
Information Science

Technical Report BU-CEIS-95-14

Analysis of Concurrency Control Protocols for Real-Time Database Systems

ézgﬁr Ulusoy
Department of Computer Engineering and Information Sciences
Bilkent University
06533 Bilkent, Ankara, TURKEY
e-mail: oulusoy@bilkent.edu.tr, fax (90)(312)266-4126

Abstract: This paper provides an approxrimate analytic solution method for evaluating the per-
formance of concurrency control protocols developed for real-time database systems (RTDBSSs).
Transactions processed in a RTDBS are associated with timing constraints typically in the form
of deadlines. The primary consideration in developing a RTDBS concurrency control protocol is
the fact that satisfaction of the timing constraints of transactions is as important as maintaining
the consistency of the underlying database. The proposed solution method provides the evaluation
of the performance of concurrency control protocols in terms of the satisfaction rate of timing con-
straints. As a case study, a RTDBS concurrency control protocol, called High Priority, is analyzed
using the proposed method. The accuracy of the performance results obtained is ascertained via
stmulation. The solution method is also used to investigate the real-time performance benefits of
the High Priority over the ordinary Two-Phase Locking.

Keywords: Real-time database systems, concurrency control, performance evaluation, Markov
modeling, analytic solution.

1. Introduction

A real-time database system (RTDBS) is designed to provide timely response to the transactions
of data-intensive applications. Examples of RTDBS application areas include computer-integrated
manufacturing, airline reservation systems, stock market, banking, and command and control sys-
tems. Similar to a conventional real-time system, transactions processed in a RT'DBS are associated
with timing constraints, typically in the form of deadlines. Access requests of transactions to data
or other system resources are scheduled on the basis of the timing constraints. What makes a
RTDBS different from a real-time system is the requirement of preserving the logical consistency of
data in addition to considering the timing constraints of transactions. The requirement to maintain
data consistency is the essential feature of a conventional database system. However, the techniques
used to preserve data consistency in database systems are all based on transaction blocking and
transaction restart, which makes it virtually impossible to predict computation times and hence
to provide schedules that guarantee deadlines in a RTDBS. As a result, it becomes necessary to
extend traditional database management techniques with time-critical scheduling methods. While
the primary performance goal in conventional database systems is to minimize the average response
time of transactions and to maximize throughput, the main objective in RTDBSs is to maximize
the number of transactions that satisfy their deadlines.

The scheduling problem in RTDBSs has been addressed by a number of recent studies. The general
approach taken in developing new scheduling algorithms has been to use existing techniques in CPU
scheduling, buffer management, 10 scheduling, and concurrency control, and to apply time-critical
scheduling methods to observe the timing requirements of transactions [30]. A considerable amount
of RTDBS research has been devoted to performance evaluation of time-cognizant concurrency
control protocols. However, the performance studies were either based on simulation (e.g., [1, 2,
3, 10, 11, 20, 23, 27, 28, 29]), or carried out on a RTDBS testbed (e.g., [14, 15]). To the best of

our knowledge, no analytic performance study has been reported so far involving the evaluation of
concurrency control protocols in RTDBSs, which is the main contribution of this paper.!

The behavior of concurrency control protocols in traditional database systems has been investigated
using both simulation (e.g., [4, 16, 17]) and analytic models (e.g., [7, 8, 18, 21, 22, 26, 31]). In this
paper, we attempt to extend the existing analyses for concurrency control protocols to a real-time
environment. We analyze the performance of RITDBS concurrency control protocols via Markov
modeling. As indicated in all analytic works listed above, it is practically impossible to find an
exact analytic solution to the performance evaluation problem of a concurrency control protocol. To
simplify the problem, we analyze an isolated individual transaction, rather than capturing the states
of all concurrent transactions. It is assumed that the isolated transaction sees the average state of
other transactions. This method was found to be fairly accurate in analyzing the performance of
two-phase locking [7, 24, 25] and timestamp-ordering algorithms [21, 22]. The model provided is
able to reflect the impact of the presence of other transactions on the performance of the isolated
transaction. However, the analysis is approximate since the average behavior of transactions is
modeled rather than their dynamic behavior. The accuracy of the performance results obtained
by the analysis is ascertained using a simulation program which simulates the dynamic behavior of
each transaction.

The proposed solution method is used to evaluate the performance of concurrency control protocols
in terms of the satisfaction rate of timing constraints. As a case study, we analyze a RTDBS con-
currency control protocol, called High Priority (HP), using the solution method. Some performance
experiments are conducted to evaluate the protocol under various conditions. To see how the ‘real-
time’ aspect makes a difference, the solution method is also used to model ordinary Two-Phase
Locking (2PL), and the performances of 2PL and HP are comparatively evaluated. The experiment
results help us show that the proposed analytic solution is a valid and useful method to predict the
performance of concurrency control protocols developed for RTDBSs.

The remainder of the paper is organized as follows. The next section provides the structure and
characteristics of a RTDBS model used in the evaluation of concurrency control protocols. Section 3
describes the analytic solution method proposed to model the behavior of the protocols. In Section
4, protocol HP is described, and an analysis of the protocol based on the proposed solution method
is provided. Validation results of the analytic solution and the results of some experiments are
also discussed in this section. Section 5 extends the analysis by removing some of the constraints
applied in developing the RTDBS model. Finally, Section 6 provides a brief discussion of our work
together with the future plans.

2. RTDBS Model

This section briefly describes the RTDBS model used in evaluating the performance of RTDBS
concurrency control protocols. The model is based on a closed queuing model of a single site
database system. It contains one CPU resource shared by transactions.

Each transaction submitted to the system is associated with a real-time constraint in the form
of a deadline, and is assigned a unique real-time priority determined on the basis of its deadline.
Any priority assignment policy that makes use of the deadline information can be adapted by
the system. ‘Earliest Deadline First’ (EDF) policy is one possible candidate which states that a
transaction with an earlier deadline has higher priority than a transaction with a later deadline.

1Recently an analytical performance study of RTDBSs has been provided by Haritsa [12]; however, that work does
not particularly involve the performance of concurrency control protocols.

S | Slack factor used in assigning transaction deadlines

o | Mean transaction initialization rate

up | Mean CPU service rate

D | Number of data items stored in the database

d Number of data items accessed by each transaction

t Number of transactions processed in the system at any moment in time

Table 1: Parameters of the RTDBS Model

It is assumed that if any two transactions have the same deadline, the one that has arrived at
the system earlier is considered to have a higher priority. The priority of a transaction is ‘static’;
i.e., the priority assigned at transaction’s arrival time remains the same during the lifetime of the
transaction.

The ‘slack time’ of a transaction is defined as the distance from the current time to the deadline of

the transaction. The slack time of a new transaction in our system is considered to be proportional
to the estimated response time of the transaction, and the proportionality factor is determined by
the parameter S. (See the derivation of slack time ST of a transaction in Section 4.1.2.) While
our calculations involve the estimation of transaction processing times in assigning deadlines, we
assume that the system itself lacks the knowledge of processing time information.? It is assumed
that the delay for the initialization of each transaction is distributed exponentially with mean 1/ .

The basic unit of access (or locking) is referred to as a data item. The number of data items stored
in the database is denoted by the parameter D. Concurrent data access requests of transactions are
controlled by using a concurrency control protocol. Depending on its real-time priority, an access
request of a transaction is either granted or results in blocking or abort of the transaction. If the
access request is granted, the transaction obtains a lock on the data item and starts processing
it. The processing time at the CPU is assumed to be exponentially distributed with mean 1/up.
A blocked transaction is not allowed to proceed until after the data lock it requires is released.
A transaction releases all the locks it has been holding after it is either committed or aborted.
A transaction can be committed after it has processed the last data item in its access list. An
executing transaction is aborted if its deadline expires. Depending on the concurrency control
protocol adapted, a data conflict might also lead to an abort decision.

The other primary constraints applied in developing our model are:

e FEach transaction accesses the same number of data items, which is specified by the parameter
d.

e Data items accessed by each transaction are uniformly distributed over the database with no
duplicates.

e All data accesses are exclusive (i.e., there are no shared locks).

e The shared database system is memory-resident; thus, an access to a data item does not
involve any disk access.

e The transaction population in the system (the level of multiprogramming) is constant and
determined by the parameter ¢.

2Deadline’ is the only information provided by the arriving transaction to be used in scheduling decisions.

(1 = Py(1,p))(1 = Pp)rp
(1= Py(a—1,p))1 = Pplup

_((2,BD) (2,P)

(1 = Po(1,py)Porp T (1 = Pa(z,BW/ (1 = Py(a—1,P)) PP l! - a(d,B)!MB
a(1,P)HP Pa(2,B)»B jPa(z,p)MP - Pa(a,By+B up

Figure 1: State-transition diagram for a transaction.

Section 5 extends the analysis to each of the following cases: variable transaction size, non-uniform
data accesses, shared as well as exclusive locking modes, and a disk-resident database. A discussion
on the possibility of relaxing the constant transaction population assumption is provided in the last
section.

Table 1 summarizes the parameters of the RTDBS model.
3. Performance Analysis of RTDBS Concurrency Control Protocols

3.1. Steady-State Distribution

All transactions processed in the system are assumed to be identical and exhibit the average steady-
state behavior. The execution of an isolated individual transaction is modeled by a Markov chain
with 2d + 1 states as shown in Figure 1. State (0) of the chain represents the initialization phase
of the transaction. The other 2d states are labeled by a tuple (7,X), where 7 is an integer which
can take any value from the set {1, 2, ..., d}, and denotes that the transaction is accessing its ith
data item. X can take either of the two values: B or P. The access request of the transaction
on a data item might result in blocking of the transaction (with probability P,). In a RTDBS
environment, the real-time priority of the transaction plays the major role in determining the
blocking probability (see Section 4.1.1). State (¢,B) represents the situation that the transaction is
blocked at its attempt to access its ith data item. The blocking times of the transaction are assumed
to be independent and identically distributed; the blocking delay at state (i,B) is assumed to be
exponentially distributed with mean 1/upg, for all i € {1,2,...,d} . State (i,P), denotes the case
that the transaction is processing its ith data item. The lock on a data item is obtained right before
processing it. After processing a data item, the next data item to be accessed by the transaction
is chosen from a uniform distribution among all data items that have not already been accessed by
the transaction. The data conflict check for the first data access request of the transaction (which
will lead to either blocking of the transaction or granting the lock on the requested data item) is
performed in state (0), while that for the ith request (2 < i < d) is performed before leaving the
processing state (¢ — 1,P). At any state (¢,X), it is possible that the transaction can be aborted
as a result of a data conflict or due to the situation that its deadline has expired. An aborted
transaction releases all the locks it has been holding. The aborting probabilities in states (i,B) and
(¢,P) are denoted by P,(; gy and Py(; p), respectively. It is assumed that aborting a transaction
at any state does not take effect until the transaction leaves that state. An aborted transaction

goes to state (0) to be reinitialized and it returns to the system as a new transaction. As discussed
before, the number of transactions executing in the system at any moment in time is kept constant.

When the transaction completes processing d data items, it is said to be committed and it goes to
state (0) to be initialized as a new transaction. A transaction cannot be aborted after processing
its last data item; i.e., Pyqp) = 0.

Let {P(0),P(1,B),P(1,P),P(2,B),P(2,P),...,P(d,B),P(d, P)} be the steady-state distribution
of the Markov chain (each element in this set denotes the probability of being at a particular state).
The following system of linear equations can be given for this distribution:

P(1,B) = 5—;PbP(0)
P(1,P) = 5—;<1 — P,P,(1,5))P(0)
P(2,B) = 5—;Pb<1 — Py1,p))(1 = PyPyy 5))P(0)
P(2.P) = (1= PPy p)(1 = P)L = BiPage5)P(0)
P(3,B) = 5—2&(1 — Pyi.p))(1 = PoPaqy) (1 = Paa,p))(1 = PyPaa,5))P(0)
P(3,P) = Z—;(l — PbPa(LB))(l — Pa(Lp))(l — PbPa(ZB))(l — Pa(27p))(1 — PbPa(37B))P(0)
. Ho ot .
P(ZvB) = ,U_BPb H[(l_Pa(k,P))(l_PbPa(k,B))]P(O) (S {1727"'7d} (1)
k=1
i—1
P(i,P) = 5—2(1 — PbPa(LB))kH[(l — Pogep)(1 = PyPuiiy,5))]P(0) i€ {1,2,..,d}(2)
=1
d
P(0)+ Y (P(i,B)+ P(i,P)) = 1 (3)

i=1

The system can be solved by first determining P(0) by substituting Equations 1 and 2 in Equation
3, and then computing the other steady-state probabilities P(7, B), P(i,P) (1 < i < d) from
Equations® 1 and 2. However, the solution to each of these probabilities is provided in terms of
pB, Py, Py By, and Py; p). The blocking and abort probabilities can be determined on the basis
of the concurrency control protocol employed. Computation of variables Py, P,; py, and FP,(; p) is
provided for the High Priority protocol in Sections 4.1.1 and 4.1.2, and for the Two-Phase Locking
protocol in Section 4.2.2. The average blocking time of a transaction is formulated in the next
section.

3.2. Computation of Average Blocking Delay

When a transaction T is blocked by another transaction 7" on a data item, T is not reactivated
until after 7" releases the lock on that item (i.e.; until 7” is committed or aborted). The time period

b
®Note that, the equations assume Hf(z) =1, if a >b.

t=a

| X | Poommrr|i,x) |
q':l}r 4 B 4 DD 1
11 = Fage,p))(L = P la(k+1,B))]

B (t="u5))
k=1

d
P || (1= Pai,py) J] [(1= PoPagi,5))(1 = Pagi,p))]
k=i+1

Table 2: Probability (Pconaair)i,x)) of committing, given that the current state is (4, X).

L X | D xy,commir |
1 . 1 1
B | gp +d- 2)(?@1‘@)

Table 3: Average distance (D(; xy,commir) from state (i, X) to commit.

transaction 7" remains blocked is determined by the remaining lifetime of blocking transaction 17
and is independent of? the current state of 7. In estimating the average remaining lifetime of
the blocking transaction, we use the same steady-state distribution and other probabilities as the
isolated transaction, because all transactions in the system are assumed to be identical and exhibit
the average steady-state behavior.

Given that the current state of a transaction is (7, X), the average remaining time RT{;x) of the
transaction can be determined by the following formula

(d,P)

RTx) = Peommrriix)Pixycommr+ Y. (Pagmiex)Pe.x)6.7)) (4)
(4,Y)=(4,X)

where, Poonair|i,x) is the probability that the transaction will commit given that its current state
b
is (4, X) (see Table 2; the implicit assumption in the formulas presented is H fG@)=1,if a>b);

i=a
D xy,commrr is the average time distance between state (¢, X) and the commit time (see Table
3); Pu(j,y)|(i,x) is the probability that the transaction will be aborted in state (j,Y) given that its
current state is (¢, X) (see Table 4); and D(; x),(;y) is the average time distance from state (i, X)
to state (7,Y) (see Table 5). Remember that abort of a transaction in a state takes place once the
transaction leaves that state. As discussed in the preceding section, it is assumed that a transaction

that has just completed processing its last data item cannot be aborted (i.e., P,4p) = 0).

Using the average remaining lifetime of the blocking transaction, the average time in a blocked
state is estimated as

1

,M_B = P(l, P)RT(LP) + P(2, B)RT(Z,B) + P(2, P)RT(Z,P) + ..+ P(d, B)RT(d,B) + P(d, P)RT(df)
The set of states the blocking transaction can be in excludes state (1, B), since a blocking transaction
must be holding at least one lock. The average blocking time formula can be rewritten as

(d,P)

— =Y (P(i,X)RT} x) (5)
B (i X)=(1,P)

* Assuming that the number of locks held by the transaction << D (database size).

(X[Y Pa(iy)(i,X)

71
B | B || (1= Pui)(1 = Pai,p) [[(1= PoPagi3)(1 = Page)| PsPagipy ifj >
k=i+1
Puj.B) otherwise (j = 17)
71
B|P (1- Pa(i,B))]___[[(l = Pagi,p))(1 = Py Pa(rt1,8))] Pa(j)
ri k=1
P|B (1= Pugi,p) I (1= PoPar,3y))(1 = Page,p)1PoPagi,py if j >
k=i+1
Undefined otherwise (j = 17)
71
P|P H[(l — Pa,p))(1 = Py Pa(r41,8))1Pa(j, P)
k=1

Table 4: Probability (P;y)|ix)) of aborting in state (j,Y'), given that the current state is (¢, X).

(XY | D x)(.v) |
B|B 1 (j_.i)(’-‘%’-i_]fb’%)l
2 7 5 N
P |B Poo-4+ (G —i= 155+ Prag) if j >4
Undefined otherwise (j = i)
P|P (j_i)(Pb;%B—*';%p)

Table 5: Average distance (D; x),;,y)) from state (i, X') to state (5,Y).

The effects of chained blockings is reflected in this formula, since the calculation of the remaining
time (which determines the length of blocking delay) takes the delay of blockings into account. The
computation of pup requires numerical iteration as will be detailed in Section 4.1.3.

3.3. Performance Metric

We are primarily interested in the rate a transaction satisfies its deadline. The transaction com-
pletion rate will be a good performance measure because a transaction makes its deadline if and
only if it completes processing all data items in its access list (late transactions are aborted). The
completion (commit) rate v of a transaction can be computed from the steady-state distribution
of the system

v =P(d, P)up

4. Case Study: Modeling and An Evaluation of the High Priority Protocol

‘High Priority’ (HP), described in [1], is one of the most popular RTDBS concurrency control
protocols proposed so far. Protocol HP is based on the two-phase locking scheme, and it aborts
a low priority transaction when one of its locks is requested by a higher priority transaction. HP
is characterized by its simplicity and low implementation overhead compared to the other RTDBS
concurrency control protocols appeared in the literature. Also, in an earlier simulation work,
we found that it can outperform other protocols under a variety of execution environments [29].
Although in this paper we concentrate on the evaluation of protocol HP, the ideas presented are
also applicable to the analysis of other concurrency control protocols developed for RTDBSs.

In protocol HP, the winner in the case of a lock conflict between two transactions is always the
higher priority transaction. In resolving a conflict, if the transaction requesting the lock has higher

lock _request_handling(D,T) {
/* Transaction T' requests a lock on data item D */
if (D was locked by a transaction T7)
if (priority(7") > priority(7”)) {
T” is aborted;
Lock on D is granted to T

}

otherwise
is blocked by T7;
otherwise

Lock on D is granted to T

Figure 2: Lock request handling in High Priority protocol.

priority than the transaction that holds the lock, the latter transaction is aborted and the lock
is granted to the former one. Otherwise, the Tock-requesting transaction is blocked by the higher
priority lock-holding transaction (Figure 2).

A high priority transaction never waits for a lower priority transaction. This condition prevents
deadlocks if it is assumed that the real-time priority of a transaction does not change during its
lifetime and that no two transactions have the same priority.

4.1. Modeling Protocol HP

4.1.1. Computation of Blocking Probability

P, is the probability of blocking the transaction at its data access attempt at any point of its
execution. We assume that this probability is independent of the current state and the past history

of the transaction (i.e., the number of data locks held by the transaction). This assumption is
reasonable as long as D >> d. P, is estimated by using the following formula:

_ Locks_hp
T D
Locks_hp stands for the average number of locks held by transactions with higher priority. The
number of transactions that have higher priorities than the priority of the isolated transaction can
be 0, 1, 2, ..., (t — 1) with equal probability. That is, the average number of transactions with
higher priorities will be (0 + 1 4+ 2 + ... + (¢t — 1))/t = (t — 1)/2. Let L denote the
average number of data items locked by a transaction. L can be formulated as a function of the
steady-state distribution.

d
L= Z:[(i - 1)P(i, B) + iP(i, P)] (6)

Note that, the number of locks held by the transaction in state (¢, B) is ¢ — 1, while that number
is 7 in state (i, P). Based on these observations, we may write

Locks_hp = % (7)
Py can then be expressed as
(=1L
Py =5 (8)

4.1.2. Computation of Abort Probabilities

The transaction can be aborted at any state (¢, X') (where ¢ € {1,2,...,d}, and X € {B, P}) due
to any of the following two facts:

e a data conflict occurs (i.e., one of its locks is requested by a higher priority transaction),

o deadline of the transaction expires.

Thus, two separate components, P,; x)(1) and P, x(2), are involved in the evaluation of the
abort probability at any state.

P,y = Pugi,B)(1) + Pug,B)(2) — Pugi,By(1) * Poi,B)(2) i€{L,2,..,d} 9)
Poi.py = Pai,p)(1) + Pa(i,p)(2) — Pugip)(1) * Pagi,p)(2) i€{l,2,..,d-1} (10)

where,

P,;B)(1): The probability that the transaction will abort at blocking state (i, B) due to a data
conflict.

P,(;,8)(2): The probability that the transaction will abort at blocking state (¢, B) due to expiration
of its deadline.

P,(;,p)(1): The probability that the transaction will abort at processing state (¢, P) due to a data
conflict.

P,(;,p)(2): The probability that the transaction will abort at processing state (i, P) due to expiration
of its deadline.

As stated before, a transaction cannot be aborted after processing its last data item; i.e., Py4 p)
= 0.

The average data access rate of a transaction is 1/(Py(1/pup)+1/pp) (dataitems per unit time). The
average data access rate of all the transactions that have higher priority than that of the isolated
transaction is (¢t — 1)/2(Py(1/up) + 1/pup). Therefore, the average number of data items that are
accessed by all higher priority transactions during the blocking delay 1/up of the transaction is
(t —1)/2up(Py(1/pB) + 1/pp). Since the transaction in state (i, B) holds ¢ — 1 data locks, we
can specify the probability that one of the locks held by the transaction is requested by a higher
priority transaction as

(i-1) (t-1) _ pp (=1t -1) (11)
D 2up(P(1/pB)+1/pnp) Popp + B 2D

The same probability at a processing state can be specified in a similar way; however, in this case,
the number of locks held by the transaction in state (7, P) is 1.

. _ UB i(t—1)

It is assumed that D is assigned a value large enough to produce a sensible value for the probabilities
(i.e., a value within the range [0,1]).

Pa(i,B)(l) =

In calculating the probability of transaction abort due to deadline expiration we employ the fol-
lowing approach. First, it is assumed that each transaction is assigned a deadline proportional to
its size (i.e., the number of data accesses required by the transaction). The slack time ST of a new
transaction (i.e., the time distance to its deadline) in our model is estimated as

ST =S+ RES = S(L + d(PbL + i))
Ho 4B HP

9

solution_procedure {
wg =0
initialize Py, pp
while (1222l > ¢) {

ComPUte Pa(i,X) = Pa(i,X)(Pb;/'LB); i€ {1a2a ,d},X € {B,P}

Compute P(0) = P(0)(Ps, 4B, Paj v)),

P(i,X) = P(i, X)(Ps, uB, Pajy))

1,7 €{1,2,...,d}; X, Y € {B, P}
P, = B(P(0), P(;, X)), i € 1,2, ...}, X € (B, P]
Hp = HB

nB = p(pp, P(0), P(i, X), Py, Pajv)), 4,5 €{1,2,...,d}; X,Y € {B, P}

Figure 3: System solution by numerical iteration.

where S is the slack factor and RES is the average transaction response time. Then, denoting the

average age of a transaction in state (i, X') by AGE; x),

AGE()
P,i)(2) = 57
AGE(p)
Poip)(2) = —o—
where,
1 . 1 1 1
AGE;py=—+(i—-1)(B—+ —)+—
o KB HP’ KB
1 . 1 1
AGE(Z-J:) = —+4 Z(Pb— + —)
Ho KB HKP

Substitution of the average age and slack time parameters yields

e T DGE+)+ 55

Paz' 2) = =
A T WY
1 . P 1
Pa(i,P)(Q) — Ko Z(MB MP)

S(E+d(2+-Ly)

(13)

(14)

Abort probabilities P,(; py and P,(; py can be expressed in their final forms by substituting Equa-

tions 11, 12, 13, and 14 in Equations 9, and 10.

4.1.3. Numerical Solution

Figure 3 presents the procedure employed in solving the linear system of equations for the steady-
state distribution (i.e., Equations 1 through 3), average blocking delay (i.e., Equation 5), blocking
probability (i.e., Equation 8), and aborting probabilities (i.e., Equations 9 and 10). As mentioned
before, a numerical iteration is needed in computing the value of the average blocking delay (1/up)
because a choice for up determines the steady-state probabilities which when substituted in Equa-

tion 5 generates a new computed value for pp.

10

It was observed that under any set of reasonable parameter values, when the parameter ¢ of iteration
is set to 0.001, the number of iterations to reach convergence never exceeds 4 with different initial
values of ug and P,. In the computations of the following experiments, we used an initial average
blocking delay (1/up) value of d/2pup, which corresponds to the average remaining lifetime of a
transaction in a system with no contention. The blocking probability P, was initially assumed to
be (t — 1)d/4D by setting L (average number of locks held by a transaction) to d/2 in Equation 8.

4.1.4. Validation Results

In this section, we use the results of a simulation program to ascertain the accuracy of the analytic
solution. Primary restrictions of the analytic model were removed in the simulation program. The
analytic model assumed that all transactions processed in the system are identical and exhibit
the average steady-state behavior. In simulation, each transaction in the system was simulated
individually. The dynamic behavior of each transaction was simulated as compared to the average
behavior captured by the analytic model. The simulator has four components: a transaction
generator, a transaction manager, a scheduler, and a resource manager.

The transaction generator simulates transaction arrivals and determines the deadline and data
access list of each new transaction by using the system parameter values. The number of data
items accessed by each transaction is selected from a uniform distribution over the range from 1
to 2d. Accesses are randomly distributed across the whole database. 5 is the parameter used in
assigning deadlines to new transactions. The time distance to the deadline of a new transaction is
chosen randomly from an exponential distribution with a mean of S’ times the estimated processing
time of the transaction. The deadline of a transaction 1" is determined by the following formula:

deadliner = start_timep + expon(S * processing_time_estimater)

processing_time_estimater = initialization_time + dp * CPU time_to_process_a_dataitem

where d7 is the actual number of data items to be accessed by transaction T'. In the experiments,
inttialization_time (i.e., 1/po), and C PU _time_to_process_a_dataitem (i.e., 1/up) were both taken
as 10 msec.

The transaction manager is responsible for generating transaction identifiers and assigning real-time
priorities to transactions. Each transaction is assigned a real-time priority based on its deadline
using the EDF method.

Concurrent data access requests of the transactions are controlled by the scheduler. The scheduler
orders the data accesses based on the concurrency control protocol executed®. Depending on its
real-time priority, an access request of a transaction is either granted or results in blocking or abort
of the transaction. A transaction aborted due to a data conflict is restarted to access the same data
items as before (i.e., the items in its access list). When a transaction completes all its data access
and processing requirements, it can be committed. On committing a transaction, or aborting a
transaction due to the expiration of its deadline, a new transaction is generated.

The resource manager is responsible for providing CPU service for processing data items. The CPU
queue is organized on the basis of the transactions’ real-time priorities.

Each data item in the database is maintained individually for explicit simulation of data conflicts
rather than using approximate probabilistic values. The simulation program also explicitly simu-
lates wait queues for locks, the CPU queue, processing delay at the CPU, and abort/restart of a
transaction.

SHP is the protocol employed in experiments.

11

D = 1000 D = 5000 D = 10000
t d | Analytic Simulation | Analytic Simulation | Analytic Simulation
5 5 11.62 12.25 11.83 12.45 11.85 12.40
7 7.26 7.66 7.53 7.90 7.57 7.88
9 4.78 5.12 5.09 5.35 5.13 5.30
11 3.24 3.45 3.57 3.76 3.62 3.79
13 2.24 2.39 2.57 2.75 2.61 2.79
15 1.56 1.71 1.87 2.03 1.92 2.10
5 5 11.02 11.49 11.70 12.17 11.79 12.08
7 6.48 6.79 7.36 7.66 7.48 7.80
9 3.94 4.22 4.90 5.21 5.03 5.28
11 241 2.63 3.36 3.63 3.51 3.61
13 1.48 1.62 2.35 2.52 2.50 2.66
15 0.89 0.96 1.67 1.82 1.81 1.92
25 b 10.45 10.93 11.58 12.21 11.73 12.33
7 5.79 6.16 7.19 7.48 7.40 7.72
9 3.25 3.52 4.71 4.94 4.94 5.20
11 1.81 1.96 3.17 341 3.40 3.66
13 0.98 1.05 2.16 2.32 2.40 2.53
15 0.52 0.56 1.49 1.63 1.71 1.83

Table 6: The deadline satisfaction rate v (transaction/second) obtained with the analytic solution
and simulation with various values of D, ¢, and d

The simulation program was written in CSIM [19], which is a process-oriented simulation language
based on the C programming language. Each simulation run was continued until 5000 transactions
were successfully committed. The ‘independent replication’ method was used to validate the results
by running each configuration 25 times with different random number seeds and using the averages
of the replica means as final estimates. 90% confidence intervals were obtained for the simulation
results. The formula involved in calculating the performance metric of interest is:

number of committed transactions

1= stmulated time

Remember that the transaction completion (commit) rate v also specifies the rate a transaction
satisfies its deadline (Section 3.3). The results of the simulation and analytic solution were compared
for various sets of parameter values. In this paper, only a sample of validation results is presented
for conciseness.® The slack factor value chosen for the estimations is § = 5.

Table 6 presents the performance results of the concurrency control protocol in terms of v for both
the analytic solution and simulation. The results are presented for three different values of database
size (D). The level of multiprogramming (¢) was set to 5, 15, and 25 for each D value explored. The
number of data items accessed by each transaction (d) was varied from 5 to 15 for each setting of D
and t. These ranges of parameter values enabled us to observe how well the results from the analytic
solution and simulation agree under both low and high levels of data contention. Each simulation
result provided is the midpoint of a 4% confidence interval. The estimates for the analytic solution
and simulation are quite close. The difference between the performance results obtained with the
analytic solution and simulation does not exceed 10% for each setting of the parameters. The
accuracy of the analytic solution is a little better under low data conflict conditions (i.e., for low

5The validation results obtained for other settings of parameters are qualitatively in agreement with those presented
here.

12

12.0

10.0 % ——e (=5
AN o—=t=15
8O- N\ o----0 ¢ = 25
“ \
Y 6.0
4.0
2.0 H
0.0 T I I I
5 7 9 11 13 15
d

Figure 4: Deadline satisfaction rate (transaction/second) vs d (average number of data items
accessed by each transaction).

values of parameters ¢ and d, and high values of D) compared to the accuracy obtained with high
levels of data conflict. This can be attributed to the fact that the behavior of transactions is more
predictable when there is not many conflicts between them.

4.2. An Evaluation of Protocol HP
4.2.1. Sample Performance Results

In this section, we present the results of some experiments that evaluate the performance of the
High Priority protocol in terms of transaction completion rate v (the rate a transaction satisfies its
deadline) using the proposed analytic solution method. We do not aim to provide a complete set
of experiments or a detailed performance study; instead, our intention is to present some examples
of employing our analytic method in the evaluation of the protocol and to show that the method
is capable of producing reasonable results. The average service time for processing a data item
(i.e., 1/pp) and the average delay for transaction initialization (i.e., 1/ug) were both set to 10
msec. The size of the database chosen for the first two experiments was D = 1000 data items.
With the small database size value it was aimed to evaluate the protocol under high levels of
data conflicts among transactions. This small database can be considered as the most frequently
accessed fraction of a larger database. Calculations in all experiments were performed under three
different multiprogramming levels; i.e., t = 5, 15, and 25 transactions.

The first experiment investigated the impact of varying average transaction size on the performance
of the High Priority protocol. The parameter d was varied from 5 to 15 in steps of 2. The slack
factor value used for this analysis was S = 5. Increasing the size of transactions corresponds to
increasing number of conflicts among the concurrent transactions. As displayed in Figure 4, the
transaction completion rate (or equivalently, the deadline satisfaction rate) decreases drastically
as the number of data items accessed by each transaction increases. The solution method yields
sensible results because increasing number of data conflicts leads to an increase in both blocking
delays and the number of conflict aborts; thus, it is likely that more transactions will miss their
deadlines.

13

6.0

3
b0 e—e t =15
o—=t=15 -
4.0+ o--=-0 { = 25 -7
PO 4
Ve Y-S
v 304 S 7 T
o
2.0
1.0—‘
;,z
0.0 T I I
2 4 6 8 10

Figure 5: Deadline satisfaction rate (transaction/second) vs S (slack factor that is used in assigning
deadline to a new transaction).

In the second experiment the value of parameter d was fixed at 10, and the effects of deadline
distribution on the performance of the protocol was evaluated. The value of the slack factor
parameter S was varied from 2 to 10. A small value of S corresponds to a tight deadline. Not
surprisingly, the performance of the protocol becomes better as the assigned deadlines get looser.
Also, the differences between the performances obtained with different multiprogramming levels
increase in favor of low multiprogramming levels as the deadlines becomes larger. The results of
this experiment are presented in Figure 5.

In the last experiment, the database size D was varied from 500 to 3000 data items. The results
are displayed in Figure 6. The number of data items accessed by each transaction was d = 10 in
this analysis. As the database size gets larger, the performance in terms of the deadline satisfaction
rate becomes better for each setting of multiprogramming level ¢. Since the data accesses of each
transaction are uniformly distributed over the database, the access sets of concurrent transactions
do not have many common items when a large number of data items is stored in the underlying
database; i.e., the data contention level in the system is low. The worse performance for small
values of database size is an expected result of more data contention due to data access conflicts.
Under high multiprogramming levels, the database size becomes more effective in determining the
real-time performance, as can be seen from the figure.

4.2.2. Evaluating the Performance Improvement over the Two-Phase Locking Protocol

As described at the beginning of this section, the High Priority protocol HP extends the basic
Two-Phase Locking (2PL) protocol by involving real-time priorities of transactions in scheduling
decisions. To see how the ‘real-time’ aspect makes a difference, it would be interesting to have
comparative performance results of HP and 2PL. In this section, our analytical solution method is
used to model 2PL and to obtain a new set of results to be compared against the results of HP.

In 2PL protocol, a transaction is blocked on its lock request on a data item if the data item has
already been locked. The transaction remains blocked until the transaction holding that lock is
either committed or aborted. There is no priority aborts in this case. Deadlock is a possibility in

14

5.0

4.0—/ v <
B
< - 4

T S
- e @-~""
3.0 P e
P -
i L7 e

y
204 7 o——o { =175

- o =% t =15
1.0 @-=nm °o =25

0.0

| | | |
500 1000 1500 2000 2500 3000
D

Figure 6: Deadline satisfaction rate (transaction/second) vs D (number of data items stored in the
database).

2PL, and whenever a deadlock occurs, one of the transactions in the deadlock cycle is aborted to
resolve the deadlock. The blocking and abort probabilities of a transaction need to be recalculated
for 2PL.

Computation of Blocking Probability for 2PL

Locks
Py, = D

Locks denotes the average number of locks held by all the transactions in the system except the
isolated transaction. Remember that, in calculating the blocking probability for protocol HP, we
only considered the locks held by higher priority transactions since a transaction can be blocked only
if the lock requested by the transaction is currently being held by a higher priority transaction. In
2PL, no priority information is involved in scheduling, and a transaction is blocked if the requested
lock is being held by any other transaction in the system.

P, can then be expressed in terms of the average number of data items locked by a transaction
(i.e., L; see Equation 6).
(t—1)L

Py, = D

Computation of Abort Probabilities for 2PL

We do not have data conflict aborts (i.e., priority aborts) in 2PL; on the other hand, a transaction
can be aborted due to either a blocking deadlock or expiration of its deadline.

Deadlock checks are performed at the end of the processing states. Following any processing state
(i, P) with s = 1, 2, ..., d - 1, if the next data access request leads to blocking,” then deadlock
detection has to be performed. In the case of a deadlock, the transaction is aborted to resolve the
deadlock and a transition to state (0) occurs.

TAt the first data access attempt there is no possibility of deadlock (even if the transaction is blocked) since no
data locks is currently being held by the transaction.

15

Abort at a blocking state (¢, B), with ¢ = 1, 2, ..., d, is possible only due to the fact that deadline
of the transaction expires. An expression for the probability that the transaction will abort at a
blocking state due to expiration of its deadline is provided in Equation 13 of Section 4.1.2.

The abort probability at a processing state (4, P) will be expressed in terms of two separate com-
ponents P,(; p)(1) and P,(; p)(2).

Poi,py = Pu(i,p)(1) + Pui p)(2) = Pugi py(1) * Pogipy(2) i€{l,2,..,d-1}

where,

P,;,py(1) is the probability that the transaction will abort following processing state (i, P) due to
a blocking deadlock, and P,(; p)(2) is the probability that the transaction will abort at the end of
processing state (¢, P) due to expiration of its deadline.

P,(;,p)(2) is specified in terms of the system parameters in Equation 14 of Section 4.1.2. P,(; p)(1)
may be expressed as

Pyipy(1) = Py x Py

where Py ;) is the probability of deadlock, given that the isolated transaction (say T') has been
blocked at its attempt to obtain the ¢ + 1st lock. This probability is equal to the probability that
the transaction holding the requested lock (say T”) is in a blocked state and it has been blocked on
a data item locked by transaction 7.

Pagy = (P(J}B))(i

d

= t—1)L
i is the number of locks currently held by transaction 7" and (¢ — 1)L is the average number of locks
held by all the transactions in the system except 77. In the summation formula j starts from 2
because at blocking state (1, B) the transaction owns no locks and thus it cannot be involved in a

deadlock.

Note that, to simplify our calculations we are considering only the occurrence of deadlocks of cycle
length two (i.e., two transactions are involved in each deadlock).® To resolve a deadlock we abort
the transaction that has just made the lock request leading to the deadlock.

The numerical solution provided in Section 4.1.3 can be used in solving the blocking and abort
probabilities together with the equations for the steady-state distribution.

Sample Performance Experiments

Comparison of the performances of protocols 2PL and HP was provided in a number of earlier works
[3, 13, 29] that are all based on simulation. Evaluating both protocols under various conditions,
all those works agreed that HP provides better performance than 2PL in terms of the fraction of
satisfied deadlines. They also indicated that the gap between the performances of the protocols
becomes larger as the level of transaction load in the system or data contention among transactions
increases.

In this section, we present the comparative performance results of protocols 2PL and HP obtained
using the proposed analytic solution. To be able to compare our results against others’, the pro-
tocols’ performances were evaluated under different levels of transaction load and data contention.
For that purpose, parameter ¢ (i.e., the level of multiprogramming), D (i.e., number of data items

8Tt was shown elsewhere [9] that the occurrence of deadlocks of cycle length greater than two is very unlikely and
can be ignored in analyzing concurrency control protocols.

16

15+ d=10 AN »
D = 1000 AR
1L04 ¢_p

05 1/up = 1/po = 10 msec

Figure 7: Deadline satisfaction rate (transaction/second) vs ¢ (multiprogramming level) for proto-
cols HP and 2PL..

stored in the database), and d (i.e., average number of data items accessed by each transaction)
were employed in the performance experiments.

In the first experiment, the value of parameter ¢t was varied from 5 to 45 in steps of 5, and for each
value the transaction completion (deadline satisfaction) rate was calculated. The results obtained
with both protocols are presented in Figure 7. One can see that, involving real-time priorities
of transactions in scheduling (i.e., using protocol HP) can provide a considerable performance
improvement over 2PL. This result is due to the large blocking delays experienced by high priority
transactions with 2PL. The probability of blocking (Py) and the delay at each blocking state (1/up)
was found to be much higher with 2PL compared to that with HP. The results also show that the
difference between the performances of protocols HP and 2PL becomes much more pronounced
under high transaction load conditions.

Data contention exists due to the conflicting data access requests of transactions, which results in
either transaction blocking or transaction abort to resolve the conflict. In the second experiment,
we studied the effects of data conflicts, and thus data contention on the comparative real-time
performance of the protocols. The value of the database size D was varied from 500 to 3000 data
items. As the database size increases, less data contention (due to fewer data access conflicts) occurs
among concurrently executing transactions. As displayed in Figure 8, the real-time performance
improvement provided by HP over 2PL is at a higher level when the size of the shared database
is small (i.e., under high levels of data contention). Another parameter we used to vary data
contention was the average transaction size d. The range of d values employed in computing
deadline satisfaction rate of protocols HP and 2PL was [7, 13 data items]. Longer transaction
lifetime results in more data conflicts and worse performance for both protocols. However, as can
be seen in Figure 9, employing protocol HP reduces the steep degradation in real-time performance
which is experienced as the number of data items accessed by each transaction increases.

The similarity between performance results obtained by using the analytic model and those obtained
previously in some simulation works (e.g., [3, 13, 29]) indicates that the proposed analytic solution

17

Figure 8: Deadline satisfaction rate (transaction/second) vs D (database size) for protocols HP

and 2PT..

Figure 9: Deadline satisfaction rate (transaction/second) vs d (transaction size) for protocols HP

and 2PI..

4.0

3.5
3.0
2.5
2.0
1.5

1.0 4

0.5

d =10
t =25
S=5

1/up = 1/po = 10 msec

0.0
500

| | | |
1000 1500 2000 2500 3000
D

6.0
$
5.0 —
4.0
3.0 H
209 p=1000
t =25
1.0 4 S=5 o 1
1/up = 1/po = 10 msec RN
0.0 T T T T T
7 8 9 10 11 12 13

d

18

can be considered to be a valid and useful method to predict the performance of concurrency control

protocols for RTDBSs.

5. Extensions to the Analysis

5.1. Considering Variable Size Transactions

One of the assumptions of our analysis is that each transaction accesses a fixed number of data
items. This section discusses how the constant size transaction assumption can be relaxed in the
analysis. In modeling a variable size transaction, we adapt the following method presented in [21]:
after processing a data item, a transaction commits with probability p. or accesses another data
item with probability 1 - p.. The number of data items that can be accessed by a transaction is
bounded? by parameter d.

In the state-transition diagram of a transaction (Figure 1), each processing state (i, P) with ¢
1, 2, ..., d - 1 has its three outward transitions updated as follows: (i, P) — (0) with rate
pe + (1 = pc)Pug,py)ip (the transaction goes to state (0) whether it is committed or aborted),
i,P) — (i + 1, B) with rate (1 — p.)(1 — Py5p))Popp, and (¢, P) — (¢ + 1, P) with rate
L = p)(1 = Pyipy)(1 — Py)up. The steady-state probabilities should be recalculated based on
the new transition values.

1

P

The completion (commit) rate of a transaction can be specified as

d—1
7= Z P(Zv-P)pCMP + P(d7 P),up

i=1

Another formula affected is RT{; x) which represents the average remaining time of a transaction
at state (¢, X). The Equation 4 can be reformulated as follows

(d,P) (d,P)
RTixy= Y, (Puviax)Paxien)+ 2 (Pagmiex)Pax)Gr)
(5,Y)=(i,X) (5,Y)=(i,X)

where P,(; y)|(;,x) is the probability of commit at the end of state (j,Y) given that the current state
is (i, X).

In formulating Pe(;y)|i,x), X can take any one of the values B and P, while Y can take only value
P since a transaction can only be committed following a processing state. If X = B

j-1
Pivix) = (1= Pagigy) TTI(L = pe)(1 = Pag,py)(1 = Py Pagigr,)l
k=1
Otherwise (i.e., X = P)
j-1
Poivex) = kH.[(l = Pe)(1 = Poe,p))(1 = Py Py(rq1,B))]pe

In both cases, if j = d, the last term of the formula (i.e., p.) should be replaced by 1 (i.e., following
the processing of dth data item the transaction always commits).

® A possible variation can be to bound the transaction size by the number of data items in the database (i.e., D).
In that case, the total number of states in the state transition diagram of a transaction would be 2D + 1.

19

P, v)6,x) and D(; x),;,y) were already calculated in Section 3.2 (see Tables 4 and 5).

No further changes are required for the extension of the analysis to the case of variable transaction
size.

5.2. Considering Non-Uniform Data Accesses

Our analysis has assumed that data items accessed by each transaction are uniformly distributed
over the database. In this section, to allow locality to be modeled, some portion of the database
is considered to be ‘hot’; i.e., it is accessed more frequently than the other parts of the database.
We adapt the h/p; data access model [16], where h specifies the fraction of the hot region of the
database, and pj, specifies the probability of accessing the hot region. In other words, 100xp, % of
data accesses are directed to the hot region and the remaining accesses go elsewhere (that can be
called the ‘cold’ region) in the database. Within the hot (or cold) region, data items are chosen using
a uniform distribution. The blocking and abort probabilities for protocol HP can be recalculated
as follows.

5.2.1. Computation of Blocking Probability

Py = Pyppn + Pyp(1 = pr)

Py, {Pb|ﬁ}: The probability of blocking on a data access attempt given that the access is to the hot
{cold} region of the database. It can be expressed in terms of Locks_hp; i.e., the average number
of locks held by higher priority transactions (see Section 4.1.1).

prnLocks_hp

hD
prnLocks_hp is the average number of locks in the hot region held by higher priority transactions.
hD specifies the size of the hot region.

Py, = (15)

Similarly,
(1 — pr)Locks_hp

(1—h)D

Py = (16)

Substitution of Equations 7, 15, and 16 yields

p— (A=Pph+ P —pp)*)(t = 1)L
b= 2h(1 — h)D

5.2.2. Computation of Abort Probabilities
The abort probabilities due to data conflicts (i.e., P,(; gy(1) and P(; py(1)) need to be reformulated.

P8y (1) = Po,By(Dppr + Pagi,By(L)ja(1 = pr)

Poi.By(Dn { Pagi,By(1)jp}: The probability that one of the locks held by the transaction is requested
by a higher priority transaction, given that the requested lock is in the hot {cold} region.

Based on the calculations of Section 4.1.2,

P = pa(i—1) (t—1) _ pp pr(i—1)(t—1)
(BRI TURD T 2up(Py(1/ps) + 1/pp) Popp +ps 2hD
(1—pr)(i—1) (t-1) pp (L= pp)(i—1)(t—1)

Pagi,p)(Djp = (A—m)D 2us(B(1/pB) + 1/up) _ Popp + 1B 2(1-h)D

20

P,(;,By(1) can then be expressed as

e p D)
Pyup + up 2hD

T (L—pu)(i = D(E-1)

+(-
(Pk Pyup + up 2(1—-h)D

Pa(z',B)(l)

P,;,p)(1) can be computed similarly,

s (1= pi(t—1)
Poup +pup 2(1—h)D

B pri(t —1)
Popp +pp 20D

Py, py(1) + (1= pp)

5.3. Considering Shared and Exclusive Accesses Together

So far in the analysis we have assumed that all data accesses are exclusive. This section extends the
analysis by incorporating both shared and exclusive accesses. Denoting the probability of shared
access by ps, the blocking and abort probabilities for protocol HP are reformulated as follows.

5.3.1. Computation of Blocking Probability

by = Pb|sps + Pb|e(1 - ps)

Pyjs {Py.}: The probability that the transaction is blocked given that the type of access is shared
{exclusive}.

ExLocks_hp
D

Ex Locks_hp specifies the average number of exclusive locks currently held by higher priority trans-
actions.

Pb|s:

Locks_hp
e = "D

Locks_hp is the average number of locks (both shared and exclusive) held by higher priority trans-
actions. Section 4.1.1 formulates Locks_hp in terms of the system parameters (Equation 7). Com-
putation of FxzLocks_hp in the same way yields

(t—1)(1—-ps)L

FExLocks_hp =
xLocks_hp 5T
P, can then be estimated as
B (t—1)L (t—1)L
Pb —ps(l ps) 2D + (1 ps) 2D
t—1)L
P=(1-p)!

5.3.2. Computation of Abort Probabilities

Consideration of shared as well as exclusive accesses affects the probability of conflict aborts at
blocking states (i.e., P,(; g)(1)) and processing states (i.e., P,; py(1)). In determining those prob-
abilities, the computation method presented in Section 4.1.2 can be followed.

A conflict abort at a blocked state (i, B) occurs when one of the locks held by the transaction is
requested by a higher priority transaction.

Poi,B)(1) = Poi,By(1)[sPs + Pagi,py(1)je(1 = ps)

21

P,i,By(1)s { Pa(i,B)(1)jc}: The probability of conflict abort at blocking state (i, B), given that the
lock requested by a high priority transaction is of type shared {exclusive}.

Based on the calculations of Section 4.1.2,

by, = 2=) (t-1) ap (I—p)i-D(E—1)
BN D 2up(P(1/pB) + 1/np) Pour +pm D

Note that, (1—ps)(i—1) gives the average number of exclusive locks held by the isolated transaction
at state (7, B). In calculating P,(; gy(1)|e, on the other hand, since it is given that the lock requested
by higher priority transaction is exclusive, all (i — 1) locks (shared or exclusive) of the isolated
transaction should be considered.

Poipy(1) _ G- (t—1) _ ke (=DE-1)
“CENe T D 2up(P(1/up) + L/up) Popp + 15 2D

After the substitutions, P,(; g)(1) can be expressed in its final form:

, _ ke (=p)E-1)(-1)
Fagipy(1) = Pypp + 11 2D

Similarly, the computation of P,; py(1) (i.e., the probability that the transaction aborts at pro-
cessing state (7, P) due to a data conflict) considering both shared and exclusive locks yields

__mB (I-pdit-1)
Pyup + up 2D

Pa(i,P)(l)

5.4. Considering a Disk-Resident Database

The assumption that the database is resident in main memory can be relaxed in the following way.
Suppose that every access to a data item involves an access to disk for reading the item or for
writing computed results into the database. It is assumed that these requests are served by the
disk at rate up according to Poisson distribution.

One method of considering both the CPU and disk access overheads is aggregating the CPU and
the disk into a single load-dependent server which serves access to data items at rate u(7) when ¢
transactions are being processed [22]. Assuming a processor sharing discipline, the service rate of
a transaction is p(7)/¢. Since the number of transactions in our system remains fixed at ¢, the term
w(t)/t can be replaced by a constant u (i.e., p = u(t)/t). Derivation of (i) for queuing networks
is provided using Norton’s theorem in [6]. Applying that formula to our system, we obtain

1
T+ (2 + (2P + - + (2]

)

p(t) = poru(l -

where pucpr is the service rate of the CPU (uopy = tup in our system). To consider the impact of
disk accesses in the analysis, up (i.e., the CPU service rate per transaction) in all formulas provided
in preceding sections must be replaced by the aggregate service rate p which is equal to u(t)/t.

6. Summary and Future Work

This paper provided an approximate analytic solution method for evaluating the performance of
priority-based concurrency control protocols developed for real-time database systems (RTDBSs).

22

Each transaction processed in the RTDBS model employed in the evaluation was assumed to carry
a priority based on its timing constraint (i.e., deadline). As a case study, the performance of a
RTDBS concurrency control protocol, called High Priority (HP), was evaluated using the proposed
solution method. Protocol HP is based on the two-phase locking method and it aborts a low priority
transaction when one of its locks is requested by a higher priority transaction. The evaluation of HP
was provided in terms of the rate of satisfying a transaction deadline. Validation of the accuracy of
the results obtained by the proposed analytic solution method was performed against simulation.
Results of some sample performance experiments, each evaluating the effects of a different system
parameter, were presented in the paper.

The solution method was also used to model Two-Phase Locking (2PL) protocol to be able to
compare the performances of protocols 2PL and HP (i.e., to evaluate the performance impact of
involving real-time priorities of transactions in scheduling decisions). The performances of two
protocols were compared in terms of the rate of satisfied transaction deadlines to see whether
our method is capable of producing reasonable results. It was found that HP outperforms 2PL
especially under high levels of transaction load. This was an obvious result confirming what was
obtained in some earlier simulation works.

Several opportunities exist for expanding on the work performed. Our analysis involved a closed
queuing model to keep the transaction population constant. To relax the assumption of constant
transaction population the analysis can be extended to an open system which is driven by an
external transaction source at a certain arrival rate and the service rate of transactions in the
system is load-dependent. This appears to be a promising area for future research. Another possible
extension, we are planning to work on, is considering different transaction classes in the model each
having a different ‘criticalness’'®. In such RTDBS environments, the priority of a transaction is
a function of both its deadline and criticalness. This extension will make it possible to evaluate
the real-time performance for each class of transactions. Finally, we are also planning to apply
the proposed analytic solution method to the evaluation of other concurrency control protocols
developed for RTDBSs. We believe that the method can serve as a simple and fast performance
evaluation tool to be used in the design and analysis of priority-based concurrency control protocols.

Acknowledgement

I would like to thank Prof. Geneva G. Belford and Prof. Tamer Bagar of University of Illinois for
their helpful comments on earlier versions of this paper.

References
[1] R. Abbott, H. Garcia-Molina ‘Scheduling Real-Time Transactions: A Performance Evaluation’,

14th International Conference on Very Large Data Bases, pp.1-12, 1988.

[2] R. Abbott, H. Garcia-Molina ‘Scheduling Real-Time Transactions with Disk Resident Data’,
15th International Conference on Very Large Data Bases, pp.385-396, 1989.

[3] R. Abbott, H. Garcia-Molina ‘Scheduling Real-Time Transactions: A Performance Evaluation’,
ACM Transactions on Database Systems, vol.17, pp.513-560, 1992.

[4] R. Agrawal, M. J. Carey, M. Livny ‘Concurrency Control Performance Modeling: Alternatives
and Implications’, ACM Transactions on Database Systems, vol.12, pp.609-654, 1987.

10The criticalness of a transaction is an indication of its level of importance [5].

23

[5] S. R. Biyabani, J. A. Stankovic, K. Ramamritham ‘The Integration of Deadline and Criticalness
in Hard Real-Time Scheduling’, 9th Real-Time Systems Symposium, pp.152-160, 1988.

[6] K. M. Chandy, U. Herzog, L. Wu ‘Parametric Analysis of Queuing Networks’, IBM Journal of
Research and Development, pp.36-42, 1975.

[7] A. Chesnais, E. Gelenbe, I. Mitrani ‘On the Modeling of Parallel Access to Shared Data’,
Communications of the ACM, vol.26, pp.196-202, 1983.

[8] B. Ciciani, D. M. Dias, P. S. Yu ‘Performance Comparison of Concurrency Control Protocols for
Transaction Processing Systems with Regional Locality’, 8th Symposium on Reliable Distributed
Systems, pp.112-118, 1989.

[9] C. Devor, C. R. Carlson ‘Structural Locking Mechanisms and Their Effect on Database Man-
agement System Performance’, Information Systems, vol.7, pp.345-358, 1982.

[10] J. R. Haritsa, M. J. Carey, M. Livny ‘On Being Optimistic About Real-Time Constraints’,
ACM SIGACT-SIGMOD-SIGART, pp.331-343, 1990.

[11] J. R. Haritsa, M. J. Carey, M. Livny ‘Dynamic Real-Time Optimistic Concurrency Control’,
11th Real-Time Systems Symposium, pp.94-103, 1990.

[12] J. R. Haritsa ‘Approximate Analysis of Real-Time Database Systems’, 10th International Con-
ference on Data Engineering, pp.10-19, 1994.

[13] J. Huang, J. A. Stankovic, K. Ramamritham ‘Experimental Evaluation of Real-Time Trans-
action Processing’, 10th Real-Time Systems Symposium, pp.144-153, 1989.

[14] J. Huang, J. A. Stankovic, K. Ramamritham, D. Towsley ‘Experimental Evaluation of Real-
Time Optimistic Concurrency Control Schemes’, 17th International Conference on Very Large
Data Bases, pp.35-46, 1991.

[15] J. Huang, J. A. Stankovic, K. Ramamritham, D. Towsley, B. Purimetla ‘Priority Inheritance
In Soft Real-Time Databases’, The Journal of Real-Time Systems, vol.4, pp.243-268, 1992.

[16] W. Lin, J. Nolte ‘Performance of Two-Phase Locking’, 6th Berkeley Workshop on Distributed
Data Management and Computer Networks, pp.131-160, 1982.

[17] M. T. Ozsu ‘Performance Comparison of Distributed vs Centralized Locking Algorithms in Dis-
tributed Database Systems’, 5th International Conference on Distributed Computing Systems,
pp.254-261, 1985.

[18] I. K. Ryu, A. Thomasian ‘Analysis of Database Performance with Dynamic Locking’, Journal
of ACM, vol.37, pp.491-523, 1990.

[19] H. Schwetman ‘CSIM: A C-Based, Process-Oriented Simulation Language’, Winter Simulation
Conference, pp.387-396, 1986.

[20] L. Sha, R. Rajkumar, S. H. Son, C. H. Chang ‘A Real-Time Locking Protocol’, IEEE Trans-
actions on Computers, vol.40, pp.793-800, 1991.

[21] M. Singhal ‘Performance Analysis of the Basic Timestamp Ordering Algorithm via Markov
Modeling’, Performance FEvaluation, vol.12, pp.17-41, 1991.

24

[22] M. Singhal ‘Analysis of the Probability of Transaction Abort and Throughput of Two Times-
tamp Ordering Algorithms for Database Systems’, IFEE Transactions on Knowledge and Data
Engineering, vol.3, pp.261-266, 1991.

[23] S. H. Son, S. Park, Y. Lin ‘An Integrated Real-Time Locking Protocol’, 8th International
Conference on Data Engineering, pp.527-534, 1992.

[24] Y. C. Tay, N. Goodman, R. Suri ‘Locking Performance in Centralized Databases’, ACM Trans-
actions on Database Systems, vol.10, pp.415-462, 1985.

[25] A. Thomasian, I. K. Ryu ‘A Decomposition Solution to the Queuing Network Model of the
Centralized DBMS with Static Locking’, ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, 1983.

[26] A. Thomasian ‘Performance Limits of Two-Phase Locking’, 7th International Conference on
Data FEngineering, pp.426-435, 1991.

[27] 0. Ulusoy, G. G. Belford ‘Real-Time Lock Based Concurrency Control in a Distributed
Database System’, 12th International Conference on Distributed Computing Systems, pp.136-
143, 1992.

[28] 0. Ulusoy Concurrency Control in Real-Time Database Systems Technical Report, UTUCDCS-
R-92-1762, Department of Computer Science, University of lllinois at Urbana-Champaign, 1992.

[29] 0. Ulusoy, G. G. Belford ‘Real-Time Transaction Scheduling in Database Systems’, Informa-
tion Systems, vol.18, pp.559-580, 1993.

[30] O.Ulusoy ‘Research Issues in Real-Time Database Systems’, to appear in Information Sciences,
1995.

[31] P. S. Yu, D. M. Dias ‘Analysis of Hybrid Concurrency Control Schemes For a High Data Con-
tention Environment’, IEFE Transactions on Software Engineering, vol.18, pp.118-129, 1992.

25

