Unsupervised Learning in Constraint-based
Morphological Disambiguation

Kemal Oflazer and Gokhan Tur
Department of Computer Engineering and Information Science
Bilkent University, 06533, Bilkent, Ankara, TURKEY
{ko,tur}@cs.bilkent.edu.tr

February 12, 1996

Abstract

This paper presents a constraint-based morphological disambiguation approach that uses unsu-
pervised learning component to discover some of the constraints it uses. It is specifically applicable
to languages with productive inflectional and derivational morphological processes, such as Turk-
ish, where morphological ambiguity has a rather different nature than that found in languages like
English. Our approach starts with a set of corpus-independent hand-crafted rules that reduce mor-
phological ambiguity (hence improve precision) without sacrificing recall. It then uses an untagged
training corpus in which all lexical items have been annotated with all possible morphological anal-
yses, incrementally proposing and evaluating additional (possibly corpus dependent) constraints for
disambiguation of morphological parses using the constraints imposed by unambiguous contexts.
These rules choose parses with specified features. It then learns in an unsupervised manner, addi-
tional rules for removing parses with certain features. In certain respects, our approach has been
motivated by Brill’s recent work [3], but with the observation that his transformational approach
is not directly applicable to languages like Turkish. Our results indicate that using hand-crafted
rules and rules learned to choose, we can attain a recall of 99.08% and a precision of 88.08% with
1.119 parses per token, on the training text. When rules learned to delete are used in addition to
these, we can attain a recall of 96.76% and a precision of 92.05% and 1.051 parses per token on
the training text. On previously unseen text, we can attain a recall of 98.04% and a precision of
86.23% with 1.137 parses per token using just the hand-crafted rules and rules learned to choose.
When rules learned to delete are used we can attain a recall of 96.99% and a precision of 88.13%
and 1.100 parses per token.

1 Introduction

Automatic morphological disambiguation is a very crucial component in higher level analysis of natural
language text corpora. Morphological disambiguation facilitates parsing, essentially by performing a
certain amount of ambiguity resolution using relatively cheaper methods (e.g.,[7]). There has been a

large number of studies in tagging and morphological disambiguation using various techniques. Part-
of-speech tagging systems have used either a statistical approach where a large corpora has been used
to train a probabilistic model which then has been used to tag new text, assigning the most likely
tag for a given word in a given context (e.g., Church [4], Cutting et al. [5], DeRose [6]). Another
approach is the rule-based or constraint-based approach, recently most prominently exemplified by the
Constraint Grammar work [8, 15, 16, 17], where a large number of hand-crafted linguistic constraints
are used to eliminate impossible tags or morphological parses for a given word in a given context.
Brill [1, 2] has presented a transformation-based learning approach, which induces rules from tagged
corpora. Recently he has extended this work so that learning can proceed in an unsupervised manner
using an untagged corpus [3]. Levinger et al. [11] have recently reported on an approach that learns
morpho-lexical probabilities from untagged corpus and have the used the resulting information in
morphological disambiguation in Hebrew.

In contrast to languages like English, for which there is a very small number of possible word forms
with a given root word, and a small number of tags associated with a given lexical form, languages
like Turkish or Finnish with very productive agglutinative morphology where it is possible to produce
thousands of forms for a given root word, pose a challenging problem for morphological disambiguation.
In English, for example, a word such as make or set can be verb or a noun. In Turkish, even though
there are ambiguities of such sort, the agglutinative nature of the language usually helps resolution of
such ambiguities due to restrictions on morphotactics. On the other hand, this very nature introduces
another kind of ambiguity, where a lexical form can be morphologically interpreted in many ways, some
with totally unrelated roots and morphological features, as will be exemplified in the next section.

Our previous approach to tagging and morphological disambiguation for Turkish text had employed a
constraint-based approach [13] along the general lines of similar previous work for English [8, 16, 17].
Although the results obtained there were reasonable, the fact that the constraint rules were hand
crafted, posed a rather serious impediment to the generality and improvement of the system.

In this paper we present a constraint-based morphological disambiguation approach that uses unsu-
pervised learning component to discover some of the constraints it uses. It is specifically applicable
to languages with productive inflectional and derivational morphological processes, such as Turkish,
where morphological ambiguity has a rather different nature than that found in languages like English.
Our approach starts with a set of corpus-independent hand-crafted rules that reduce morphological am-
biguity (hence improve precision) without sacrificing recall. It then uses an untagged training corpus
in which all lexical items have been annotated with all possible morphological analyses, incremen-
tally proposing and evaluating additional (possibly corpus dependent) constraints for disambiguation
of morphological parses using the constraints imposed by unambiguous contexts. These rules choose
parses with specified features. It then learns, in an unsupervised manner, additional rules for removing
parses with certain features. In certain respects, our approach has been motivated by Brill’s recent
work [3], but with the observation that his transformational approach is not directly applicable to
languages like Turkish, where tags associated with forms are not predictable in advance.

In the following sections, we present an overview of morphological disambiguation highlighted with
examples from Turkish. We then present the details of our approach and results. We finally conclude
after a discussion and evaluation of our results.

2 Tagging and Morphological Disambiguation

In almost all languages, words are usually ambiguous in their parts-of-speech or other lexical features,
and may represent lexical items of different syntactic categories, or morphological structures depending
on the syntactic and semantic context. Part-of-speech (POS) tagging involves assigning every word
its proper part-of-speech based upon the context the word appears in. In English, for example a word
such as set can be a verb in certain contexts (e.g., He set the table for dinner) and a noun in some
others (e.g., We are now facing a whole set of problems).

In Turkish, there are ambiguities of the sort above. However, the agglutinative nature of the language
usually helps resolution of such ambiguities due to the restrictions on morphotactics. On the other
hand, this very nature introduces another kind of ambiguity, where a whole lexical form can be
morphologically interpreted in many ways not predictable in advance. For instance, our full-scale
morphological analyzer for Turkish returns the following set of parses for the word oysa:!+2

1. [[CAT cONN] [ROOT oysal] (on the other hand)

2. [[CAT NOUN] [ROOT oyl [AGR 3SG] [POSS NONE] [CASE NOM]
[CONV VERB NONE] [TAM1 cOND] [AGR 3SG]]
(if it is a vote)

3. [[CcAT PRONOUN] [ROOT o] [TYPE DEMONS] [AGR 3SG] [POSS NONE] [CASE NOM]
[CONV VERB NONE] [TAM1 COND][AGR 3SG1]
(if it is)

4. [[CAT PRONOUN] [ROOT o] [TYPE PERSONAL] [AGR 3SG] [P0OSS NONE] [CASE NOMI]
[CONV VERB NONE] [TAM1 COND] [AGR 3SG]]
(if s/he is)
5. [[CAT VERB] [ROOT oy] [SENSE P0S] [TAM1 DES] [AGR 3SG]]
(wish s/he would carve)

On the other hand, the form oya gives rise to the following parses:

1. [[cAT NOUN] [ROOT oyal [AGR 3SG] [POSS NONE] [CASE NOM]] (lace)
2. [[cAT NOUN] [ROOT oyl [AGR 3SG] [POSS NONE] [CASE DAT]] (to the vote)
3. [[CAT VERB] [ROOT oyl [SENSE POS] [TAM1 OPT] [AGR 3SG]] (let him carve)

and the form oyun gives rise to the following parses:

1Output of the morphological analyzer is edited for clarity, and English glosses have been given.

2Glosses are given as linear feature value sequences. The feature names are as follows: CAT-major category, TYPE-minor
category, ROOT-main root form, AGR -number and person agreement, POSS - possessive agreement, CASE - surface case,
CONV - conversion to the category following with a certain suffix indicated by the argument after that, TAM1-tense, aspect,
mood marker 1, SENSE-verbal polarity, DES- desire mood, IMP-imperative mood, OPT- optative mood, COND-Conditional

[[CAT NOUN] [ROOT oyun] [AGR 3SG] [POSS NONE] [CASE NOM]] (game)

[[CAT NOUN] [ROOT oyl [AGR 3SG] [POSS NONE] [CASE GEN]] (of the vote)
[[cAT NOUN] [ROOT oyl [AGR 3SG] [POSS 2SG] [CASE NOM]] (your vote)
[[CAT VERB] [ROOT oyl [SENSE POS] [TAM1 IMP] [AGR 2PL]] (carve it!)

B W N

One can note from these and other similar examples that, the other parses that can be generated from
a given form, the root words and the parses that interact, are not predictable in advance given that
each noun root may give rise to thousands of possible forms and each verbal root may give rise to
hundreds of thousands of forms.

On the other hand, the local syntactic context may help reduce some of the ambiguity above, as in:>

PRONOUN(you)+GEN NOUN(vote)+POSS-2SG

your vole

oy-un reng-i ..

NOUN(vote)+GEN NOUN(color)+POSS-3SG (NOUN-GEN NOUN-POSS form)
color of the vote

oyun reng-i ..

NOUN(game) NOUN(color)+POSS-3SG (NOUN NOUN-POSS form)
game color

using some very basic noun phrase agreement constraints in Turkish. Obviously in other similar cases
it may be possible to resolve the ambiguity completely.

There are also numerous other examples of word forms where a productive derivational process comes
into play:*

geldiGimdeki (at the time I came)

1. [[CAT VERB] [ROOT gell [SENSE POS] (basic form)
[conv NOUN DIK] [AGR 3SG] [POSS 1SG] [CASE LOC] (participle form)
[coNV ADJ REL]] (final adjectivalization by the relative (ki) suffix)

Here, the original root is verbal but the final part-of-speech is adjective. In general, the ambiguities
of the forms that come before such a form in text can be resolved with respect to its original (or
intermediate) parts-of-speech (and inflectional features), while the ambiguities of the forms that follow
can be resolved based on its final part-of-speech.

Our intent is to achieve a morphological ambiguity reduction in the text by choosing for a given
ambiguous token, a subset of its parses which are not disallowed by the syntactic context it appears

SWith a slightly different but nevertheless common glossing convention.
*Upper cases in morphological output indicates one of the non-ASCII special Turkish characters: e.g., G denotes §.

in. It is certainly possible that a given token may have multiple correct parses, usually with the
same inflectional features or with inflectional features not ruled out by the syntactic context. These
can only be disambiguated usually on semantic or discourse constraint grounds. We consider a token
Sfully disambiguated if it has only one morphological parse remaining after automatic disambiguation.
We consider as token as correctly disambiguated, if one of the parses remaining for that token is the
correct intended parse.

We evaluate the resulting disambiguated text by a number of metrics defined as follows [14].

Number of Parses
Number of Tokens

Ambiguity =

Number of Tokens Correctly Disambiguated

Recall = Number of Tokens

Number of Tokens Correctly Disambiguated

Precision =
Number of Parses Remaining

In the ideal case where each token is uniquely and correctly disambiguated with the correct parse,
both recall and precision will be 1.0. On the other hand, a text where each token is annotated with
all possible parses,® the recall will be 1.0 but the precision will be low. The goal is to have both recall
and precision as high as possible.

3 Constraint-base Morphological Disambiguation

This section outlines our approach to constraint-based morphological disambiguation incorporating
unsupervised learning component. Our system has the architecture presented in Figure 1. We take as
input to the system raw Turkish text. This text is then preprocessed as explained in the next section,
and then goes into the learning module. The learning module generates a sequence of rules from the
given text which may then be used to disambiguate further examples of (similar) text.

3.1 The Preprocessor

The preprocessing module takes as input a Turkish text, segments it into sentences using various
heuristics about punctuation, tokenizes and runs it through a wide-coverage high-performance morpho-
logical analyzer developed using two-level morphology tools by Xerox [9]. This module also performs
a number of additional functions:

5 Assuming no unknown words.

RAW TEXT

TOKENIZATION

MORPHOLOGY

=

LEXICAL AND
NON-LEXICAL

COLLOCATION
RECOGNIZER

UNKNOWN
WORD
PROCESSOR

=

FORMAT
CONVERSION
(/ PROJECTION)

MORPHOLOGICAL
DISAMBIGUATION
MODULE

PREPROCESSOR

LEARNING
MODULE

LEARNED RULES

Figure 1: The structure of the rule learning system.

e it groups lexicalized collocations such as idiomatic forms, semantically coalesced forms such as
proper noun groups, certain numeric forms, etc.

it groups any compound verb formations which are formed by a lexically adjacent, direct or
oblique object, and a verb, which for the purposes of syntactic analysis, may be considered as
single lexical item: e.g., sayg: durmak (to pay respect), kafay: yemek (literally to eat the head —
to get mentally deranged), etc.

it groups non-lexicalized collocations: Turkish abounds with various non-lexicalized collocations
where the sentential role of the collocation has (almost) nothing to do with the parts-of-speech
of the individual forms involved. Almost all of these collocations involve duplications, and have
forms like w + & w + y where w is the duplicated string comprising the root and certain sequence
of suffixes and z and y are possibly different (or empty) sequences of other suffixes.

The following is a list of multi-word constructs for Turkish that we handle in our preprocessor.
This list is not meant to be comprehensive, and new construct specifications can easily be added.
It is conceivable that such a functionality can be used in almost any language. (See [13, 10] for
details of all other forms for Turkish.)

1. duplicated optative and 3SG verbal forms functioning as manner adverb. An example is
kosa kosa, where each lexical item has the morphological parse

[[CAT VERB] [ROOT koS] [SENSE POS] [TAM1 OPT] [AGR3SG]]

The preprocessor recognizes this and generates the feature sequence:

[[CAT VERB] [ROOT koS] [SENSE P0S] [TAM1 OPT] [AGR 3SG]
[CONV ADVERB DUP1] [TYPE MANNERI]

2. aorist verbal forms with root duplications and sense negation, functioning as temporal
adverbs. For instance for the non-lexicalized collocation yapar yapmaz, where items have
the parses

CLCAT VERB] [ROOT yap] [SENSE P0OS] [TAM1 AORIST] [AGR 3SG]

CLCAT VERB] [ROOT yap] [SENSE NEG] [TAM1 AORIST] [AGR 3SG]

respectively, the preprocessor generates the feature sequence

[[CAT VERB] [ROOT koS] [SENSE POS] [TAM1 AORIST] [AGR 3SGI]

[CONV ADVERB DUP-AORI] [TYPE TEMPI]

3. duplicated verbal and derived adverbial forms with the same verbal root acting as temporal

adverbs, e.g., gitti gideli,

4. emphatic adjectival forms involving duplication and question clitic, e.g., gtzel mi giizel

(beautiful question-clitic beautiful-very beautiful)

5. adjective or noun duplications that act as manner adverbs, e.g., huzls hizli, ev ev,

This module recognizes all such forms and coalesces them into new feature structures reflecting
the final structure along with any inflectional information.

o The preprocessor then converts each parse into a hierarchical feature structure so that the
inflectional feature of the form with the last category conversion (if any) are at the top level.
Thus in the example above for geldigimdeki, the following feature structure is generated:

[[CAT VERB] [ROOT gell [SENSE P0S] (basic form)

[conv NOUN DIK] [AGR 3SG] [POSS 1SG] [CASE LOC] (participle form)
[coNV ADJ REL]] (final adjectivalization by the relative (ki) suffix)

[CAT ADJ
rCAT NOUN
AGR 38G
POSS 1SG
CASE LOC
STEM CAT
STEM ROOT
SENSE
| SUFFIX DIK
| SUFFIX REL

VERB
gel
POS

e Finally, each such feature structure is then projected on a subset of its features. The features

selected are

— inflectional and certain derivational markers, and stems for open class of words,

— roots and certain relevant features such as subcategorization requirements for closed classes

of words such as connectives, postpositions, etc.

The set of features selected for each part-of-speech category is determined by template and
hence is user controllable permitting experimentation with differing levels of information. The
information selected for stems are determined by the category of the stem itself recursively.

Under certain circumstances where a token has two or more parses that agree in the selected
features, those parses will be represented by a single projected parse, hence the number of parses
in the (projected) training corpus may be smaller than the number of parses in the original
corpus. For example, the feature structure above is projected into a feature structure such as:

[CAT ADJ
CAT NOUN
AGR 3SG
POSS 1SG

STEM CASE LOC
STEM [CAT VERB|
SUFFIX DIK

| SUFFIX REL

3.2 Unknown Words

Although the coverage of our morphological analyzer for Turkish [12], with about 30,000 root words
and about 35,000 proper names, is very satisfactory, it is inevitable that there will be forms in the
corpora being processed that are not recognized by the morphological analyzer. These are almost
always foreign proper names. words adapted into the language and not in the lexicon, or very obscure
technical words. These are nevertheless inflected (using Turkish word formation paradigms) with
inflectional features demanded by the syntactic context and sometimes even go through derivational
processes. For improved disambiguation, one has to at least recover any morphological features even
if the root word is unknown. For dealing with this, we have made the assumption that all unknown
words have nominal roots, and built a second morphological analyzer whose (nominal) root lexicon
recognizes ST where S is the Turkish surface alphabet (in the two-level morphology sense) but then
tries to interpret an arbitrary postfix of the unknown word as a sequence of Turkish suffixes subject
to all morphographemic constraints. For instance when a form such as talkshowumun is entered, this
second analyzer hypothesizes the following analyses:

[[CAT NOUN] [ROOT talkshowumun] [AGR 3SG] [POSS NONE] [CASE NOMI]
[[CAT NOUN] [ROOT talkshowumul [AGR 3SG] [POSS 25G] [CASE NOMI]
[[CAT NOUN] [ROOT talkshowum] [AGR 3SG] [POSS NONE] [CASE GEN]]
[[CAT NOUN] [ROOT talkshowum] [AGR 3SG] [POSS 25G] [CASE NOM]]
[[CAT NOUN] [ROOT talkshowul [AGR 3SG] [POSS 1SG] [CASE GEN]]
[[CAT NOUN] [ROOT talkshow] [AGR 3SG] [POSS 1SG] [CASE GEN]]

O T WN -

which are then processed just like any other during disambiguation.®

This however is not a sufficient solution for some very obscure situations where for the foreign word
is written using its, say, English orthography, while suffixation goes on according to its English pro-
nunciation, which may make some constraints like vowel harmony inapplicable on the graphemic
representation, though harmony is in effect in the pronunciation. For instance one sees the form

®Incidentally, the correct analysis is the last one meaning of my talk show.

Carter'a where the last vowel in Carter is pronounced so that it harmonizes with @ in Turkish, while
the e in the surface form does not harmonize with a. We are nevertheless rather satisfied with our
solution as in our experiments we have noted that well below 1% of the forms remain as unknown and
these are usually item markers in formatted or itemized lists, or obscure foreign acronyms.

3.3 Constraint Rules

The system uses rules of the sort

if LC and RC then choose PARSE or if LC and RC then delete PARSE

where LC and RC are feature constraints on unambiguous left and right contexts of a given token, and
PARSE is a feature constraint on the parse(s) that is (are) chosen (or deleted) in that context if there
are any parses subsumed by that constraint. Currently the left and right contexts can be at most 2
tokens, hence we look at a window of at most 5 tokens of which one is ambiguous. We refer to the
unambiguous tokens in the context as 11c (left-left context) 1c (left context), rc (right context) and
rrc (right-right context). Depending on the amount of unambiguous tokens in a context our rules can
have one of the following context structures, listed in order of decreasing specificity:

1. 1llc, 1c¢ ____ rc, rrc
2. 1llc, 1lc ____
———_ Tc, rrc
3 lc ____ 1rc
4 lce ____
rc

To illustrate the flavor of our rules we can give the following examples. The first example chooses
parses with case feature ablative, preceding an unambiguous postposition which subcategorizes for an
ablative nominal form.

[11c:[1,1c:[], choose:[case:abl], rc:[[cat:postp,subcat:abl]l],rrc:[1]

Another sample rule is:

[11c:[],1c:[[agr:’2SG’,case:gen]],choose: [cat:noun,poss:’2SG’], rc:[],rrc:[]]

which chooses a nominal form with a possessive marker 2SG following an unambiguous (pronomial)
form with 2SG agreement and genitive case, enforcing the simplest form noun—noun, compound noun
phrase constraints.

Our system uses two hand-crafted sets of rules, in addition to the rules that are learned by unsupervised
learning:

1. We use an initial set of hand-crafted choose rules to speed-up the learning process by creating
disambiguated contexts over which statistics can be collected. These rules are independent of the
corpus that is to be tagged and are linguistically motivated. They contain some very common
feature patterns, such as noun—noun, adj—noun, noun—adj—noun, noun—postposition, verb—end-
of-sentence constraints. The motivation behind these rules is that they should improve precision
without sacrificing recall. These are rules which impose very tight constraints so as not to make
any recall errors. Our experience is that after processing with these rules, the recall is above
99% while precision improves by about 20 percentage points. Another important feature of these
rules is that they are applied even if the contexts are also ambiguous, as the constraints are tight.
That is, if each token in a sequence of, say, three ambiguous tokens have a parse matching one of
the context constraints (in the proper order), then all of them are simultaneously disambiguated.
In hand crafting these rules, we have used our experience from an earlier tagger [13].

2. We also use a set of heuristic delete rules to get rid of any low probability parses still remaining.
For instance, in Turkish, postpositions have rather strict contextual constraints and if there
are tokens remaining with multiple parses one of which is a postposition reading, we delete
that reading. As stated, these are heuristics and may occasionally delete correct parses. Our
experience is that these rules improve precision by about 10 to 12 additional percentage points
with negligible impact on recall.

3.4 Learning Choose Rules

Given a training corpus, with tokens annotated with possible parses (projected over selected features),
we first apply the initial choose rules. Learning then goes on as a number of iterations over the training
corpus. We proceed with following schema which is an adaptation of Brill’s formulation [3]:

1. We generate a table, called incontext, of all possible unambiguous contexts which contain a
token with an unambiguous (projected) parse, along with a count of how many times this parse
occurs unambiguously in exactly the same context in the corpus. We refer to an entry in table
with a context C' and parse P as incontext(C, P).

2. We also generate a table, called count, of all unambiguous parses in the corpus along with a
count of how many times this parse occurs in the corpus. We refer to an entry in this table with
a given parse P, as count(P).

3. We then start going over the corpus token by token generating contexts as we go.

10

4. For each unambiguous context encountered, C = (LC,RC) 7 around an ambiguous token w with
parses Py, ... Py, and for each parse P;, we generate a candidate rule of the sort

if LC and RC then choose P;

5. Every such candidate rule is then scored in the following fashion:

(a) We compute

count(F;) incontext(C, P))

Pmax = argmaxpj (j#£4) W

(b) The score of the candidate rule is then computed as

count(P;)

Score; = incontext(C, P;) — count(Pona)
max

-incontext(C, Ppaz)

6. We order all candidate rules generated during one pass over the corpus, along two dimensions:

(a) we group candidate rules by context specificity (given by the order in Section 3.3),

(b) in each group, we order rules by descending score.

We maintain score thresholds associated with each context specificity group: the threshold of
a less specific group being higher than that of a more specific group. We then choose the top
scoring rule from any group whose score equals or exceeds the threshold associated with that
group. The reasoning is that we prefer more specific and/or high scoring rules: high scoring rules
are applicable, in general, in more places; while more specific rules have stricter constraints and
more accurate morphological parse selections, as we have noted that choosing the highest scoring
rule at every step may sometimes make premature commitments which can not be undone later.

7. The selected rules are then applied in the matching contexts and ambiguity in those contexts is
reduced. During this application the following are also performed:

(a) if the application results in an unambiguous parse in the context of the applied rule, we
increment the count associated with this parse in table count. We also update the incontext
table for the same context, and other contexts which contains the disambiguated parse.

(b) we also generate any new unambiguous contexts that this newly disambiguated token may
give rise to, and add it to the incontext table along with count 1.

Note that for efficiency reasons rule candidates are not generated repeatedly during each pass
over the corpus, but rather once at the beginning, and then when selected rules are applied to
very specific portions of the corpus.

8. If there are no rules in any group that exceed its threshold, group thresholds are reduced by
multiplying by a damping constant d (0 < d < 1) and iterations are continued.

9. If the threshold for the most specific context falls below a given lower limit, the learning process
is terminated.

"Either of LC or RC may be empty.

11

3.5 Learning Delete Rules

The learning process for delete rules is applied after the projected corpus is processed with the initial
choose rules, the choose rule learning process, and the hand-crafted delete rules. The operation is
essentially as above with some very important differences:

1. context specificity and thresholds are not used,

2. the rules are scored on absolute manner.

For any context that has one ambiguous token still remaining, the remaining (projected) parses are
ordered with respect to their frequency of occurrence in the same context in the whole text. A delete
rule is then generated for the lowest scoring parse(s) and the parse is deleted, with contexts and
relevant statistical information updated appropriately afterwards. We iterate until the score of the
worst parse exceeds some predefined limit.?

3.6 Contexts induced by morphological derivation

The procedure outlined in the previous section has to be modified slightly in the case when the
unambiguous token in the rc position is a morphologically derived form. For such cases one has to
take into consideration additional pieces of information. We will motivate this using a simple example
from Turkish. Consider the example fragment:

bir masa-+dir.
a table+is
18 a table

where the first token has the morphological parses:

1. [[CAT ADJ] [ROOT bir] [TYPE CARDINAL]] (one)
2. [[cAT ADJ] [ROOT bir] [TYPE DETERMINER]] (a)
3. [[cAT ADVERB] [ROOT bir]] (only/merely)

and the second form has the unambiguous morphological parse:

1. [[CAT NOUN] [ROOT masal [AGR 3SG] [POSS NONE] [CASE NOM]
[CONV VERB NONE] [TAM1 PRES] [AGR 3S5G]] (is table)

8The current scoring method is not satisfactory for a number of reasons. It tends to generate a large number of rules.
We are currently investigating other ways of scoring and selecting delete rules which will be reported in a subsequent
paper.

12

which in hierarchical form corresponds to the feature structure:

CAT VERB

TAM1 PRES

AGR 3SG
CAT NOUN
ROOT masa

STEM AGR 3SG
POSS NONE
CASE NOM

|SUFFIX NONE]

In the syntactic context this fragment is interpreted as

VP

NP +dir

/\
DET NOUN
| |

bir masa

where the the determiner is attached to the noun and the whole phrase is then taken as a VP although
the verbal marker is on the second lexical item. If in this case, the token biris considered to neighbor
a token whose top level inflectional features indicate it is a verb, it is likely that bir will be chosen as
an adverb as it precedes a verb, whereas the correct parse is the determiner reading.

In such a case where the right context of an ambiguous token is a derived form, one has to consider as
the right context, both the top level features of final form, and the stem from which it was derived.
During the set-up of the incontext table, such a context is entered twice: once with the top level feature
constraints of the immediate unambiguous right-context, and once with the feature constraints of the
stem. The unambiguous token in the right context is also entered to the count table once with its top
level feature structure and once with the feature structure of the stem.

When generating candidate choose or delete rules, for contexts where rc is a derived form and rrc is
empty, we actually generate two candidates rules for each ambiguous token in that context:

1. if 11c, 1lc and rc then choose/delete P;.

2. if 11c, 1c and stem(rc) then choose/delete P;.

These candidate rules are then evaluated as described above. In general all derivations in a lexical
form have to be considered though we have noted that considering one level gives satisfactory results.

13

3.7 Ignoring Features

Some morphological features are only meaningful or relevant for disambiguation only when they appear
to the left or to the right of the token to be disambiguated. For instance, in the case of Turkish, the
CASE feature of a nominal form is only useful in the immediate left context, while the POSS (the
possessive agreement marker) is useful only in the right context. If these features along with their
possible values are included in context positions where they are not relevant, they “split” scores and
hence cause the selection of some other irrelevant rule. Using the maxim that union gives strength, we
create contexts so that features not relevant to a context position are not included, thereby treating
context that differ in these features as same.?

3.8 Applying Learned Rules

Given a new text annotated with all morphological parses (this time the parses are not projected), we
apply the rules using the following order:

1. The initial hand-crafted choose rules are applied first. These rules always constrain top level
inflectional features, and hence any stems from derivational processes are not considered unless
explicitly indicated in the constraint itself.

2. The choose rules that have been learned earlier, are then repeatedly applied to unambiguous
contexts, until no more ambiguity reduction is possible. During the application of these rules, if
the immediate right context of a token is a derived form, then the stem of the right context is
also checked against the constraint imposed by the rule. So if the rule right context constraint
subsumes the top level feature structure or the stem feature structure, then the rule succeeds
and is applied if all other constraints are also satisfied.

3. The hand-crafted delete clean-up rules are applied to any remaining parses.

4. Finally, the delete rules that have been learned are applied repeatedly to unambiguous contexts,
until no more ambiguity reduction is possible.

4 Experimental Results

We have applied our learning system to several Turkish texts. Some statistics on these texts are
given in Table 1. Here, the tokens considered are after what is generated after morphological analysis,
unknown word processing and any lexical coalescing is done. The words that are unknown are those
that could not even be processed by the unknown noun processor. Whenever an unknown word had
more than one parse it was counted under the appropriate group.

®Obviously these features are specific to a language.

14

Distribution
of
Text | Sentences | Tokens Morphological Parses
0 1 2 3 4 >4
ARK 492 7,928 | 0.15% | 49.34% | 30.93% | 9.19% | 8.46% | 1.93%
C2400 2,407 | 39,800 | 0.03% | 50.56% | 28.66% | 10.12% | 8.16% | 2.47%
€270 270 5212 | 0.02% | 50.63% | 30.68% | 8.62% | 8.36& | 1.69%

able 1: Statistics on Texts

As the first text that we experimented with was rather small, we essentially learned using this text
and then applied the initial, learned and final heuristic rules on it directly. For the second text we
trained the tagger on the first 500, 1000 portions of the second text, and applied these to a previously
unseen text C270 which was set aside for testing. Gold standard disambiguated versions for ARK and
C270 were prepared manually to evaluate the automatically tagged versions.

Our results are summarized in the following set of tables. Table 2 gives the number of choose rules in
the set of rules learned during training with different stopping score thresholds. There were 304 rules
in the initial set of hand-crafted rules and 41 rules in the final set of heuristic rules. In Table2, the
columns under VAR indicate the number of rules induced using the regime presented before and the
columns under MAX indicate the number of rules induced by selecting the rule that score the highest
as done by Brill [3].

Stopping Training Texts
Score ARK C500 C1000
VAR | MAX | VAR | MAX | VAR | MAX
1.2°| 180 546 | 165 604 | 361 | 1213
3.0 50 257 52 362 | 110 773
5.0 26 167 30 197 56 444
7.0 19 113 15 129 43 290
14.0 61 10 65 14 131
28.0 0 17 0 25 10 60

(@)

C500, C1000 are the initial 500, 1000 sentence portions of text C2400.

Table 2: Number of additional constraints learned from various training texts.

We then tagged ARK and C270 using only the initial choose rules, and the initial choose rules followed
by the final delete rules, to see where we would be without any learning component. We present these
results in rows 2 and 3 of Tables 3 and 4, titled CHOOSE and CHOOSE + DELETE. The first row
titled BASE gives the statistics on the unprocessed text. Please note that for ARK the test text is
the same as the training text, while for C270, the training texts are different from the test text.

15

Tagging Parses/ | Recall | Precision
Experiment Token | (%) (%)
BASE 1.828 | 100.00 54.69
CHOOSE ONLY 1.310 | 99.36 75.84
CHOOSE + DELETE 1.134 | 99.30 87.50
| FULL | 1.051| 96.76 | 92.04 |

Table 3: Average parses, recall and precision for text ARK

Tagging Parses/ | Recall | Precision
Experiment Token | (%) (%)
BASE 1.719 | 100.00 58.18
CHOOSE ONLY 1.342 | 99.19 73.87
CHOOSE + DELETE 1.167 | 98.81 84.68
FULL-500 1.107 | 97.06 87.78
FULL-1000 1.100 | 96.99 88.13

Table 4: Average parses, recall and precision for text C270

Figures 2 and 3 show the results of applying initial choose rules, choose rules learned with different
stopping thresholds, and hand-crafted delete rules. We have then learned the delete rules following
the learning of one of the better scoring choose rules. The test text was then processed with the initial
choose rules, the learned choose rules, the delete rules and the learned delete rules. The numerical
results for these are in the fourth column of Tables 3 and 4, titled FULL.

4.1 Discussion of Results

Our results indicate that, it is possible to use unsupervised learning in a constraint-based morphological
disambiguation system. Hand-crafted rules go a long way in improving precision substantially, but in
a language like Turkish, one has to code rules that allow no, or only carefully controlled derivations,
otherwise lots of things go massively wrong. Thus we have used very tight and conservative rules in
hand-crafting. Learning choose rules then produces additional rules some of which look very much like
the hand-crafted rules. An important class of rules we explicitly avoid hand crafting are the rules for
disambiguating around coordinating conjunctions. We have noted that while learning choose rules,
the system zeroes in rather quickly on these contexts and comes up with rather successful rules for
conjunctions. The learning process for delete rules finds rather interesting rules for resolving some
notoriously difficult cases such the ambiguity between accusative and nominative case nominal forms,
with no and 3SG possessive marker respectively, as the surface forms for both cases are the same for
roots ending in a consonant.

16

Parses/Tokens

1.08

1.06

0.0

10.0

20.0 30.0

Stopping Score

100.0

99.0 —

98.0 —

Reacll (%)
9
(=]
\

96.0

95.0

94.0

—

s

_—

0.0

89.5

10.0
Stopping Score

20.0 30.0

89.0 —

Precision (%)
0]
(¢
m
\

87.5

—-a MAX
| o—© VAR

0.0

10.0

20.0 30.0

Stopping Score

Figure 2: Average parses, recall and precision plots for text ARK.

17

Parses/Tokens

Recall (%)

Precision (%)

Results for C-500

Results for C-1000

T l T I T I T I
1.16 /_/ 1.14 |- _
[%2]
L i 2 L N
1.14 — — x {112 _
I] L‘—f I /E‘]
12}
1.12 — 3 1.10 1{ -
| @ L |
o
1.10 — 1.08 — —
1.08 ' ' ‘ ! 1.06 ' '
0.0 10.0 20.0 30.0 0.0 10.0 20.0 30.0
Stopping Score Stopping Score
100.0 T T 100.0 T
99.0 — - F 1
98.0 — — 98.0 — Y-
97.0 |- I=‘/E'_//Eh S - .
96.0 ,é - T 90y =
[- [$]
95.0 - — e - 1
94.0 — 94.0 — —
93.0 - - 1
92.0 : | ‘ . 92.0 | |
0.0 10.0 20.0 30.0 0.0 10.0 20.0 30.0
Stopping Score Stopping Score
88.0 T T 88.0
- 1 87.5 - n
87.0 -+ - . - 1
| | & 87.0 %E—E,B—/E\ _
86.0 LO-Q — é 865 | a
L | g L ~a |
650 & 86.0 -
- o B—& MAX g55 |]
i 1 O—© VAR H < |
84.0 ' ' ‘ ' 85.0 ' '
0.0 10.0 20.0 30.0 0.0 10.0 20.0 30.0

Stopping Score

Stopping Score

Figure 3: Average parses, recall and precision plots for text C270 using different learning texts.

18

Our results indicate the obvious trade-off between recall and precision. During the learning of the
choose rules, the VAR regime for selecting rules gives consistently better recall results and consistently
lower precision results compared to the MAX regime. One obvious disadvantage of the MAX regime is
that it consistently generates much larger number of rules, but there is no proportionally better returns
from larger number of rules. Thus, depending on whether recall or precision is more important for
the resulting text, one has the option of using the VAR or the MAX regime and/or different stopping
thresholds. Our use of delete rules in a learning process is novel, but we feel that there is some more
room here for improvement as we are not very pleased with our scoring. We are also not very pleased
with the way the stopping threshold is used and are looking into ways of making it independent of
the corpus size.

Our system has been implemented in Prolog and runs on Sun SparcStations. On a Sparc 10, it
takes about 10 minutes to learn choose rules on the ARK text. Tagging is slightly better. We are
however porting our system to Sicstus Prolog 3.0 which can generate native Sun code so we expect
improvements in time performance.

From analysis of our results we have noted that trying to choose one correct parse for every token is
rather ambitious (at least for Turkish). There are a number of reasons for this:

e A given word may be interpreted in more than one way but with the same inflectional features,
or with features not inconsistent with the syntactic context. This usually happens when the
root of one of the forms is a proper prefix of the root of the other one. One would need serious
amounts of semantic, or statistical root word and word form preference information for resolving
these. For instance, in

koyun stiriisii

koyun stiri+si

sheep herd+P0OSS-3SG (sheep herd)
koy+un stiri+si ..

bay+GEN herd+P0OSS-3SG (?? bay’s herd)

both noun phrases are syntactically possible, though the second one is obviously nonsense. It is
not clear how one would disambiguate this using just syntactic information.

Another similar example is:

kurmaya yardim etti .
kur+ma-+ya yardim et+ti
construct+INF+DAT help make+PAST helped construct (something)

kurmay+a yardim et+ti
military-officer+DAT help make+PAST helped the military-officer

where again with have a similar problem. It may be possible to resolve this one using subcat-
egorization constraints on the object of the verb kur assuming it is in the very near preceding
context, but this may be very unlikely as Turkish allows arbitrary adjuncts between the object
and the verb.

19

e Turkish allows sentences to consist of a number of sentences separated by commas. Hence
locating a verb in the middle of a sentence is rather difficult, as certain verbal forms also have
an adjectival reading, and punctuation is not very helpful as commas have many other uses.

e The distance between two constituents (of, say, a noun phrase) that have to agree in various mor-
phosyntactic features may be arbitrarily long and this causes occasional mismatches, especially
if the right nominal constituent has a surface plural marker which causes a 4-way ambiguity, as
in for masalars.

masalarl

[[CAT NOUN] [ROOT masa] [AGR 3PL] [POSS NONE] [CASE ACC]] (tables accusative)
[[CAT NOUN] [ROOT masal] [AGR 3PL] [POSS 3SG] [CASE NOM]] (his tables)

[[CAT NOUN] [ROOT masal] [AGR 3PL] [POSS 3PL] [CASE NOM]] (their tables)
[[CAT NOUN] [ROOT masal] [AGR 3SG] [POSS 3PL] [CASE NOM]] (their table)

B W N -

Choosing among the last three is rather problematic if the corresponding genitive form is outside
the context.

Among these problems, the most crucial is the first one which we believe can be solved to a great
extent by using root word preference statistics and word form preference statistics as used by Levinger
et al. [11].

5 Conclusions

This paper has presented a rule-based morphological disambiguation approach which uses a set of
hand-crafted constraint rules and learns additional rules to choose and delete parses, from untagged
text in an unsupervised manner. We have extended the rule learning and application schemes so that
the impact of various morphological phenomena and features are selectively taken into account. We
have applied our approach to the morphological disambiguation of Turkish, a free—constituent order
language, with agglutinative morphology, exhibiting productive inflectional and derivational processes.
We have also incorporated a rather sophisticated unknown form processor which extracts any relevant
inflectional or derivational markers even if the root word is unknown.

Our results indicate that using hand-crafted rules and rules learned to choose, we can attain a recall
of 99.08% and a precision of 88.08% with 1.119 parses per token, on the training text. When rules
learned to delete are used in addition to these, we can attain a recall of 96.76% and a precision of
92.05% and 1.051 parses per token on the training text. On previously unseen text, we can attain a
recall of 98.04% and a precision of 86.23% with 1.137 parses per token using just the hand-crafted
rules and rules learned to choose. When rules learned to delete are used we can attain a recall of
96.99% and a precision of 88.13% and 1.100 parses per token.

In addition to improving our approach to the learning of delete rules, we are also investigating the use
of root word preference statistics that we can obtain from tagged texts.

20

6 Acknowledgments

We would like to thank Xerox Advanced Document Systems, and Lauri Karttunen of Xerox Parc and
of Rank Xerox Research Centre (Grenoble) for providing us with the two-level transducer development
software on which the morphological and unknown word recognizer were implemented. This research
has been supported in part by a NATO Science for Stability Grant TU-LANGUAGE.

References

[1] E. Brill. A simple-rule based part-of-speech tagger. In Proceedings of the Third Conference on
Applied Natural Language Processing, Trento, Italy, 1992.

[2] E. Brill. Some advances in rule-based part of speech tagging. In Proceedings of the Twelfth
National Conference on Articial Intelligence (AAAI-94), Seattle, Washinton, 1994.

[3] E. Brill. Unsupervised learning of disambiguation rules for part of speech tagging. In Proceedings
of the Third Workshop on Very Large Corpora, Cambridge, MA, June 1995.

[4] K. W. Church. A stochastic parts program and a noun phrase parser for unrestricted text. In
Proceedings of the Second Conference on Applied Natural Language Processing, Austin, Texas,
1988.

[5] D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun. A practical part-of-speech tagger. In Proceedings
of the Third Conference on Applied Natural Language Processing, Trento, Italy, 1992.

[6] S. J. DeRose. Grammatical category disambiguation by statistical optimization. Computational
Linguistics, 14(1):31-39, 1988.

[7] Z. Gingordii and K. Oflazer. Parsing Turkish using the Lexical-Functional Grammar formalism.
Machine Translation, to appear in 1996.

[8] F. Karlsson, A. Voutilainen, J. Heikkild, and A. Anttila. Constraint Grammar-A Language—
Independent System for Parsing Unrestricted Text. Mouton de Gruyter, 1995.

[9] L. Karttunen. Finite-state lexicon compiler. XEROX, Palo Alto Research Center— Technical
Report, April 1993.

[10] I. Kurubz. Tagging and morphological disambiguation of Turkish text. Master’s thesis, Bilkent
University, Department of Computer Engineering and Information Science, July 1994.

[11] M. Levinger, U. Ornan, and A. Itai. Learning morpho-lexical probabilities from an untagged
corpus with an application to Hebrew. Computational Linguistics, 21(3):383-404, September
1995.

[12] K. Oflazer. Two-level description of Turkish morphology. In Proceedings of the Sizth Conference
of the Furopean Chapter of the Association for Computational Linguistics, April 1993. A full
version appears in Literary and Linguistic Computing, Vol.9 No.2, 1994.

21

[13] K. Oflazer and I. Kurudz. Tagging and morphological disambiguation of Turkish text. In Proceed-
ings of the 4™ Applied Natural Language Processing Conference, pages 144-149. ACL, October
1994.

[14] A. Voutilainen. Morphological disambiguation. In F. Karlsson, A. Voutilainen, J. Heikkild, and
A. Anttila, editors, Constraint Grammar-A Language—Independent System for Parsing Unre-
stricted Text, chapter 5. Mouton de Gruyter, 1995.

[15] A. Voutilainen. A syntax-based part-of-speech analyzer. In Proceedings of the Seventh Conference
of the Furopean Chapter of the Association of Computational Linguistics, Dublin, Ireland, 1995.

[16] A. Voutilainen, J. Heikkila, and A. Anttila. Constraint Grammar of English. University of
Helsinki, 1992.

[17] A. Voutilainen and P. Tapanainen. Ambiguity resolution in a reductionistic parser. In Proceedings
o 93, Utrecht, Holland, 1993.

22

