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Abstract

This paper proposes a new approach to clas-
sification based on a majority voting on indi-
vidual classifications made by the projections
of the training set on each feature. We have
applied the k-nearest neighbor algorithm to
determine the classifications made on indi-
vidual feature projections. We called the
resulting algorithm k-NNFP, for k-Nearest
Neighbor on Feature Projections. The most

important characteristic of this technique is
P R L

that the tr aining instances are stored as their
projections on each feature dimension. This
allows the classification of a new instance to
be made much faster than £-NN algorithm.
The voting mechanism reduces the negative
effect of possible irrelevant features in clas-
sification. Also the classification accuracy
of k-NNT'P increases when the value of % is
increased, which indicates that the process
of classification can incorporate the learned
classification knowledge better when £ in-
creases. The k-NNFP algorithm is compared
with the £-NN algorithm, in terms of classi-
fication accuracy and running time on some
real-world and artificial datasets.

1 INTRODUCTION

Learning to classify objects is one of the fundamental
problems in machine learning. This paper presents a
new approach to classification based on feature projec-
tions. In this approach, the classification knowledge is
represented in the form of sets of projections of the
training data on each feature dimension. The classifi-
cation of an instance is based on a voting taken on the
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classifications made on the basis of individual feature
projections.

One of the most common classification techniques is
the nearest neighbor (NN) algorithm. In the litera-
ture, nearest neighbor algorithms for learning from ex-
amples have been studied extensively (Duda & Hart,
1973; Dasarathy, 1990). Aha et al. (1991) has demon-
strated that instance-based learning and nearest neigh-
bor methods often work as well as other sophisti-
cated machine learning techniques. A recent work
by Salzberg et al. (1995) has given the best case
results for the nearest neighbor learning. An ex-
perimental comparison of the NN and NGE (Nested
Generalized Exemplars, a Nearest-Hyperrectangle al-
gorithm) is presented by Wettschereck and Dietterich
(1995). An average-case analysis of k-NN classifiers for
Boolean threshold functions on domains with noise-
free Boolean features and a uniform instance distance
distribution is given by Okamoto and Satoh (1995).
They observed that the performance of the k-NN clas-
sifier improves as k increases, then reaches a maximum
before starting to deteriorate, and the optimum value
of k increases gradually as the number of training in-
stances increases.

In this paper, we present a particular implementation
of the classification on feature projections approach.
In this implementation, the classification on a feature
is done according to the k nearest neighbors of the test
instance on that feature. The resulting algorithm is
called k-NNFP for k Nearest Neighbor on Feature Pro-
jections. The final classification of the test instance is
determined by a majority voting among the individual
classifications of each feature.

The basic motivation for this study comes from the
encouraging results of Classification by Feature Parti-
tioning (Guvenir & Sirin, 1993, 1996) and Classifica-
tion with Overlapping Feature Intervals (Unsal 1995).
CFP and COFTI algorithms are algorithms based on
feature partitioning and overlapping feature intervals,
respectively. The most important property of these



studies is that both consider each feature separately.
The reported results show that both techniques have
become successful by processing each feature sepa-
rately.

In the next section, a brief introduction to k-NN algo-
rithm and its several extensions are given. In the third
section, the k.-NNFP algorithm is described. Section 4
presents the complexity analysis and empirical evalu-
ation of the k-NNFP and k-NN algorithms. The final
section concludes with some remarks on the k-NNFP
algorithm and its applicability.

2 THE K-NN ALGORITHM

The NN classification algorithm is based on the as-
sumption that examples which are closer in the in-
stance space are of the same class. Namely, unclas-
sified ones should belong to the same class as their
nearest neighbor in the training dataset. After all
the training set is stored in memory, a new exam-
ple is classified with the class of the nearest neighbor
among all stored training instances. Although sev-
eral distance metrics have been proposed for NN al-
gorithms (Salzberg 1991), the most common metric
is the Euclidean distance metric. The Euclidean dis-
tance between two instances ¢ =< z1, 3, ..., x, > and
y =< Y1,Y2,...Yn > on an n dimensional space is com-
puted as:

dist(z,y) = Vi diff(fey? (1)
( |zf—uyg| if fislinear
0 if f is nominal
diff(f,2,y) = and zy =y;  (2)
1 if f 1s nominal
and z; £ y;

Here diff(f,x,y) denotes the difference between the
values of instances z, and y on feature f. Note that
this metric requires the normalization of all feature
values into a same range.

Although several techniques have been developed for
handling unknown (missing) feature values (Quinlan,
1989, 1993), the most common approach is to set them
to the mean value of the values on corresponding fea-
ture.

Stanfill and Waltz (1986) introduced the Value Dif-
ference Metric (VDM) to define similarity when us-
ing symbolic-valued features and empirically demon-
strated its benefits.

A generalization of the nearest neighbor algorithm,
k-NN; classifies a new instance by a majority voting
among its k (k > 1) nearest neighbors using some dis-
tance metrics. This algorithm can be quite effective

when the attributes of the data are equally impor-
tant. However, it can be less effective when many of
the attributes are misleading or irrelevant to classifica-
tion. Kelly and Davis (1991) introduced WKNN, the
weighted k-NN algorithm, and GA-WKNN, a genetic
algorithm that learns feature weights for WKNN al-
gorithm. Assigning variable weights to the attributes
of the instances before applying the £-NN algorithm
distorts the feature space, modifying the importance
of each feature to reflect its relevance for classifica-
tion. In this way, similarity with respect to important
attributes becomes more critical than similarity with
respect to irrelevant attributes.

3 THE K-NNFP ALGORITHM

In this section we introduce the k-NNFP algorithm for
classification based on feature projections using k near-
est neighbor algorithm. First, the description of the
algorithm is given. Then the algorithm is explained
on an example dataset. Later, the behavior of the al-
gorithm on datasets with irrelevant features will be
given.

3.1 DESCRIPTION OF THE ALGORITHM

The implementation of the algorithm given here is non-
incremental, namely, all training instances are taken
and processed at once. An important characteristic
of this algorithm is that instances are stored as their
projections on each feature dimension. In the training
phase, each training instance is stored simply as its
projections on each feature dimension. If the value
of a training instance is missing for a feature, that
instance is not stored on that feature.

In order to classify an instance, a preclassification sep-
arately on each feature is performed. In this preclas-
sification, we use the k-NN algorithm for a single di-
mension. That is, for a given test instance ¢ and fea-
ture f, the preclassification for £ = 1 will be the class
of the training instance whose value on feature f is
the closest to that of the . For a larger value of k,
the preclassification is a bag (multiset) of classes of
the nearest & training instances. In other words, each
feature has exactly k& votes, and gives these votes for
the classes of the nearest training instances. In some
cases, especially for nominal features, there may be
ties to determine the first £ nearest neighbors. In such
cases ties are broken randomly. For the final classifi-
cation of the test instance ¢, the preclassification bags
of each feature are collected using bag union. Finally,
the class that occurs most frequently in the collection
bag is predicted to be the class of the test instances.
In other words, each feature has exactly k votes, and
gives these votes for the classes of the nearest training
instances. Also note that, since each feature is pro-



classify(t, k):
/* t: test instance, k: number of neighbors */
begin
for each class c
votel[c] = 0

for each feature £
%
on feature f into Bag */
Bag = kBag(f, t, k)
for each class ¢
votel[c] = vote[c] + count(c, Bag);

prediction = UNDETERMINED /#* class 0 */
for each class c
if votelc] > votel[prediction] then
prediction = ¢

return (prediction)
end.

Figure 1: Classification in the k-NNFP Algorithm.

cessed separately, no normalization of feature values is
needed. The k-NNFP algorithm is outlined in Figure
1.

All the projections of training instances on linear fea-
tures are stored in memory as sorted values. In Figure
1, the votes of a feature is computed by the function
kBag(f,t, k), which returns a bag of size k£ containing
the classes of the k nearest training instances to the
instance ¢ on feature f. Distance between the values
on a feature dimension is computed using di ff(f, z, y)
metric given in (2). Note that the bag returned by
kBag(f,t, k) does not contain any UNDETERMINED
class as long as there are at least k training instances
whose f values are known. Then, the number of votes
for each class is incremented by the number of votes
that a feature gives to that class, which is determined
by the count function. The value of count(c, Bag) is
the number of occurrences of class ¢ in bag Bag.

The k-NNFP algorithm handles unknown feature val-
ues in a straight forward manner. If the value of a test
instance for a feature f is missing, then feature f does
not participate in the voting for that instance. The
final voting is done between the features for which the
test instance has a known value. That is, unknown
feature values are simply ignored.

3.2 AN EXAMPLE

In order to describe the classification in the k-NNFP
algorithm, consider the sample training dataset in Fig-
ure 2. In this dataset, the feature fy is the only rel-
evant feature, and f; is an irrelevant feature. There
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Figure 2: A sample training dataset and a test in-
stance.

are three instances of each class A, B, and C in the
training set. The test instance (< 5,5 >) is of class B.

For the test instance in Figure 2, the k-NN classifica-
tion, kBag values and final prediction for the k.-NNFP
algorithm are given in Table 1.

As seen in Table 1, the k-NN algorithm will classify
the test instance as Cif £k = 1, as Cor A if k = 2,
as C,or Aor Bif £k = 3, and as Cif £k = 4. On the
other hand, the k-NNFP algorithm will classify the
test instance correctly if £ > 1. This example shows
that the £&-NNFP algorithm will be unaffected in the
presence of irrelevant features.

3.3 HANDLING IRRELEVANT
FEATURES

The conclusion about the irrelevant features from the
previous example can be generalized. For an irrelevant
feature f, the number of occurrences of a class ¢ in a
bag returned by kBag(f,t, k) is proportional to the
number of instances of class ¢ in the training set. If
there are equal number of instances of each class in the
training set, than the votes of an irrelevant feature will
be equal for each class, and the final prediction will be
determined by the votes of the relevant features. If the
training instances are not equally distributed among
the classes, then the votes of an irrelevant feature will
be for the most frequently occuring class.



Table 1: For the test instance (< 5,5 >) in Figure 2 the k-NN classification, kBag values and final prediction of

the k-NNFP algorithm.

k-NNFP
k k-NN fo fi Sum of Votes Prediction
1 [C] [B] [C] [B,C] BorC
2 [C,A] [B,B] [C,A] [A,B,B,C] B
3 [C,A,B] [B,B,B] [C,A,C] [A,B,B,B,C,C] B
4 [C,A,B,C] [B,B,B,A] [C,A,C,B] [A,A,B,B,B,B,C,C] B

3.4 HANDLING MISSING FEATURE
VALUES

The k-NNFP algorithm handles the unknown (miss-
ing) feature values by not taking them into account.
The features containing missing values are simply ig-
nored. This is a natural approach because in real life
if nothing is known about a feature, it is usually ig-
nored. If all class dimensions give no prediction, then
no prediction is made and the resulting prediction for
the class is UNDETERMINED. This is an unexpected
case since at least one feature value should be known.

4 EVALUATION OF THE K-NNFP
ALGORITHM

In this section, the training and classification com-
plexities of the k-NNFP and the £-NN algorithms are
given. Next, an empirical evaluation of the algorithm
is presented along with its comparison with the k-NN
algorithm.

4.1 COMPLEXITY ANALYSIS

Since all the training instances are stored in the mem-
ory, the space required for training with m instances
on a domain with n features is proportional to m - n.

In the training, all instances are stored on each feature
dimension as their feature projections. And then they
are sorted once at the end. For a dataset containing m

instances and n features the training time complexity
of the k-NNFP is O(n - m - logm).

The kBag(f,t, k) function, to determine the votes
of a feature, first finds the nearest neighbor of ¢ on
f and then next k¥ — 1 neighbors around the near-
est neighbor. The time complexity of this process is
O(logm + k). Since m >> k, the time complexity
of kBag is O(logm). The final classification requires
the votes of each of n features. Therefore, the classi-
fication time complexity of the k-NNFP algorithm is
O(n -logm).

On the other hand, in the k-NN algorithm, the classi-
fication of a test instance requires the computation of
its distance to m training instance on n dimensions.

Therefore, the classification time complexity of the k-
NN algorithm is O(n - m), assuming m >> k.

4.2 EMPIRICAL EVALUATION

In this section we present an empirical evaluation of
the k-NNFP algorithm on both real-world data sets
and artificially generated datasets in order to show the
effect of irrelevant features on the classification accu-
racy. The results will be compared with that of the
k-NN algorithm.

4.2.1 Experiments with Real-World Datasets
The k-NNFP and k-NN algorithms are evaluated on
some real-world datasets which are widely used in the
machine learning field, therefore comparisons will be
possible with other similar methods in future. The
real-world datasets are selected from the collection of
datasets provided by the machine learning group at
the University of California at Irvine (Murphy 1995).

Several measures of performance are possible. One
performance measure of a classification algorithm can
be found in terms of classification accuracy. For su-
pervised concept learning tasks, the most commonly
used classification accuracy metric is the percentage
of correctly classified instances over all test instances.
The other performance measures are time and space
complexities. The space required by both of these al-
gorithms is the same. Therefore, in this section we
will present the classification accuracy for increasing
values of k, and average running time.

Accuracy of an algorithm is a measure of correct clas-
sifications on a test set of unseen instances. There
are several ways of measuring the accuracy of an al-
gorithm. 1In this study, we chose the b-way cross-
validation techniques. That is, the whole dataset is
partitioned into 5 subsets. The four of the subsets is
used as the training set, and the fifth is used as the
test set, and this process is repeated 5 times once for
each subset being the test set. Therefore, each in-
stance appears once in the test set, and four times in
the training set. Classification accuracy is the average
of these b runs.



An overview of the datasets is shown in Table 2. In this
table, name of the real-world datasets are shown with
the size of the dataset, number of features, number of
classes, and number of missing feature values.

The accuracy of the k&-NNFP in Table 3 and £-NN in
Table 4 were obtained for the specified datasets for &
=1,2,..10.

These experiments show that the classification accu-
racy of the k-NNFP algorithm usually increases when
the value of k increases. This suggests that the k-
NNFP algorithm can exploit the knowledge repre-
sented in the form of feature projections for higher
values of k. On the other hand, increase in the value of
k does not result in a parallel increase in the accuracy
of the k-NN algorithm. Langley and Sage’s works on
NN classifiers suggest that many of the UCI datasets
have few irrelevant features, if any. Our experimental
results also suggest this claim.

4.2.2 Experiments on Artificial Data

As indicated in Section 3.2, the k-NNFP algorithm
is, in general, unaffected from the presence of irrele-
vant features in the dataset. Experiments with artifi-
cial datasets have important roles to play in the study
of irrelevant features. Hence, in order to empirically
prove this claim, we have generated six datasets with
increasing number of irrelevant features from zero to
ten. Each of the datasets contain four relevant fea-
tures, three classes with 100 instances each. A class
is represented by a hyperrectangle in four (relevant)
dimensional space, the values for irrelevant features
are randomly generated. We have conducted 5-way
cross-validation experiments on these six datasets, and
compared the results of k-NNFP and k-NN algorithms.

SeeTITS AU Tag arae nlatiad Q T al

Thc accuracy Lcohlto are pioued in r 161116 . Auuucm—
lim and Dietterich (1991) studied learning with many
irrelevant features in the space of all binary functions
defined over Boolean input features, examining the
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As seen from these results, the decrease in the accu-
racy of the k-NNFP algorithm when the number of
irrelevant features increase is much less than that of
the £-NN algorithm. Also we observed that the accu-
racy of the k-NNFP algorithm increases parallel to the
increase in the value of k, whereas the accuracy of the
k-NN algorithm is not correlated with increase in the
value of k.

NTARTTATY

The time required to train the &-NNFP and the £-NN
algorithms with the 80% of the data and test with the
remaining 20% for these datasets are given in Table
5. The comparison of the running times in this ta-
ble agrees with the time complexity analysis of these
algorithms given in Section 4.1.

5 CONCLUSIONS

In this paper, a new form of classification method,
called k-NNFP, has been presented. This algorithm
has been compared with the £-NN algorithm in terms
of classification accuracy and time complexity on both
real-world and artificially generated datasets.

In the k-NNFP algorithm, the classification knowledge
is represented in the form of sets of projections of the
training data separately on each feature dimension.
The classification of an instance is based on a majority
voting taken on the classifications made on the basis
of individual feature projections. Since each feature is
processed separately, there is no need for normaliza-
tion of feature values. Also, for the same reason, the
algorithm can simply ignore any missing feature values
that may appear both in training and test instances.
The effect of the missing and noisy feature values on
the prediction accuracy of the k-NNFP algorithm will
be investigated as a future work. As another direction
for future work, we plan to integrate a feature weight
learning algorithm to £-NNFP.

The k-NNFP algorithm is based on the assumption
that each feature can contribute the classification pro-
cess and the majority Votmg provides a correct clas-
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The k-NNFP algorithm can provide better classifica-
tion accuracy than k-NN algorithm when a dataset
contains many irrelevant features with respect to rel-
evant ones. This claim has been justified on artifi-

cially generated datasets. On real-world datasets, the
k-NNFP algorithm achieves comparable accuracy with
the k-NN algorithm. On the other hand, the average
running time of the k-NNFP algorithm is much less

than that of the £-NN algorithm.
The k-NNFP algorithm treats feature values indepen-

dently, whereas the k-NN algorithm treats all instances
as points in Euclidean n-space. The k-NNFP algo-
rithm stores the feature projection of the training in-
stances in a sorted order. Therefore, the classification
of a new instance requires a simple search of the near-
est training instance value. On the other hand, in the
k-NN algorithm, a new search must be done for each
test instance in the whole Euclidean space.
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Table 2: Comparison on some real-world datasets.

Data Set: bcancerw cleveland glass hungarian ionosphere iris musk wine
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Table 4: Accuracy (%) and average running time (msec) of the £-NN algorithm on real-world datasets.
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Figure 3: Comparison of k-NN and k-NNFP on artificial datasets for increasing value of k. In all datasets there
are 4 relevant features, 3 classes and 100 instances for each class. The accuracy results are obtained by 5 way
cross-validation.
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