
Inductive Logic Program Synthesis with DIALOGS

Pierre Flener
Department of Computer Engineering and Information Science

Faculty of Engineering, Bilkent University, 06533 Bilkent, Ankara, Turkey
Email: pf@cs.bilkent.edu.tr Voice: +90/312/266-4000 ext.1450

Abstract

DIALOGS (Dialog-based Inductive and Abductive LOGic program Synthesizer) is a schema-guided synthesizer
of recursive logic programs; it takes the initiative and minimally queries a (possibly computationally naive)
specifier for evidence in her/his conceptual language. The specifier must know the answers to such simple que-
ries, because otherwise s/he wouldn’t even feel the need for the synthesized program. DIALOGS can be used by
any learner (including itself) that detects, or merely conjectures, the necessity of invention of a new predicate.
Due to its foundation on a powerful codification of a “recursion-theory” (by means of the template and con-
straints of a divide-and-conquer schema), DIALOGS needs very little evidence and is very fast.

1 Introduction

This paper results from a study investigating (i) what is the minimal knowledge a specifier must have in
order to want a (logic) program for a certain concept, and (ii) how to convey exactly the corresponding in-
formation, and nothing else, to a (logic) program synthesizer (be it automated or not). I argue that “knowing
a concept” means that one can act as a decision procedure for answering certain kinds of simple queries [1]
about that concept, but that it doesn’t necessarily imply the ability to actually write such a decision proce-
dure. More provocatively, I could argue [10] that writing a complete formal specification is often tanta-
mount to writing such a decision procedure (because it actually features a naive or inefficient algorithm),
and is thus often beyond the competence of a “computationally naive” specifier. But the reader need not
agree on the latter claim, so let’s assume, for whatever reasons, that some specifier wants to, or can only,
give incomplete information about a concept for which s/he wants a (logic) program. As this project is not
about natural language processing, let’s also assume that the specification language is nevertheless formal.

The synthesizer must thus be of the inductive and/or abductive category. However, such synthesizers
often have the drawback of requiring large amounts of ground positive (and negative) examples of the in-
tended concept, especially if the resulting program is recursive. The reasons are that ground examples are
a poor means of communicating a concept to a computer, and/or that the underlying “recursion theory” is
poor. To address the first reason, some researchers have successfully experimented with non-ground exam-
ples, if not Horn clauses [6] [9] or even full clauses [3], as evidence language. To address the second reason,
schema-guided synthesis has been proposed [6] [9].

Especially since the advent of ILP (Inductive Logic Programming), the learning/synthesis of non-recur-
sive programs (or concept descriptions) has made spectacular progress, but not so the synthesis of recursive
programs. I have therefore decided to focus on the latter class of programs, to the point where my synthe-
sizers even assume that there exists a recursive logic program for the intended concept. Even though this
seems counterproductive, because a synthesizer can’t decide in advance whether a concept has a recursive
program or not, there are two good reasons for this focus and assumption. First, as advocated by
Biermann [2], I believe it is more efficient to try a sequence of fast and reliable class-specific synthesizers
(and, if necessary, to fall back onto a general-purpose synthesizer) than to simply run such a slow, if not

2

unreliable, general-purpose synthesizer. It is thus worthwhile to study the properties of any sub-class of pro-
grams and hardwire its synthesis. Second, as the recent interest in constructive induction shows [7] [15],
necessarily-invented predicates have recursive programs. It is thus worthwhile to study the class of recur-
sive programs, because any learner (even a general-purpose one) can use such a specialized recursion-syn-
thesizer once it has detected, or merely conjectured, the necessity of a new predicate.

Finally, let’s assume that our specifier is “lazy”, that is s/he doesn’t want to take the initiative and type in
evidence of the intended concept without knowing whether it will be “useful” to the synthesizer or not. So
we need an interactive synthesizer, and even one that takes the initiative and queries the specifier only for
strictly necessary evidence. This is actually another solution to the mentioned example voraciousness of
many learners. The query and answer languages need to be carefully designed, though, so that even a com-
putationally naive specifier can use the system. For instance, during the synthesis of a sorting program, the
specifier cannot be queried about an insertion predicate (assuming the synthesis “goes towards” an inser-
tion-sort program), because this is an auxiliary concept that is not necessarily known to the specifier, her/his
“mental” sorting algorithm being not necessarily the insertion-sort one. Also note that such an interaction
scenario doesn’t necessarily assume a human specifier.

I plan to combine all of the mentioned approaches into one system. So, in summary, I aim at an interactive,
inductive/abductive, schema-guided synthesizer of recursive programs, that takes the initiative and mini-
mally queries a (possibly computationally naive) specifier for evidence in her/his conceptual language.

Example 1: After analyzing my previous work (in a different mindset [6] [7] [9]), I decided on the follow-
ing target scenario. Assume a (possibly computationally naive) specifier somehow has (an equivalent of)
the following informal specification in mind:

sort(L,S) iff S is a non-decreasing permutation of L, where L, S are integer-lists.

Now imagine a logic program synthesizer that takes this specifier through the following annotated dialogue
(where default answers are between curly braces “{…}”, the specifier’s actual answers are in italics, the
comma “,” stands for conjunction, and the semi-colon “;” stands for disjunction):

Predicate declaration? sort(L:list(int),S:list(int))

If the specifier is ever to use a logic program for sort, s/he must be able to give such a predicate declara-
tion, because the predicate symbol, the sequence of formal parameters, and their types must be known to
her/him. A certain minimum of knowledge about the system, its syntax, and its type system is unavoidable.

Induction parameter? {L} L

Result parameter? {S} S

Decomposition operator? {L=[HL|TL]} L=[HL|TL]

The last three queries seem to require some programming knowledge (see Section 2 for the terminology),
which would go counter a scenario with a computationally naive specifier. However, note that the system
proposes default answers, so that such a specifier could indeed ignore these queries by simply accepting
their default answers.

What conditions on <S> must hold such that sort([],S) holds? S=[]

The specifier must know what the sorted version of the empty list is, because otherwise s/he wouldn’t even
have the need for a sort program.

What conditions on <A,S> must hold such that sort([A],S) holds? S=[A]

Also, the specifier must know what the sorted version of the singleton list is, because otherwise s/he
wouldn’t even have the need for a sort program.

What conditions on <A,B,S> must hold such that sort([A,B],S) holds?
S=[A,B],A≤B; S=[B,A],A>B

Finally, the specifier must know what the sorted version of a two-element list is, and why it is so, because
otherwise s/he wouldn’t even have the need for a sort program. The answer may look complicated (due
to the use of variables, conjunction, and disjunction), but only embodies minimal knowledge about sort,

3

which is independent of any algorithms. Note how the specifier was “forced” to use the ≤/2 and >/2 predi-
cates, as they are essential to the concept of number sorting. Soon afterwards, the system reports:

A possible logic program for sort is:

sort(L,S) ← L=[],S=[]
sort(L,S) ← L=[HL|TL],sort(TL,TS),insert(HL,TS,S)

insert(I,L,R) ← L=[],R=[I]
insert(I,L,R) ← L=[HL|TL],I≤HL,R=[I,HL|TL]
insert(I,L,R) ← L=[HL|TL],I>HL,insert(I,TL,TR),R=[HL|TR]

This is insertion-sort. Obviously (to us), the implicit informal specification of insert is as follows:

insert(I,L,R) iff R is L with I inserted into it,
where I is an integer and L, R are non-decreasing integer-lists.

But the specifier need not know this. The system doesn’t know this either, and actually uses predicate sym-
bol dpcSort instead (see the naming scheme in Section 2), as well as other parameter names.

Do you want another logic program for sort? {yes} Yes, please!

Backtracking...

Decomposition operator? {L=[HL|T],partition(T,HL,TL1,TL2)}
L=[HL|T],partition(T,HL,TL1,TL2)

Assume that partition is a system primitive informally specified as follows:

partition(L,P,S,B) iff S (resp. B) contains the elements of L that are smaller than (resp.
bigger than or equal to) P, where L, S, B are integer-lists and P is an integer.

After a short while, the system announces:

A possible logic program for sort is:

sort(L,S) ← L=[],S=[]
sort(L,S) ← L=[HL|T],partition(T,HL,TL1,TL2),

sort(TL1,TS1),sort(TL2,TS2),combine(HL,TS1,TS2,S)

combine(E,A,B,C) ← A=[],C=[E|B]
combine(E,A,B,C) ← A=[HA|TA],combine(E,TA,B,TC),C=[HA|TC]

This is the quick-sort program. The implicit informal specification of combine is as follows:

combine(E,A,B,C) iff append(A,[E|B],C), where A, B, C are lists and E is a term.

Again, the system actually uses predicate symbol dpcSort instead of combine. Also note that no further
queries were posed to the specifier, and yet the system came up with a completely different program.

Do you want another logic program for sort? {yes} Yes, sure!

Backtracking...

Decomposition operator? {L=[_,_|_],halves(L,TL1,TL2)}
L=[_,_|_],halves(L,TL1,TL2)

Assume that halves is a system primitive informally specified as follows:

halves(L,F,S) iff F is the first half of L, and S is the second half of L, such that S has 0 or 1
elements more than F, where L, F, S are lists.

Soon, the system proclaims:

A possible logic program for sort is:

sort(L,S) ← L=[],S=[]
sort(L,S) ← L=[_],S=L
sort(L,S) ← L=[_,_|_],halves(L,TL1,TL2),sort(TL1,TS1),

sort(TL2,TS2),merge(TS1,TS2,S)

4

merge(A,B,C) ← C=[],A=[],B=[]
merge(A,B,C) ← C=[HC|TC],merge(TA,TB,TC),TB=[],A=[HC|TA],B=TB
merge(A,B,C) ← C=[HC|TC],merge(TA,TB,TC),TB=[H|_],HC≤H,

A=[HC|TA],B=TB
merge(A,B,C) ← C=[HC|TC],merge(TA,TB,TC),TA=[],A=TA,B=[HC|TB]
merge(A,B,C) ← C=[HC|TC],merge(TA,TB,TC),TA=[H|_],H>HC,

A=TA,B=[HC|TB]

This is the merge-sort program. The implicit informal specification of merge is as follows:

merge(A,B,C) iff C is the merger of A and B, where A, B, C are non-decreasing integer-lists.

The system actually uses the predicate symbol dpcSort instead of merge. Again note that although no
further queries were posed to the specifier, the system produced yet another completely new program.

Do you want another logic program for sort? {yes} No

This ends the target scenario. ♦
In the remainder of this paper, I first discuss, in Section 2, the notion of logic program schema, and then,

in Section 3, I show how such schemata are the key to building the DIALOGS system (Dialog-based Inductive
and Abductive LOGic program Synthesizer), such that it has all the wanted features. Finally, in Section 4,
I look at related work, outline future work, and conclude.

2 Logic Program Schemata

Programs can be classified according to their synthesis methodologies, such as divide-and-conquer, gener-
ate-and-test, top-down decomposition, global search, and so on, or any composition thereof. Informally, a
program schema consists, first of all, of a template program with a fixed dataflow, but without specific in-
dications about the actual computations, except that they must satisfy certain constraints, which are the sec-
ond component of a schema. A program schema thus abstracts a whole family of particular programs that
can be obtained by instantiating the place-holders of its template to particular computations, using the pro-
gram synthesized so far and the specification, so that the constraints of the schema are satisfied. It is there-
fore interesting to guide program synthesis by a schema that captures the essence of some synthesis
methodology. This reflects the conjecture that experienced programmers actually instantiate schemata when
programming, which schemata are summaries of their past programming experience. For a more complete
treatise on this subject, please refer to my survey [8].

For the purpose of illustration only, I will focus on the divide-and-conquer synthesis methodology (which
yields recursive programs), and I will restrict myself to predicates of maximum arity 3.

A divide-and-conquer program for a predicate R over parameters X, Y, and Z works as follows. Assume
X is the induction parameter, Y the (optional) result parameter, and Z the (optional) auxiliary parameter. If
X is minimal, then Y is directly computed from X, possibly using Z. Otherwise, that is if X is non-minimal,
decompose (or: divide) X into a vector HX of hx heads HXi of X and a vector TX of t tails TXi of X, the tails
TXi being each of the same type as X, as well as smaller than X according to some well-founded relation.
The t tails TXi are recursively associated with a vector TY of t tails TYi of Y, the auxiliary parameter Z being
unchanged in recursive calls (this is the conquer step). The heads HX are processed into a vector HY of hy
heads HYi of Y, possibly using Z. Finally, Y is composed (or: combined) from its heads HY and tails TY, pos-
sibly using Z. For X non-minimal, it is sometimes unnecessary or insufficient (if not wrong) to perform a
recursive call, because Y can be directly computed from HX and TX, possibly using Z. One then has to dis-
criminate between such a non-recursive non-minimal case and the recursive case, according to the values
of HX, TX, Y, and Z. If the underlying relation is non-deterministic given X, then such discriminants may be
non-complementary. In the non-recursive non-minimal case, several (say v) subcases with different solving
operators may emerge; conversely, in the recursive case, several (say w) subcases with different processing
and composition operators may emerge: one then has to discriminate between all of these subcases.

5

Each of the 1+v+w clauses of logic programs synthesized by this divide-and-conquer methodology is
covered by one of the second-order clause templates of Template 1. Note that an “accidental” consideration
of a parameter W as a result parameter rather than as an auxiliary parameter does not prevent the existence
of a program (but the converse is true): W will be found to be always equal to its tail TW, and post-synthesis
transformations can yield the version that would have been synthesized with W being considered as an aux-
iliary parameter. For convenience, if hx, t, hy, v, or w is particularized to constant 1, then I will often drop
the corresponding indices. Also, I will often refer to the predicate variables, or their instances, as operators.

The constraints to be verified by first-order instances of this template are listed elsewhere [8]. The most
important one is that there must exist a well-founded relation “<” over the domain of the induction param-
eter, such that the instance of Decompose guarantees that TXi “<” X, for every 1 ≤ i ≤ t. Other important
constraints will be seen in Section 3.2.

Note that, at the logic program level (and at the schema level), I’m here not interested in the control flow:
these are not Prolog programs, and there is complete independence of the execution mechanism.

Example 2: The insertion-sort program of Example 1 is a rewriting of the program obtained by applying
the second-order substitution

{ R/λA,B,C.sort(A,B), % projection: there is no auxiliary parameter
Minimal/λA.A=[], SolveMin/λA,B,C.B=[],
NonMinimal/λA.∃H,T.A=[H|T], Decompose/λA,H,T.A=[H|T],
Discriminate/λH,T,B,C.true,
Process/λA,B,C.B=A, Compose/λH,T,B,C.insert(H,T,B) }

to the {v/0, w/1, hx/1, t/1, hy/1}-particularization of Template 1. This means that there is no non-recursive
non-minimal case, and one recursive case, which features decomposition of the induction parameter L into
one head, HL, and one tail, TL, the latter giving rise to one tail, TS, of the result parameter S. There is no
auxiliary parameter. ♦
Example 3: The insert program of Example 1 is a rewriting of the program obtained by applying the
second-order substitution

{ R/λA,B,C.insert(C,A,B), % re-ordering of the formal parameters
Minimal/λA.A=[], SolveMin/λA,B,C.B=[C],
NonMinimal/λA.∃H,T.A=[H|T], Decompose/λA,H,T.A=[H|T],
Discriminate1/λH,T,B,C.C≤H, SolveNonMin/λH,T,B,C.B=[C,H|T],
Discriminate2/λH,T,B,C.C>H,
Process/λA,B,C.B=A, Compose/λH,T,B,C.B=[H|T] }

R(X,Y,Z) ←
Minimal(X),
SolveMin(X,Y,Z)

R(X,Y,Z) ←
NonMinimal(X),
Decompose(X,HX,TX), % HX=HX1,…,HXhx
Discriminatej(HX,TX,Y,Z), % TX=TX1,…,TXt
SolveNonMinj(HX,TX,Y,Z)

R(X,Y,Z) ←
NonMinimal(X),
Decompose(X,HX,TX),
Discriminatek(HX,TX,Y,Z),
R(TX1,TY1,Z),…,R(TXt,TYt,Z),
Processk(HX,HY,Z), % HY=HY1,…,HYhy
Composek(HY,TY,Y,Z) % TY=TY1,…,TYt

Template 1: Divide-and-conquer clause templates (1 ≤ j ≤ v, v < k ≤ v+w) (version 1)

6

to the {v/1, w/1, hx/1, t/1, hy/1}-particularization of Template 1. This means that there is one non-recursive
non-minimal case and one recursive case, both featuring decomposition of the induction parameter L into
one head, HL, and one tail, TL, the latter giving rise to one tail, TR, of the result parameter R. Auxiliary
parameter I is used in the discriminants and in the solving operators, and passed around unchanged in the
recursive calls; it is however not used in the process and compose operators of the recursive case. ♦

A more general template is needed to cover the combine program of Section 1; it covers logic programs
for n-ary predicates with arbitrary numbers of result parameters and auxiliary parameters. Such a template
is actually to be used by any serious implementation of the synthesis mechanism exposed hereafter.

In the following, Template 1 will turn out to have too much information, as we will not be able to distin-
guish between the instances of the first two clause templates, nor between the instances of NonMinimal,
the Discriminatek, the Processk, and the Composek in the third clause template: I’ll thus unite these
into DSj (with parameters X, Y, Z) and DPCk (with parameters HX, TY, Y, Z; note that HY has disappeared
altogether, and that discrimination must now be on TY), respectively. Moreover, I will want to identify the
predicate, say R, in whose logic program a certain operator appears, and this by just looking at the predicate
symbol of that operator: therefore, I’ll keep every operator name short and suffix their names by “-R” or
“R”, at the template level and at the instance level. Since nothing in λ-calculus mechanizes such a naming
scheme when moving to the instance level, I will enforce it manually. Also note the convenient naming
scheme of the internal variables of each clause: every head or tail of some formal parameter has a name
syntactically dependent on the name of that parameter (heads are prefixed by “H” and tails by “T”); this
helps tracing the role of each variable. If a predicate is declared by the specifier as r(A,B,C), then I will
automatically apply the renaming substitution {X/A,Y/B,Z/C,HX/HA,TX/TA,TY/TB} to instances
of the template (assuming A is chosen as induction parameter, B as result parameter, and C as auxiliary pa-
rameter), so that the specifier (and reader) can relate to such instances. All this yields Template 2 as a ver-
sion that is more adequate for my present purposes. I’ll refer to instances of its first clause template as
primitive cases, and to instances of the other one as non-primitive cases.

Example 4: The insertion-sort program of Example 1 is a slight rewriting of the program obtained by ap-
plying the second-order substitution

{ R/λA,B,C.sort(A,B), DS-R/λA,B,C.A=[],B=[],
DecR/λA,H,T.A=[H|T], DPC-R/λH,T,B,C.dpcSort(H,T,B) }

to the {v/1, w/1, hx/1, t/1}-particularization of Template 2, provided the first-order renaming substitution
{X/L,Y/S,HX/HL,TX/TL,TY/TS} is indeed automatically applied in this process. ♦

Example 5: The insert program of Example 1 is a slight rewriting of the program obtained by applying
the second-order substitution

{ R/λA,B,C.insert(C,A,B),
DS-R1/λA,B,C.A=[],B=[C], DS-R2/λA,B,C.∃H,T.A=[H|T],B=[C,H|T],C≤H,
DecR/λA,H,T.A=[H|T], DPC-R/λA,B,C,D.∃H,T.B=[H|T],C=[A,H|T],D>A }

to the {v/2, w/1, hx/1, t/1}-particularization of Template 2. ♦

R(X,Y,Z) ←
DS-Rj(X,Y,Z)

R(X,Y,Z) ←
DecR(X,HX,TX), % HX=HX1,…,HXhx
R(TX1,TY1,Z),…,R(TXt,TYt,Z), % TX=TX1,…,TXt
DPC-Rk(HX,TY,Y,Z) % TY=TY1,…,TYt

Template 2: Divide-and-conquer clause templates (1 ≤ j ≤ v, 1 ≤ k ≤ w) (version 2)

7

3 The DIALOGS System

A DIALOGS synthesis is divided into two phases. The first phase performs a full particularization of
Template 2 (instantiation of all its form variables, namely hx, t, v, and w, which yields a second-order logic
program) and an instantiation of some of its predicate variables (all except the DS-Rj and the DPC-Rk), and
is explained in Section 3.1. The second phase performs an instantiation of the DS-Rj and the DPC-Rk (that
is the computations constructing the result parameter in each case), and is explained in Section 3.2.

3.1 Full Particularization and Partial Instantiation of the Template

Predicate declaration. DIALOGS first prompts the specifier for a predicate declaration. Assume, without
loss of generality, that the specifier answers with a predicate declaration for a ternary predicate, say

p(A:T1,B:T2,C:T3)

where p is a new predicate symbol, A, B, C are different variable names, and the types Ti are in the set
{atom, int, nat, list(_), …}. The actual type system is of no importance here, so the reader is invited
to guess the meanings of these type names.

Dialogue issues. DIALOGS needs to obtain a full particularization of Template 2. This means that the form
variables hx, t, v, and w need to be bound to integers. These are technical decisions, but they must be feasible
without technical knowledge, because the specifier might be computationally naive or might not even exist
(which is an extreme case of naiveté)! Let me explain: the need for a program for p might arise during the
synthesis/learning of a program that uses p, in which case nobody can answer queries phrased in terms of
p. (Of course, giving a predicate declaration for p is always possible.) This situation arises when a synthe-
sizer/learner detects or conjectures the necessity of a new predicate p; for instance, a Composek operator
of a divide-and-conquer program might itself have a recursive program, so the synthesizer could call itself
to find this program. So I need to devise a dialogue mechanism, for this first phase, with at least three fea-
tures: (i) the provision of “reasonable” default answers; (ii) the runnability in two modes, namely aloud
(where a computationally naive specifier may simply select the default answers, and any other specifier may
answer with personal preferences) and mute (where a non-existing specifier is simulated by automatic se-
lection of the default answers), and (iii) backtrackability, because there might be several reasonable default
answers to certain queries, or because an answer may lead to failure at the second phase.

Choice of the parameter roles. The first step towards particularization of hx and t is the choice of the roles
of the parameters: one of them must be the induction parameter, the others may be either result or auxiliary
parameters, if any. Choosing an induction parameter can be done heuristically: any parameter of an induc-
tively defined type such as nat or list(_) is a good candidate. From the predicate declaration, DIALOGS

can create a sequence of potential induction parameters, keep the first one as the (first) default answer, and
the remaining ones as default answers upon backtracking. Similarly for the result parameter (if any), which
is also likely to be of an inductively defined type: from the remaining parameters (if any), DIALOGS can cre-
ate a sequence of potential result parameters, keep the first one as the (first) default answer, and the remain-
ing ones as default answers upon backtracking. Finally, DIALOGS can propose as the auxiliary parameter (if
any) the remaining parameter (if any). Note that an auxiliary parameter is likely, but not certain, not to be
of an inductively defined type, a good counter-example being I of insert, which is an integer, but has
nothing to do with the “inductive nature” of inserting something into a list. Also remember, from Section 2,
that an auxiliary parameter may inadvertently be considered as a result parameter, without any influence on
the existence of a correct program (but the synthesis is likely to be a bit slower). In the following, I will
implicitly drop all occurrences of Z in Template 2 in case there is no choice of an auxiliary parameter.

Instantiation of R. Assuming, without loss of generality, that B is chosen as induction parameter, C as re-
sult parameter, and A as auxiliary parameter, DIALOGS can now apply the second-order substitution

{R/λU,V,W.p(W,U,V)}
and the renaming substitution

8

{X/B,Y/C,Z/A,HX/HB,TX/TB,TY/TC}

to Template 2, hence (partly) instantiating the heads and the recursive calls of the clause templates.

Instantiation of DecR and particularization of hx and t. The choice of an instance of DecR will finally
particularize hx and t. Again, DIALOGS can simply use a type-specific predefined sequence of potential in-
stances of DecR, keep the first one as the (first) default answer, and the remaining ones as default answers
upon backtracking. Assuming induction parameter B is of type list(int), the binding sequence could be

DecR/λL,H,T.L=[H|T] hx/1, t/1
DecR/λL,H1,H2,T.L=[H1,H2|T] hx/2, t/1
... ...
DecR/λL,H,T1,T2.∃T.L=[H|T],partition(T,H,T1,T2) hx/1, t/2
DecR/λL,T1,T2.L=[_,_|_],halves(L,T1,T2) hx/0, t/2
... ...

Similar sequences are pre-defined for every type. They enforce the well-foundedness constraint.

Particularization of v and w. Definitely the hardest particularization is to decide, in advance, how many
subcases there are for each case. A safe approach is to conjecture that there is one primitive case (v=1), as
well as one non-primitive case (w=1), and to have the remainder of synthesis refine this: if either of these
cases turns out to have subcases, which means that the instance of DS-R or DPC-R is a disjunctive formula,
then set v or w to the number of disjuncts in this instance and rewrite the overall program accordingly.

So far so good. This terminates the first phase: in Template 2, all form variables and all predicate variables
except DS-R and DPC-R are by now instantiated. From a programming point of view, all creative decisions
have been taken, but alternative decisions are ready for any occurrence of backtracking (either because
some decision leads to failure of the second phase, or because the specifier wants another program). The
remaining instantiations are performed by the second phase, which is discussed in the next subsection.

3.2 Instantiation of the Solving Computations

The instantiation of the remaining predicate variables (namely DS-R and DPC-R) also is interactive and is
based on the notions of abduction through (naive) unfolding and querying, and induction through compu-
tation of most-specific generalizations. 1

Basic principle. In a nutshell, the basic principle is as follows. Assume, for concreteness and simplicity,
that the first phase produced the following instantiation of Template 2 (without auxiliary parameter), with
list A being the induction parameter, divided by head-tail decomposition, and B being the result parameter:

p(A,B) ← DS-p(A,B)
p(A,B) ← A=[HA|TA],p(TA,TB),DPC-p(HA,TB,B)

The possible computation “traces” for various most-general values of the induction parameter are:

p([],D0) ← DS-p([],D0)
p([E1],F1) ← DS-p([E1],F1)
p([E1],F1) ← p([],F0),DPC-p(E1,F0,F1)

p([G1,G2],H2) ← DS-p([G1,G2],H2)
p([G1,G2],H2) ← p([G2],H1),DPC-p(G1,H1,H2)
... ...

The strategy is to (a) query the specifier for an instance of the last atom of each trace, using previous answers
to resolve recursive calls, (b) inductively infer an instance of DS-p from some of the answers, and (c) in-
ductively infer an instance of DPC-p from the other answers. The criterion of how to establish such a par-
tition of the answers directly follows from the dataflow constraints of the schema (see below).

1. Term g is more general than term s if there is a substitution θ such that s = gθ. We also say that s is more specific than g. The most-
specific generalization (abbreviated msg) of terms a and b is a term m that is more general than both a and b, and such that no term
more specific than m (up to renaming) is more general than both a and b. The msg of a non-empty set of terms is defined similarly.

9

The specifier must know what B is when A is the empty list. A query is generated by instantiating the first
clause to

p([],D0) ← DS-p([],D0) (1)
Unfolding of second-order atoms is impossible, so the unfolding process stops here. The query

What conditions on <D0> must hold such that p([],D0) holds?

can be extracted from this clause. The answer should thus be a formula F[D0], where only D0 may be free,
explaining how to compute D0 from [] such that p([],D0) holds. In other words, DS-p([],D0) should
be “equivalent” to F[D0]. Instantiating the second clause when A is the empty list would lead to failure of
the unfolding process at the equality atom.

The specifier must also know what B is when A has one element. A query is generated by instantiating the
second clause to

p([E1],F1) ← [E1]=[HA|TA],p(TA,TB),DPC-p(HA,TB,F1)

Unfolding the equality atom gives

p([E1],F1) ← p([],TB),DPC-p(E1,TB,F1)

Unfolding the p atom, using clause (1) with the newly obtained evidence of DS-p as a “shortcut”, gives

p([E1],F1) ← F[TB],DPC-p(E1,TB,F1)
Recursively unfolding all the atoms in F[TB] eventually reduces this clause to

p([E1],F1) ← DPC-p(E1,tb0,F1) (2)
where tb0 represents the value of TB after this “execution” of F[TB]. The query

What conditions on <E1,F1> must hold such that p([E1],F1) holds?

can be extracted from this clause. The answer should thus be a formula G[E1,F1], where only E1 and F1
may be free, explaining how to compute F1 from [E1] such that p([E1],F1) holds. In other words,
DPC-p(E1,tb0,F1) should be “equivalent” to G[E1,F1]. Instantiating the first clause when A is a one-
element list would yield the same query, so we can directly establish that DS-p([E1],F1) should also be
“equivalent” to G[E1,F1].

Next query the specifier for what B is when A has two elements. Again, s/he must know the answer. A
query is generated by now instantiating the second clause to

p([G1,G2],H2) ← [G1,G2]=[HA|TA],p(TA,TB),DPC-p(HA,TB,H2)

Unfolding the equality atom gives

p([G1,G2],H2) ← p([G2],TB),DPC-p(G1,TB,H2)

Unfolding the p atom, using clause (2) with the newly obtained evidence of DPC-p as a “shortcut”, gives

p([G1,G2],H2) ← G[G2,TB],DPC-p(G1,TB,H2)
Recursively unfolding all the atoms in G[G2,TB] eventually reduces this clause to

p([G1,G2],H2) ← DPC-p(G1,tb1,H2)

where tb1 represents the value (possibly using G2) of TB after this “execution” of G[G2,TB]. The query

What conditions on <G1,G2,H2> must hold such that p([G1,G2],H2) holds?

can be extracted from this clause. The answer should thus be a formula H[G1,G2,H2], where only G1, G2,
and H2 may be free, explaining how to compute H2 from [G1,G2] such that p([G1,G2],H2) holds. In
other words, DPC-p(G1,tb1,H2) should be “equivalent” to H[G1,G2,H2]. Instantiating the first clause
when A is a two-element list would yield the same query, so we can directly establish that DS-
p([G1,G2],H2) should also be “equivalent” to H[G1,G2,H2].

One may continue like this for an arbitrary number of times, gathering more and more evidence of DS-p
and DPC-p. Sooner or later, some inductive inference has to be done from this evidence. For example, if
G, H, … are conjunctions of literals (for other situations, see below), then it “often” suffices to compute the

10

most-specific generalization of an “adequate” subset of the tuple set (considering all predicate symbols and
the connectives “,” and “¬” as functors) { 〈 E1,tb0,F1,G 〉,〈 G1,tb1,H2,H 〉,…}, say 〈 ha,tb,b,M 〉,
and the binding of DPC-p to λT,U,V.T=ha,U=tb,V=b,M can then complete the synthesis of the sec-
ond clause. Similarly, the computation of the msg of the “counterpart complementary subset” of the tuple
set { 〈 [],D0,F 〉,〈 [E1],F1,G 〉,〈 [G1,G2],H2,H 〉,…}, say 〈 a,b,M 〉, and the binding of DS-p
to λT,U.T=a,U=b,M can then complete the synthesis of the first clause. I call this (and its refinement
hereafter) the MSG Method [6] [9] [5].

This presentation of the basic principle is of course very coarse, as it sidetracks or leaves open many im-
portant issues, which will be discussed next. In any case, notice how query generation and answering actu-
ally abduce evidence of the still missing operators.

Unfolding issues. In general, thus, the principle of query generation is to successively instantiate every
clause for most-general values of the induction parameter and to unfold its first-order body atoms (until only
a second-order atom remains), so that a query in terms of the target predicate only can be extracted, hiding
the fact that the specifier actually has to answer a query about the second-order atom. Answers to previously
posed queries are made available during this unfolding process as shortcuts, avoiding thus that the same
query is generated twice. Naive unfolding is sufficient here, as I am only interested in the logic, not in the
control, of logic programs. Also, I assume there is a system program for every primitive (such as =/2).

As usual, unfolding uses all applicable clauses (except when shortcuts are available, in which case only
the shortcut clauses are used), so that several clauses may result from an unfolding step; unfolding then con-
tinues from all of these clauses, with the same stopping criterion and the same spawning process. Moreover,
it is sometimes unnecessary to recursively unfold until only a second-order atom is left.

Example 6: Both of these phenomena can be illustrated by means of the delOdds predicate, which is in-
formally specified as follows:

delOdds(L,R) iff R is L without its odd elements, where L, R are integer-lists.

Suppose L is chosen as induction parameter, which is divided by head-tail decomposition, and R is chosen
as result parameter. The following first two queries are posed to the specifier:

What conditions on <R0> must hold such that delOdds([],R0) holds? R0=[]

What conditions on <A1,R1> must hold such that delOdds([A1],R1) holds?
odd(A1),R1=[]; ¬odd(A1),R1=[A1]

Note that the second answer is disjunctive, and that it not only says how the result is computed, but also
when/why it is so. Now, during the generation of the query about what happens when L has two elements,
the following clauses are obtained after some unfolding:

delOdds([B1,B2],R2) ← odd(B2),DPCdelOdds(B1,[],R2)
delOdds([B1,B2],R2) ← ¬odd(B2),DPCdelOdds(B1,[B2],R2)

Note that the unfolding yielded two clauses (using the shortcuts established from the second query). The
primitive predicate odd being introduced by the specifier, we need not unfold it. Therefore, the queries

What conditions on <B1,B2,R2> must hold such that delOdds([B1,B2],R2)
holds, assuming odd(B2)? odd(B1),R2=[]; ¬odd(B1),R2=[B1]

What conditions on <B1,B2,R2> must hold such that delOdds([B1,B2],R2)
holds, assuming ¬odd(B2)? odd(B1),R2=[B2]; ¬odd(B1),R2=[B1,B2]

should be extracted: note the new sub-sentences introduced by the keyword assuming. ♦

Instantiation of DS-R and DPC-R through the MSG Method. Above, I wrote that it “often” suffices to
compute msgs in order to help instantiate DS-R and DPC-R (in case their evidence involves only conjunc-
tions of literals); so what is the criterion for doing so? And how to choose the adequate tuple subsets over
which msgs are computed? To answer this, we first have to analyze the dataflow of divide-and-conquer pro-
grams in even greater detail than so far, namely inside the DS-R and DPC-R operators [6] [9] [5].

11

Let’s start with the discriminate-process-compose operator. Essentially, it is Y that is “constructed from”
HX, TY, and Z. “Constructing” a term “from” others means that its constituents (constants and variables) are
taken from the constituents of these other terms; functors can safely be ignored here, due to their “decora-
tive” role in logic programming. For example, in insert(HL,TS,S), which is the DPC-R operator of
the insertion-sort program in Section 1, result S is constructed from HL and TS. But we know more: all the
constituents of TY must be used for constructing Y or for discriminating between different constructions of
Y, because otherwise the recursive computations of TY would have been useless; but the constituents of HX
and Z only might be used in this construction of Y. For example, in insert(HL,TS,S), result S is indeed
constructed from the “entire” TS, but also from HL; however, in R=[HL|TR], which is the DPC-R operator
of the insert program in Section 1, result R is indeed constructed from TR, and from HL, but not from
auxiliary parameter I; finally, there are programs with constructions of Y that involve TY and Z but not HX,
or even only TY. Finally: Y can only be constructed from the constituents of HX, TY, and Z, but may not
“invent” other constituents, except maybe for the type-specific constants (such as 0, nil, …), although this
is not always the case. All these observations can be gathered in the following definition (which is a partic-
ular case of Erdem’s version [5], which itself is a powerful and generic extension of my old version [6] [9]):
a tuple 〈 hx, ty, y, z, F 〉 is admissible (for building a discriminate-process-compose operator) iff

constituents(ty) ⊆ constituents(〈 y, F 〉) ∧
constituents(y) ⊆ constituents(〈 hx, ty, z 〉) ∪ {0, nil, …}

where terms ty, y, and z are optional, and first-order formula F is a conjunction of literals without any equal-
ity atoms. From such an admissible tuple, we can build an admissible instance of DPC-R by binding this
predicate variable to λT,U,V,W.T=hx,U=ty,V=y,W=z,F.

Let’s continue with the discriminate-solve operator. Essentially, it is Y that is constructed from X and Z.
But the constituents of X and Z only might be used in this construction of Y. Finally, Y may even “invent”
new constituents: I here restrict invented constituents to the type-specific constants (0, nil, …), although
this is not always the case. All these observations can be gathered in the following definition [5]:
a tuple 〈 x, y, z, F 〉 is admissible (for building a discriminate-solve operator) iff

constituents(y) ⊆ constituents(〈 x, z 〉) ∪ {0, nil, …}

where terms y and z are optional, and first-order formula F is a conjunction of literals without any equality
atoms. From such an admissible tuple, we can build an admissible instance of DS-R by binding this predi-
cate variable to λT,U,V.T=x,U=y,V=z,F.

Admissibility of the instances of the DS-Rj and the DPC-Rk are thus other (dataflow) constraints of the
divide-and-conquer schema. They are enforced as follows:

(1) partition the tuple set for DPC-R into a minimal number of subsets (called cliques) of which any two
elements have an admissible msg;

(2) analyze every such clique: if the msg of the counterpart subset of the tuples for DS-R is admissible,
then delete the clique from the tuples for DPC-R; otherwise delete the counterpart subset from the
tuples for DS-R;

(3) take the msgs of the remaining cliques for building admissible instances of the DPC-Rk, and set w
to the number of these cliques;

(4) partition the remaining tuple set for DS-R into a minimal number of cliques, build admissible in-
stances of the DS-Rj from their msgs, and set v to the number of these cliques.

This is essentially my old MSG Method [6] [9], but run with the extended definitions of admissibility.

Example 7: The synthesis of DPCdelOdds, as started in Example 6, continues as follows. The first an-
swer produces the following evidence of DSdelOdds (left column) and DPCdelOdds (right column):

1.〈 [],[],true〉 (not applicable)

The second answer produces the following tuples of evidence of DSdelOdds and DPCdelOdds:

2.〈 [A1],[],odd(A1)〉 〈 A1,[],[],odd(A1)〉
3.〈 [A1],[A1],¬odd(A1)〉 〈 A1,[],[A1],¬odd(A1)〉

12

The third and fourth answers produce the following tuples of evidence of DSdelOdds and DPCdelOdds:

4.〈 [B1,B2],[],(odd(B1),odd(B2))〉 〈 B1,[],[],odd(B1)〉
5.〈 [B1,B2],[B1],(¬odd(B1),odd(B2))〉 〈 B1,[],[B1],¬odd(B1)〉
6.〈 [B1,B2],[B2],(odd(B1),¬odd(B2))〉 〈 B1,[B2],[B2],odd(B1)〉
7.〈 [B1,B2],[B1,B2],(¬odd(B1),¬odd(B2))〉〈 B1,[B2],[B1,B2],¬odd(B1)〉

Note that tuples 4 and 5 for DPCdelOdds are just variants of its tuples 2 and 3, respectively; they could
thus be eliminated. In fact, DIALOGS detects this during query generation and never even poses the third
query to the specifier; the corresponding tuples are non-interactively abduced using the answer to the second
query. At step (1), the msg of all the tuples for DPCdelOdds is

〈 HL,TR,R,P〉
Since there is a predicate variable, namely P, this tuple is not admissible. So we should partition the tuple
set into a minimal number of cliques with admissible msgs. A partition into two cliques of three elements
each (with tuples 2, 4, 6, and 3, 5, 7, respectively) achieves this, with the following msgs:

〈 [HL|TL],R,P〉 〈 HL,TR,TR,odd(HL)〉
〈 [HL|TL],R,Q〉 〈 HL,TR,[HL|TR],¬odd(HL)〉

There are no other partitions yielding two cliques. The partitions yielding three to six cliques are obviously
uninteresting, as each of their cliques is properly contained in some clique of the bi-partition.

At step (2), the counterpart six pieces of evidence of DSdelOdds can be deleted, because their two msgs
(in the left column above) are not admissible (due to the presence of predicate variables).

At step (3), w is set to 2, and DPCdelOdds1 is bound to λT,U,V.T=HL,U=TR,V=TR,odd(HL),
while DPCdelOdds2 is bound to λT,U,V.T=HL,U=TR,V=[HL|TR],¬odd(HL).

At step (4), v is left to be 1, and DSdelOdds is bound to λT,U.T=[],U=[],true, using the only
remaining evidence for DSdelOdds. ♦

What if the answers to the queries are not conjunctions of literals? For simplicity, and without loss of pow-
er, I restrict the answer language to the connectives not (“¬”), and (“,”), and or (“;”), and I require answers
to be in disjunctive normal form, with the variables appearing in the query being implicitly free, all others
being implicitly existentially quantified. Therefore, it suffices to break up disjunctive answers into their con-
junctions of literals, and to apply the MSG Method. This was actually illustrated in the delOdds example.

Instantiation of DPC-R through recursive synthesis. Instantiating DPC-R via the MSG Method as-
sumes that there is a finite non-recursive axiomatization of that operator. But such is not always the case;
take for example the insert predicate used in the insertion-sort program in Section 1: its program is re-
cursive and hence not synthesizable through the MSG Method. So another method needs to be devised for
detecting and handling such situations of necessary predicate invention [15] [7]. Since the MSG Method
has been devised to always succeed (indeed, in the worst case, it partitions a tuple set into cliques of one
element each), a heuristic is needed for “rejecting” the results of the MSG Method and thus conjecturing
the necessity of predicate invention. A good candidate heuristic is [6] [5]: if there are “too few” cliques for
DPC-R, then reject the results of the MSG Method. The interpretation of “too few” and “too small” is im-
plementation-dependent, and could be user-controlled by system-confidence parameters; the current imple-
mentation only rejects when w is 0.

Example 8: After the three queries of the insertion-sort synthesis of Example 1 (assuming L is chosen as
induction parameter, which is divided by head-tail decomposition, and S is chosen as result parameter), the
abduced tuples for DSsort and DPCsort respectively are (after some renaming):

〈 [],[],true〉 (not applicable)
〈 [A1],[A1],true〉 〈 A1,[],[A1],true〉
〈 [B1,B2],[B1,B2],B1≤B2〉 〈 B1,[B2],[B1,B2],B1≤B2〉
〈 [B1,B2],[B2,B1],B1>B2〉 〈 B1,[B2],[B2,B1],B1>B2〉

The MSG Method partitions, at step (1), the three tuples for DPCsort into three cliques of one element
each; at step (2), these tuples are removed because their counterparts for DSsort are admissible as well;

13

at step (3), no evidence is left for DPCsort, so w is set to 0; finally, at step (4), the four tuples for DSsort
are partitioned into three cliques, so v is set to 3. This result is however rejected by the heuristic above: it is
conjectured that DPCsort cannot be instantiated through the MSG Method (that is, a program for insert
cannot be found by this way). ♦

So how to proceed? This is a situation of necessary predicate invention, which is precisely one of the sit-
uations targeted by DIALOGS, which is a recursion-synthesizer (due to its foundation on Template 2). So the
idea is for DIALOGS to re-invoke itself, under the assumption that a divide-and-conquer program exists for
the missing operator.

Using Template 2 and the declaration of the current predicate (see below), the variable DPC-R is bound
to λT,U,V,W.dpcR(T,U,V,W), and the predicate declaration dpcR(H:T4,T:T3,R:T3,A:T1) is
elaborated (assuming that the elements of induction parameter B:T2 are of type T4, that hb=t=1, and that
C:T3 is the result parameter and A:T1 the auxiliary parameter). Indeed, under these assumptions, the call
to the new predicate will be dpcR(HB,TC,C,A). Note that this doesn’t necessarily create a predicate of
maximum arity 3, but, as said earlier, a generalization of Template 2 should be used for any serious imple-
mentation. Moreover, the variable DS-R is instantiated according to the msgs of the tuples that have no
counterparts among the tuples for DPC-R. For the insertion-sort synthesis, this gives the declaration dpc-
Sort(I:int,L:list(int),R:list(int)), variable DSsort is bound to λA,B,C.A=[],
B=[], and variable DPCsort is bound to λH,T,B,C.dpcSort(H,T,B), just like in Example 4.

The first phase of the sub-synthesis must be run in mute mode, as the specifier doesn’t know what kind of
program the system is synthesizing and therefore can’t be expected to answer queries about its operators,
let alone about the operators used in synthesizing these operators.

However, some hints for the first phase of this sub-synthesis could be expressed: in general, it seems rea-
sonable to hint at T as induction parameter, R as result parameter, and H, A as auxiliary parameters. A rea-
sonable hint could also be expressed for instantiation of DecR, but I do not go into these details here. In any
case, these hints beg a fourth feature of the dialogue mechanism (see “Dialogue issues” above), namely:
(iv) preference of hints (if any) over defaults in mute mode. In general, DIALOGS is thus called with a pos-
sibly empty hint list, rather than with only a predicate declaration.

The second phase of this sub-synthesis should not generate queries about the new predicate. It shouldn’t
even synthesize a program for the new predicate by explicit induction on the parameter hinted at, because
not every value of that induction parameter is “reachable” by values of the induction parameter of the super-
synthesis: queries about the new predicate can’t always be formulated in terms of the old one. For example,
a factorial program needs to invent a multiplication predicate, but actually only uses a sparse subset of the
multiplication relation [13]. The “trick” to make DIALOGS generate queries about the top-level predicate (see
below) such that the answers actually pertain, unbeknownst to the specifier, to that new predicate is quite
simple: the first phase of the sub-synthesis should add the obtained clauses to those of the super-synthesis,
rather than work with these new clauses only.

Thus, in general, DIALOGS is called with a start program as an additional argument: this set is empty in
case of a new synthesis (for the top-level predicate), or a set of clauses for a (unique) top-level predicate
and its (directly or indirectly) used predicates, in case DIALOGS is used (possibly by itself) for a necessary
invention of a predicate that is (directly or indirectly) used by the top-level predicate. The first phase gets a
predicate declaration for the current predicate and builds the current program by adding the obtained claus-
es to the start program. Query generation in the second phase is done for the top-level predicate, but unfold-
ing will eventually “trickle down” to a missing operator of the current predicate and extract a question for
it in terms of the top-level one. The answers to queries help instantiate a missing operator of the current
predicate, either through the MSG Method or through further recursive synthesis.

Example 9: Let’s continue the synthesis of the insertion-sort program (from Example 1 and Example 8).
DIALOGS calls itself recursively in mute mode with

sort(L,S) ← L=[],S=[]
sort(L,S) ← L=[HL|TL],sort(TL,TS),dpcSort(HL,TS,S)

14

as start program, sort as top-level predicate, dpcSort(I:int,L:list(int),R:list(int) as
declaration for current predicate dpcSort, parameter L as preferred induction parameter, parameter R as
preferred result parameter, and parameter I as preferred auxiliary parameter. Assume the first phase builds
the current program by adding to the start program the following clauses:

dpcSort(I,L,R) ← DSdpcSort(I,L,R)
dpcSort(I,L,R) ← L=[HL|TL],dpcSort(I,TL,TR),DPCdpcSort(HL,TR,R,I)

In the second phase, query generation for most-general one-element and two-element lists as induction pa-
rameter L of the top-level predicate sort leads, without interaction (due to the second and third queries of
the super-synthesis), to the following tuples for DSdpcSort and DPCdpcSort, respectively:

〈 A1,[],[A1],true〉 (not applicable)
〈 B1,[B2],[B1,B2],B1≤B2〉 〈 B2,[B1],[B1,B2],B1,B1≤B2〉
〈 B1,[B2],[B2,B1],B1>B2〉 〈 B2,[B1],[B2,B1],B1,B1>B2〉

This is scanty evidence to continue from, so DIALOGS would decide to generate a query about what happens
when induction parameter L of the top-level predicate sort has three elements. This would yield an exten-
sion to the target scenario of Example 1; the ensuing computations are too long to reproduce here, but they
eventually lead to the correct binding (just as in Example 5) of DSdpcSort1 to λA,B,C.A=[],B=[C],
of DSdpcSort2 to λA,B,C.∃H,T.A=[H|T],B=[C,H|T],C≤H, and of DPCdpcSort to
λA,B,C,D.∃H,T.B=[H|T],C=[A,H|T],D>A. Note that v is 2, and w is 1. A more “daring” move
would be to directly infer these instances from the tuples above, and thus to stay within the targeted scenario.
Indeed, the first tuple can directly lead to the instantiation of DSdpcSort1, based on the observation that
there is no counterpart evidence of DPCdpcSort; the second tuple can directly lead to the instantiation of
DSdpcSort2 (by generalization of constant nil to a variable T), based on the observation that the coun-
terpart evidence of DPCdpcSort forces the “breaking up” of the second parameter in order to construct
the third one; conversely, the third tuple can directly lead to the instantiation of DPCdpcSort (by gener-
alization of constant nil to a variable T), based on the observation that the counterpart evidence of
DSdpcSort forces the “breaking up” of the second parameter in order to construct the third one. Formal-
izing these observations, and hence short-cutting dialogues, is considered future work. ♦

4 Conclusion

In this paper, I have first motivated and then incrementally reconstructed the reasoning that led to the design
of the DIALOGS system, which is a dialogue-based, inductive/abductive, schema-guided synthesizer of re-
cursive logic programs, that takes the initiative and minimally queries a (possibly computationally naive)
specifier for evidence in her/his conceptual language. DIALOGS can be used by any learner (including itself)
that detects, or merely conjectures, the necessity of invention of a new predicate.

Queries are kept entirely in terms of the specifier’s conceptual language, and are simple, because they
only ask what “happens” when some parameter has a finite number of “elements.” Even better, the specifier
must know the answers to such queries, because otherwise s/he wouldn’t even feel the need for the synthe-
sized program. Answers are thus also in the specifier’s conceptual language, and are independent of the syn-
thesized program. Answers are stored so that, upon backtracking, synthesis can proceed with minimal
querying. Indeed, a query can be generated more than once, albeit with different “intentions” (that is, aiming
at gathering evidence of different operators): the aimed-at operators are either the ones of the top-level pred-
icate or the ones of the current predicate (when the top-level predicate needs to invent the current predicate).

A competent specifier assumption only holds in the second phase, because of the backtrackability feature
of the dialogue in the first phase: the specifier (if any!) can answer just about anything during the first phase,
because wrong answers will lead to failure in the second phase.

Note the elegant ways by which DIALOGS avoids the “background knowledge re-use bottleneck” [10]:
first, it only tries to re-use the =/2 primitive (by the MSG Method); moreover, other primitives (such as ≤/2
or odd) used by the specifier in answers to queries end up in the synthesized program (which prevents the

15

sometimes automa-g-ic flavor of inductive synthesis); finally, the system re-uses the primitives occurring in
its knowledge base for DecR. Overall thus, these primitives do not “compete” in re-use situations.

Due to its foundation on an extremely powerful codification of a “recursion-theory” (by means of the tem-
plate and constraints of a divide-and-conquer schema), the current prototype implementation needs very lit-
tle evidence and is very fast. An even faster and more powerful implementation is planned.

The time-complexity of synthesis is essentially linear in the complexity of the synthesized program, due
to the repeated unfolding of the synthesized program for various most-general values of some parameter.
Steps (1) and (4) of the MSG Method amount to partitioning a graph into a minimal number of cliques,
which is known to be an NP-complete problem; however, this should not be a problem, as the graphs under
investigation only have a few nodes, so currently only a brute-force enumeration has been implemented.

The class of synthesizable programs is a subset of the class of divide-and-conquer programs. It seems to
depend on the knowledge base for DecR, but the “Devil’s Advocate” argument against its completeness
with respect to that class may be countered by appealing to the ingenuity of a non-naive specifier when an-
swering the DecR question. The current (relaxable) assumptions are that DS-R is non-recursively defined,
and that DPC-R has a divide-and-conquer instance, if a new predicate needs to be invented for it.

DIALOGS falls into the category of trace-based inductive synthesizers [6] (such as [2], SYNAPSE [6] [9],
METAINDUCE [12], CILP [13], ITOU [14], …), because it first explains its examples in terms of computation
traces (that fit a certain template), and then generalizes these traces into a recursive program. The main in-
novation here is that DIALOGS generates its own, generalized examples. Moreover, it uses a more powerful
MSG Method than these other systems (except SYNAPSE), and can thus infer disjunctively defined operators.

DIALOGS is closely related to SYNAPSE [6] [9]: this non-interactive schema-guided inductive/abductive
synthesizer expects some positive (ground) examples as well as Horn clause equivalents (called properties)
of at least the answers that DIALOGS would query for. In other words, DIALOGS is a simplification of
SYNAPSE, without any loss of power, but with minimal burden on the specifier and with faster synthesis. The
Proofs-as-Programs Method (which should have been called Abductive Method) of SYNAPSE has disap-
peared, as it has become the driving synthesis mechanism of the second phase of DIALOGS.

The CLINT [3] and CLINT/CIA systems [4], although they are model-based inductive synthesizers [6], are
also related to DIALOGS, in the sense that they are also interactive, sometimes guided by (mono-clausal) tem-
plates, and have an extended evidence language (full clauses, called integrity constraints). However, these
constraints are not used constructively during a synthesis, but only to accept or reject candidate programs.

Future work will also aim at increased schema independence (it’s already largely achieved in the second
phase, except for the hardwired verification of the constraints), at least via the coverage of an even more
powerful divide-and-conquer schema (with support of compound induction parameters, …) and of other
schemata (tupling generalization [11], descending generalization [11], …).

Another plan is to integrate DIALOGS with a post-synthesis simplification and transformation/optimization
tool; the preference will of course go to using schema-guided transformers [11], as these can exploit much
of the additional information (such as “what is the instance of each operator?”) generated by DIALOGS.

Acknowledgments

Many thanks to Esra Erdem for numerous stimulating discussions about the MSG Method. She, plus Halime
Büyükyıldız and Serap Yılmaz, also provided useful feedback on an earlier version of this paper and con-
tributed to the implementation of a first prototype of the DIALOGS system.

References

[1] Dana Angluin. Queries and concept learning. Machine Learning 2(4):319–342, April 1988.
[2] Alan W. Biermann. Dealing with search. In A.W. Biermann, G. Guiho, and Y. Kodratoff (eds), Auto-

matic Program Construction Techniques, pp. 375–392. Macmillan, 1984.

16

[3] Luc De Raedt and Maurice Bruynooghe. Belief updating from integrity constraints and queries. Arti-
ficial Intelligence 53(2–3):291–307, February 1992.

[4] Luc De Raedt and Maurice Bruynooghe. Interactive concept learning and constructive induction by
analogy. Machine Learning 8:107–150, 1992.

[5] Esra Erdem. An MSG Method for Inductive Logic Program Synthesis. Senior Project Final Report,
Bilkent University, Ankara (Turkey), May 1996.

[6] Pierre Flener. Logic Program Synthesis from Incomplete Information. Kluwer Academic Publ., 1995.
[7] Pierre Flener. Predicate Invention in Inductive Program Synthesis. TR BU-CEIS-9509, Bilkent Uni-

versity, Ankara (Turkey), 1995. Submitted for publication.
[8] Pierre Flener. Synthesis of Logic Algorithm Schemata. TR BU-CEIS-96xx, Bilkent University, Ankara

(Turkey), 1996. Update of TR BU-CEIS-9502. In preparation.
[9] Pierre Flener and Yves Deville. Logic program synthesis from incomplete specifications. Journal of

Symbolic Computation 15(5–6):775–805, May/June 1993.
[10] Pierre Flener and Lubos̆ Popelínský. On the use of inductive reasoning in program synthesis. In

L. Fribourg and F. Turini (eds), Proc. of META/LOPSTR’94. LNCS 883:69–87, Springer-Verlag, 1994.
[11] Pierre Flener and Yves Deville. Logic Program Transformation through Generalization Schemata. TR

BU-CEIS-96yy, Bilkent University, Ankara (Turkey), 1996. In preparation. Extended abstract in
M. Proietti (ed), Proc. of LOPSTR’95, pp. 171–173. LNCS 1048, Springer-Verlag, 1996.

[12] Andreas Hamfelt and Jørgen Fischer-Nilsson. Inductive metalogic programming. In S. Wrobel (ed),
Proc. of ILP’94, pp. 85–96. GMD-Studien Nr. 237, Sankt Augustin, Germany, 1994.

[13] Stéphane Lapointe, Charles Ling, and Stan Matwin. Constructive inductive logic programming. In S.
Muggleton (ed), Proc. of ILP’93, pp. 255–264. TR IJS-DP-6707, J. Stefan Inst., Ljubljana (Slovenia).

[14] Céline Rouveirol. ITOU: Induction of first order theories. In S. Muggleton (ed), Proc. of ILP’91.
[15] Irene Stahl. Predicate invention in ILP: An overview. TR 1993/06, Fakultät Informatik, Universität

Stuttgart (Germany), 1993.

