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Abstract

All the previous Kernighan-Lin based circuit partitioning algorithms employ the locking mechanism,
which enforces each cell to be moved exactly once per pass. In this paper, we propose for multiway circuit
partitioning two novel approaches to overcome this limitation. The proposed approaches are based on our
claim that the performance of a partitioning algorithm gets better by allowing each cell to be moved more
than once per pass. The first approach introduces the phase concept so that each pass can contain more
than one phase, and each cell has a chance to be moved in all the phases. This approach uses the locking
mechanism in a relaxed manner in that it does not allow a cell to be moved more than once in a phase. The
second approach does not use the locking mechanism at all. It introduces the mobility concept, which allows
a cell to be moved more than once per pass. Each approach leads to a Kernighan-Lin based generic algorithm
whose parameters can be set in such a way that better performance is obtained by spending more time. By
setting these parameters, we generated three versions of each generic algorithm. The proposed algorithms
were experimentally evaluated in comparison with Sanchis’ multiway circuit partitioning algorithm (FMS
algorithm) and the simulated annealing algorithm (SA algorithm) on benchmark circuits. The proposed
algorithms outperformed FMS algorithm significantly especially when the number of parts in the partition
was large and the circuit was sparse. Their performance is comparable to that of SA algorithm though the
running time SA algorithm is far larger than those of the proposed algorithms. We also performed some
experiments on the parameters of the proposed algorithms, and provided guidelines for good parameter
settings. Besides, we gave a new formulation of multiway circuit partitioning that combined those of the
previous approaches, and presented detailed algorithms and their time and space complexity analysis. We
observed that experimental results supported our claim. The proposed approaches are effective and efficient,
and are applicable to almost all of the previous Kernighan-Lin based algorithms.

1 Introduction

Circuit partitioning deals with the task of dividing (partitioning) a given circuit into two or more blocks
(parts) such that the total weight of the signal nets interconnecting these parts is minimized while main-
taining a given balance criterion among the part sizes. Since circuits can be appropriately represented by
hypergraphs [23], we modeled circuits with hypergraphs, and will use circuit and hypergraph terms inter-
changeably. Hypergraph partitioning has many important applications in VLSI layout, e.g., [1, 6]. The
importance of hypergraph partitioning is mostly due to its connection to the divide-and-conquer paradigm.
A partitioning algorithm divides a problem into semi-independent subproblems, and tries to reduce the
interaction between these subproblems. This division of a problem into smaller subproblems results in a
substantial reduction in the search space of the original problem [25]. Hypergraph partitioning problem
is an NP-hard combinatorial optimization (minimization) problem [8, 17], and hence, we should resort to
heuristic algorithms to obtain a good solution, or hopefully a near-optimal solution. Moreover, such algo-
rithms should run in low-order polynomial time because the problem sizes are usually very large. We now
review the previous work and explain our motivation.
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1.1 Previous Work

Kernighan-Lin [13] proposed a two-way graph partitioning algorithm which became the basis for most of
the subsequent partitioning algorithms, all of which we call the KL-based algorithms. Kernighan-Lin’s
algorithm (KL algorithm) operates only on balanced partitions [10], and performs a number of passes
over the cells of the circuit until it finds a locally minimum partition. Each pass consists of a repeated
operation of pairwise cell swapping for all pairs of cells. Schweikert-Kernighan [23] adopted KL algorithm
to hypergraph partitioning. Fiduccia-Mattheyses [7] introduced a faster implementation of KL algorithm.
Fiduccia-Mattheyses’ algorithm (FM algorithm) can operate on unbalanced partitions provided that the
part sizes satisfy a particular balance criterion. They also proposed a single cell move instead of a swap of
a cell pair at each step in a pass. These modifications as well as proper data structures, e.g., bucket lists,
reduced the time complexity of a single pass of KL algorithm to linear in the size of the circuit (the number
of pins). Since real circuits are usually very large, KL algorithm is not practical to use because of its high
time complexity [24], and so the partitioning algorithms proposed after FM algorithm have utilized all the
features of FM algorithm.

Krishnamurthy [16] added to FM algorithm a look-ahead ability, which helps to break ties better in se-
lecting a cell to move. Sanchis [22] generalized Krishnamurthy’s algorithm to a multiway circuit partitioning
algorithm so that it could handle the partitioning of a circuit into more than two parts. It should be noted
that all the previous approaches before Sanchis’ algorithm (FMS algorithm) are originally bipartitioning
algorithms. Sechen-Chen [24] proposed a new cost measure for the cost of the partition for FM algorithm.
Both Wei-Cheng [27] and Park-Park [18] improved FM algorithm by incorporating the balance criterion
in the cost measure, but in different ways. Shin-Kim [26] suggested the use of the gradual enforcement of
balance criterion in FM algorithm during partitioning.

There are many other approaches to circuit partitioning that are not based on KL algorithm such as
Simulated Evolution [21], Spectral Methods [5, 9], Mean Field Annealing [3, 4], and Simulated Anneal-
ing [10]. Simulated Annealing algorithm [14] (SA algorithm) is one of the most successful approaches to
graph and circuit partitioning. Johnson et al. [10] performed an extensive experimental evaluation of SA
algorithm on graph partitioning in comparison with KL algorithm and provided some guidelines to optimize
the parameters of SA algorithm. We also adopted these guidelines in our implementation of SA algorithm,
the performance of which was compared with those of the proposed algorithms.

1.2 Motivation

In this work, we basically propose two different approaches to multiway circuit partitioning. Each approach
leads to a different algorithm. Our algorithms are also KL-based algorithms; however, we suggest novel
changes in the basic characteristics of the KL-based algorithms such as relaxing the “conventional” locking
mechanism. Therefore, we first shortly review how a typical KL-based algorithm employing cell moves
works and then present our approaches.

A KL-based algorithm iterates a number of passes over the cells of the circuit until a locally minimum
partition is found. All cells are unlocked at the start of each pass. At each step in a pass, the move with the
maximum gain is tentatively performed, and the cell associated with the move is locked, where the gain of a
move, also a gain of the cell associated with the move, is the decrease (or increase if no decrease is possible)
that the move produces in the cutsize. The locking mechanism enforces each cell to be moved exactly once
per pass. That is, a locked cell is not selected any more for a move until the end of the pass. At the end of
the pass, we have a sequence of tentative cell moves and their respective gains. We then construct form this
sequence the mazimum prefic subsequence of moves with the mazimum prefic sum. That is, the gains of
the moves in the maximum prefix subsequence give the maximum decrease in the cutsize among all prefix
subsequences of the moves tentatively performed. Then, we permanently realize the moves in the maximum
prefix subsequence and start the next pass if the maximum prefix sum is positive. The partitioning process
ends if the maximum prefix sum is not positive, i.e., no further decrease in the cutsize is possible, and we
then have found a locally minimum partition.

In order to visualize how FMS algorithm works, it is better to look at the curves in Figure 1. These curves
show the evolution (change) of the cutsize with the cell moves in FMS algorithm for 4-way partitioning of
the circuit s838 (see Table 1). Each interval between two successive vertical lines corresponds to a pass. The
“current cutsize” curve corresponds to the tentative moves, whereas the “final cutsize” curve corresponds to
the permanent moves, i.e., those moves in the maximum prefix subsequence. Note that the current cutsize
and final cutsize curves coincide up to some point in each pass, and the final cutsize curve stays flat after
this point until the end of the pass. The moves up to this point in each pass constitute the maximum prefix
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Figure 1: Evolution of cutsize with respect to cell moves for FMS Algorithm on 4-way partitioning of s838
with 495 cells. Each interval between two successive vertical lines corresponds to a pass. The current cutsize
and the final cutsize curves correspond to the set of tentative and permanent cell moves, respectively. The
initial cutsize is 379, and the final cutsize is 86.

subsequence of the moves in that pass. Also note that this point usually lies in the first half of each pass.
That is, FMS algorithm “wastes” about half of the moves in each pass.

Our experiments reveal that a locked cell can later have a move with a gain larger than that of any move
of the unlocked cells. Then, we should perform this move as it may decrease the cutsize more. However,
such multiple moves for individual cells in a pass are not allowed in all the previous KL-based algorithms
due to the locking mechanism. The aim in using the locking mechanism has been to prevent the cell-moving
process from thrashing or going into an infinite loop [7, 16]. However, we now argue that we can achieve
a smaller cutsize by making such multiple moves without violating the aim above. Thus, we make the
following claim, on which all our work is based, and then propose two novel approaches exploiting this
claim.

Claim: Given a hypergraph with n cells, allowing each cell to be moved (possibly) more than once in a pass
while preventing the occurrence of a large number of moves with no decrease in the cutsize improves the
cutsize more than allowing each cell to be moved exactly once in a pass.

Our first approach introduces the phase concept. A phase contains a sequence of tentative moves and
locks. We propose that we can make more than one phase in a pass such that each phase contains n or
less than n tentative cell moves. Note that an individual pass of the previous KL-based algorithms can be
considered as consisting of a single phase with exactly n tentative cell moves. In the proposed approach, if
a phase is not the last one in a pass, then all the cells that are tentatively moved (and so locked) during
this phase are unlocked and are made ready to be moved again in the following phase in that pass. If this
phase is the last one in a pass, then we perform the same operations as those performed at the end of a pass
in a KL-based algorithm such as constructing the maximum prefix subsequence of moves and permanently
realizing the cell moves in this subsequence. This approach establishes the basis of the proposed “multiway
partitioning by locked moves” (PLM) algorithm.

Our second approach does not use the locking mechanism at all. In this approach, we associate a
property, called the mobility, with each cell. The decision as to which move to perform is based on the
mobility values of the cells but not on their gains. The mobility of a cell is proportional directly to its
gain and inversely to the number of moves that the cell has performed. That is, we penalize each cell
with the number of moves it has performed. The approach establishes the basis of the proposed “multiway
partitioning by free moves” (PFM) algorithm.

In both of the proposed approaches, each cell can perform different number of moves in a pass, and
each pass can contain more than n moves. Each cell has a better chance of being in the maximum prefix
subsequence of the moves, thereby a chance of contributing more to the reduction in the cutsize. Each of



the proposed algorithms is a generic algorithm whose parameters, e.g., the number of moves in a pass, can
be set in such a way that we usually trade better solution quality (smaller cutsize) against larger running
time.

We did experiments on benchmark circuits for the proposed algorithms in comparison with FMS algo-
rithm (and also FM algorithm) and SA algorithm. Experimental results show that the proposed algorithms
outperform FMS algorithm significantly, and that their performance is closer to that of SA algorithm though
SA algorithm yields the best performance. Besides, the running times of the proposed algorithms are far
smaller than that of SA algorithm but larger than that of FMS algorithm as they perform more moves per
pass. The proposed algorithms seem to perform well for both multiway partitioning and partitioning of
sparse circuits.

The rest of the paper is organized as follows. Section 2 gives the basic definitions related to hypergraphs
and multiway hypergraph partitioning, and also introduces the notations. The cost, gain, and mobility
concepts together with bipartitioning and multiway partitioning are also discussed in this section. The
proposed algorithms are presented in Section 3. Besides, this section gives our data structures and initial
partitioning algorithm, and a complexity analysis of the proposed algorithms. The experimental framework
giving the details of the experiments on benchmark circuits, the size of the search space for each algorithm,
and the experimental results are all presented in Section 4. This section also includes some experiments
on the parameters of the proposed algorithms. We decided to give the proofs of the propositions and the
tables in Appendix so as to increase the readability of the paper.

2 Basic Definitions and Notations

This section presents the basic definitions related to hypergraphs and multiway circuit partitioning, and gives
the notations used throughout the paper. The definitions and notations combine those of [7, 16, 17, 18, 22].
Our formulation for a multiway circuit partitioning is more general as we allow non-uniformly weighted cells
and nets.

2.1 Preliminaries

A hypergraph (circuit) H = (V, E) consists of a finite non-empty set V of vertices (cells) and a finite
non-empty set E C 2V of hyperedges (nets), where 2V is the power set of the vertex set V. A hypergraph
H = (V,E) has |V |=n cells and | F|= m nets. Each net e; in F, 1 < j < m, is a subset of V. Each cell
v3, 1 <1 < n, has a positive integer weight w;, and each net e; has a positive integer weight c;.

A net e; is said to be incident to the cell v; if v; € e;. If a net e; is incident to a cell v;, then we say
that e; is on v;, or v; is on e;. Cells on a net are called its terminals, and nets on a cell are called its pins.
Cells that share terminals are called neighbor cells.

The degree d; of a cell v; is equal to the number of nets incident to v;. The degree |e;| of a net e; is equal
to the number of its terminals. A net with a degree of 2 is called a two-pin net, and a net with a higher
degree is a multi-pin net. The total number p of pins, or the total number of terminals, in H is defined as

p= lejl =) di (1)
j=1 i=1

and is taken as the size of the circuit. Without loss of generality, we assume, as in [7], that each net has
at least two pins, and each cell has a degree of at least one. Thus, n = O(p) and m = O(p). The average
cell degree D, of H is defined as D, = p/n, and the average net degree of H is defined as D, = p/m. The
density D of circuit H with n > 2 is defined as

Soiey lesl(les| — 1)

D= n(n — 1) ! @)

which is similar to the definition in [18]. The density of a circuit determines how sparse the circuit is, and
we say that the smaller the density of a circuit, the more sparse the circuit.

Given a circuit H = (V, E), we say that II = (Py,---, P) is a k-way partition of H if the following
three properties hold: each part P;, 1 <1l < k, is a nonempty subset of V, parts are pairwise disjoint, and
the union of k parts is equal to V. A k-way partition is also called a multiway partition if k& > 2, and a
bipartition if k = 2.



Consider a k-way partition II = (Py,---, Pg) of a circuit H = (V, E). The size w(P;) of a part P, is
equal to the sum of the weights of the cells in P;. The fotal cell weight of all the cells in V' and the total
net weight of all the nets in F are denoted by w(V') and ¢(E), respectively. A net that has at least one pin
in a part is said to connect that part. A net that connects more than one part is said to be cut, otherwise
uncut. The set E(l) of external nets of a part P, is defined as E(l) = {e; € E |e; N P # 0 Ae; — Pi # 0},
which consists of those cut nets that connect P;. The set I(l) of internal nets of a part P; is defined as
Il)={e; € E|e; NP # 0 Aej — P, = 0}, which consists of those uncut nets that connect only P;. We
also define the number §;(l) as the number of terminals (pins) of the net e; that lie in the part P, i.e.,
3;(1) = [{vi € €; | vi € Pi}|. This number reflects the distribution of the pins of the nets to the parts.

The cost x(II) of a partition II, also called the cutsize, is equal to the sum of the weights of all cut nets.
More formally,

k m k

=1 ejEI(l) j=1 =1 ejEI(l)

where each cut net e; contributes an amount of ¢; to the cutsize regardless of the number of parts that e
connects. This “cutsize definition” is exactly the same as the one in [22]; however, other cutsize definitions
are also possible [22]. It should be noted that the proposed PLM and PFM algorithms are independent of
the cutsize definition.

We now define the multiway circuit partitioning problem as follows. Given a circuit H = (V, E), we
regard as solutions those k-way partitions in which the size w(P;) of each part P; satisfies the criterion
L(P) < w(P) < U(P). Here, L(P;) and U(P,) are positive integer lower and upper bounds on the part
size of Pj, respectively. We are then asked to find the k-way partition (or partitions) that has the minimum
cutsize over all the solutions. The multiway circuit partitioning problem is an NP-hard combinatorial
minimization problem [8, 17].

The upper and lower bounds on part sizes constitute the balance criterion. We define these bounds as

5(P) = 21— )] and w(R) = 24V (1 4 m) (4
where 7; is a parameter satisfying 0 < 77 < 1. Each 7 should be chosen in such a way that we
have L(P;) > 0 for each part P; so as not to violate the definition of a k-way partition, and we have
(w(V)/k)n > maz,,cv (w;) for each P; so as to allow any cell to be moved from one part to another, i.e.,
we do not restrict the search space unnecessarily due to a tight balance condition; yet, we may not move
any cell from one part to another during later stages of partitioning. In our implementation, we set 7 = 7
for each P; where the value of 7 is given in Section 4.2.

We say that a partition is feasible if it satisfies a given balance criterion, and infeasible otherwise. Besides,
a partition is said to be balanced if the part sizes are about the same size, and unbalanced otherwise [17]. To
measure the balance, we say that the smaller the ratio of the maximum part size to the minimum part size
in a partition, the more balanced the partition. A partition in which the part sizes are exactly the same is
called a perfectly balanced partition, but such a partition is highly unlikely at least because w(V) may not
be a perfect multiple of k.

2.2 Cost, Gain and Mobility Concepts

The cutstate of a net indicates whether the net is cut or uncut. The cutset of a partition is the set of all
nets that are cut. Notice that a net in the cutset must be in the set of external nets of at least two parts.
A net is critical if it has a cell such that the cell would change the cutstate of the net if it is moved. Such a
move either adds the net to the cutset or removes the net from the cutset. We now give the necessary and
sufficient condition for a net to be critical in a k-way partition.

Proposition 2.1 A net e; is critical if and only if either there ezists a part P, such that §;(s) = |ej|, or
there exist two different parts Py and P; such that §;(s) = 1 and §;(t) = |e;| — 1.

The cutstate of a net that is not critical cannot be affected by a cell move by the definition of a critical
net, and so such a move cannot have any effect (a decrease or an increase) on the cutsize. A move of a cell
can change the cutsize if the cell removes some nets from the cutset, or adds some nets to the cutset, that
is, if it alters the cutstate of some nets, which should then be critical nets. Hence, we proved the following
proposition.



Proposition 2.2 The effect of a move of a cell on the cutsize depends only on the critical nets incident to
that cell.

We reflect the effect of a cell in the cutsize in terms of its gains, but the gains of a cell rely on its costs.
Let P, and P, be two parts. The cost C;(s,t) of a cell v; in P, with respect to P, is called its exzternal cost

if s #t and is defined as
Ci(s,t)= >, ¢ (5)
e;€E;(s)t)
where the set E;(s,t) = {e; € E(s) | vi € e; A§;(t) = |ej| — 1} is the subset of external nets of P, that
would be deleted from the cutset if v; is moved from P, to P;. The cost C;(s,t) of a cell v; in P, is called
its internal cost if s = ¢, and is defined as

Ci(s,8) = Z cj (6)

e;€1;(s)

where the set I;(s) = {e; € I(s) | vi € ¢;} is the subset of internal nets of P, that would be added to cutset
if v; is moved from P, to any other part. Note that e; € I(s) implies §;(s) = Je;|. Since v; can change the
cutstate of nets in both E;(s,t) and I;(s), those nets are all critical nets. In a k-way partition, each cell has
only one internal cost but (k — 1) external costs, each of which corresponds to a move direction,

The move gain (or gain) G;(s,t) of a cell v; in P, with respect to P;, i.e., the gain of the move of v; from

P, to P, is defined as

Gi(s,t) = Ci(s,t) — Ci(s, s) (7

where s # t. Note that each cell has ¥ — 1 move gains in a k-way partition. The maximum move gain is
denoted by Gqaz, and is equal to the product of the maximum cell degree and the maximum net weight.

Proposition 2.3 Consider the move of cell v; from P, to P,. Let the cutsize before and after the move be
denoted by x(II) and x'(I1), respectively. Then,

x'(II) = x(II) — Gi(s, ¢) (8)

where G;(s,t) is the move gain of v; before the move.

As this proposition shows, the gain of a cell determines the amount of benefit to be obtained by moving
that cell. If the gain is positive, the cutsize decreases, but if the gain is negative, it increases.

We now define the proposed mobility concept. PFM algorithm operates on the mobility values of cells.
The mobility f;(s,t) of a cell v; in P, with respect to P, i.e., the mobility of the move of v; from P; to P,
is defined as

1
fi(s,t) = 1+ nZezp(—Gi(s, 1)/T) (9)

where n; is the move count of v;, and T and « are parameters as defined below. Each cell has k — 1 mobility

values each of which corresponds to a different move direction. The move count n; of v; is equal to the
number of moves that v; has performed. The mobility of a cell can be considered to be the probability that
this cell can be selected for a move; hence, the larger the mobility of a cell, the better chance the cell has
to be selected for a move. Moreover, this probability is reduced at each move of the cell because of the
inverse proportionality of the mobility of a cell to its move count. This inverse proportionality restricts the
number of those moves that the cell, e.g., a cell with a move gain of zero, may unnecessarily perform a large
number of times without any significant decrease in the cutsize. The value of a used in our experiments is
given in Section 4.2. The parameter T is used to expand the range of mobility values in the interval (0, 1).
This parameter is computed as

11 1
7= (G ) o

in order to expand the mobility values to a predetermined interval [¢,1 — €] for n; = 1 where € is a very
small positive constant. In this work, we use ¢ = 0.01 for which we obtained 1/T =~ 4.6/Gmaz. The move
counts of cells are taken as 1 while computing the initial mobility values at the start of each pass, and then
initialized to zero. Each move of a cell increments its move count by 1.

Each mobility value must be an integer because they are used to index the bucket arrays. Thus, we map
a cell with mobility f;(s,t) to a bucket list with the index

Fi(sat) = L‘S’fi(sat)J (11)
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Figure 2: Evolution of mobility (F') with respect to move gain (G) at three different move counts (n). The
maximum move gain is G = 20, and the scale factor is S = 2 ¥ 20 + 1 = 41. Each dotted curve represents
the value of F' before flooring, for the nearest solid curve.

where S denotes the scale factor and F;(s,t) denotes the scaled mobility value of v; for the respective move
direction. Henceforth by the mobility of v; we mean the function F. Note that 0 < fi(s,t) < 1 whereas
0 < Fi(s,t) < S. The function f preserves the order of move gains of cells with equal move counts, but the
function F' does not. In PFM algorithm, two moves with the same F value may not have the same gain,
but their gains are very similar if G4, is small or S is large. Hence, the function F introduces a slight
randomization to the move selection process.

The change of the mobility with the move gain as well as the move count is illustrated in Figure 2.
The maximum move gain Gpq; is 20, and the scale factor S = 2Gnqez + 1 = 41 where 2Gqz + 1 is the
bucket size in FMS algorithm. Each pair of curves are for a different move count. The solid curves shows
the mobility F, i.e., |Sf]. Each dotted curve shows the value of Sf, i.e., the F value before flooring, for
the nearest solid curve. As seen from the curves, at small move counts, the mobility function does not
distinguish very large move gains well, but, at large move counts, it does. Hence, moves selected at earlier
stages of a pass do not necessarily correspond to the moves with the largest gain, but the ones selected at
later stages usually do. This may prevent PFM algorithm from being stuck in a bad local minimum.

Like other KL-based algorithms, our partitioning algorithms also compute the initial gains of cells before
starting a pass and update the gains of the affected cells after each cell move in that pass. We handle these
computations and updates in terms of costs rather than in terms of gains because this approach results in
simpler algorithms. Hence, we use the terms the “initial cost computation algorithm” and the “cost update
algorithm”. Since we introduce new concepts such as the mobility concept and do not use the locking
mechanism in one of our approaches, we have to present these algorithms. These algorithms are generalized
versions of those in [7] in two ways: these algorithms are for multiway partitioning, and these algorithms
do not use the locking mechanism. But, we also identify the changes to adapt these algorithms to use the
locking mechanism. These algorithms were also used in our implementation of SA algorithm.

The initial cost computation algorithm given in Figure 3 computes the initial costs of each cell in the
circuit, assuming an initial feasible partition. The following proposition establishes the correctness of the
algorithm, and gives its time complexity.

Proposition 2.4 The initial cost computation algorithm given in Figure 8 computes costs of each cell as
defined in Equations 5 and 6. Furthermore, it has a time complezity of O(pk).

After the move, the costs of the cell moved, and those of its neighbors should be updated so that they
indicate the effect of the move correctly. Besides, the cost updates should be done very carefully so as not
to increase the time complexity of the partitioning algorithm. These cost updates are carried out by the
cost update algorithm in Figure 4. The following proposition establishes the correctness of the algorithm,
and gives its time complexity.



Algorithm: Initial Cost Computation.
Input: A hypergraph H = (V, E) with |V| = n, a k-way partition Il = (Py,---, Pi) of H.
Output: Computes all costs of cells in V.

1 for each cell v; € V where let v; € P, do
2 for each part P; in IT do
Set Ci(s,t) «+ 0 /* Initialize the cost */
for each net e; incident to v; do
if §;(s) = 1 then
Search for a part P, such that §;(t) = |ej| — 1
if such P, has been found then
Set Ci(s,t) + Ci(s,t) + c;
else if §;(s) = |ej| then
Set C;(s,s) « Ci(s,8) +¢c;
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Figure 3: The initial cost computation algorithm.

Proposition 2.5 The cost update algorithm given in Figure 4 updates the costs of the cell moved and those
of its neighbors as defined in Equations 5 and 6. Furthermore, if the locking mechanism is used, then this
algorithm takes O(pkGpae) time for n cell moves. If not, then it takes O(kGmaz Dy maz De,maz) time per
move where Dy mqq s the mazimum cell degree, and De mqq is the mazimum net degree.

In lines 1, 6, 10, 16, and 20 in the cost update algorithm, the gain (the mobility) of a cell is recomputed as
in Equation 7 (Equation 11). The initial cost computation algorithm can be used in a partitioning algorithm
that employs the locking mechanism without any change in the algorithm; however, to use the cost update
algorithms in such a partitioning algorithm, do the following change in the cost update algorithm: do an
operation for a cell if this cell is unlocked.

2.3 Bipartitioning versus Multiway partitioning

A bipartitioning algorithm can be adapted to a multiway partitioning algorithm in two ways [13]. One
involves a hierarchical use of a bipartitioning algorithm. The other involves successively choosing pairs
of parts in the partition and applying a bipartitioning algorithm to these pairs. Both of these ways have
serious drawbacks, which are discussed in detail in [13, 22].

An alternative method, as proposed in [22], is creating a multiway partitioning directly, i.e., without
using a bipartitioning algorithm. We call this method the direct multiway partitioning. Sanchis [22] calls this
method the uniform multiway partitioning. In this method, we consider at each step in a pass all possible
moves of each cell from its source part to any of the other parts (the target parts) in the partition and
choose the best such move, i.e., the one with the maximum gain. The moves that do not violate the balance
criterion are called legal moves, otherwise illegal [22]. In this method, only legal moves are considered for a
move.

Direct multiway partitioning algorithms are capable of handling partitions involving an arbitrary number
of parts, and they do not suffer from the problems that the algorithms based on a bipartitioning algorithm
do [22]. In k-way partitioning, each cell has (k — 1) possible move directions at each step in a pass where
each move direction corresponds to a move from its source part to each of the other parts in the partition.
There are k(k — 1) possible move directions in total as only the best move is considered in each move
direction. A search for the best move should consider all of these move directions. Qur algorithms are also
direct multiway partitioning algorithms.

3 Proposed Algorithms

This section explains the proposed algorithms in some detail and analyzes their time and space complexity.
It also presents data structures and the initial partitioning algorithm.



Algorithm: Cost Update.
Input: A hypergraph H = (V, E) with |V| = n, a k-way partition Il = (Py,---, Pi) of H,

the move of vertex v; from P, to F:.

Output: Updates all costs of v; and those of its neighbors.
1 Recompute G;(t,l) (and F;(t,1)) for each I # ¢

2 for each net e; incident to v; do

3  if §;(s) =|e;| then

4 for each cell v, € e; where r # 7 do

5 Set Cr(s,s) + Cr(s,8) — c;

6 Recompute Gr(s,l) (and Fy(s,l)) for each | # s
7

8

else if §;(s) = |ej| — 1 then
Find cell v, € e; such that v, € Py and l # s
9 Set Cr(l,8) « Cr(l,8) — ¢;
10 Recompute only G.(l,s) (and F.(I,s))
11 Set d;(s) « d;(s)— 1
12 Set §;(2) « 8;(t) + 1
13 if §;(t) = |e;| then

14 for each cell v, € e; where r # ¢ do

15 Set Crn(t,t) + Cr(t,t) + c;

16 Recompute Gr(t,!) (and F.(t,1)) for each | # ¢
17 else if §;(t) = |ej| — 1 then

18 Find cell v, € ej such that v, € Prand [ # ¢

19 Set Crn(l,t) + Cr(l,t) + c;

20 Recompute only Gr(l,t) (and F.(I,t))

Figure 4: The cost update algorithm.

3.1 Multiway Partitioning by Locked Moves (PLM)

The proposed PLM algorithm is a direct multiway circuit partitioning algorithm. It employs the phase
concept, as discussed in Section 1.2. A cell is locked as soon as it is moved in a phase, and so it is not
reselected until the end of that phase.

The generic PLM algorithm is given in Figure 5. The steps of the algorithm are explained in detail
when its time complexity is derived in Appendix. PLM algorithm uses two parameters: Noy; and N;,. The
parameter Ny,: is the number phases in a pass, and the parameter N;, is the number of cell moves in a
phase assuming that we perform the same number of moves in each phase. We also denote by N the total
number of cell moves in a pass. Thus, we perform N = Ny, N;, cell moves in a pass of PLM algorithm.
Notice that PLM algorithm reduces to FMS algorithm for Ny, = 1 and N;;, = n. Based on our main
claim, we set N > n and N;;, < n. We can generate different versions of PLM algorithm by setting these
parameters to different values. We report experiments on these parameters in Section 4.4.

3.2 Multiway Partitioning by Free Moves (PFM)

The proposed PFM algorithm is a direct multiway circuit partitioning algorithm. This algorithm does not
use the conventional locking mechanism at all. Each cell can make different number of moves as in PLM
algorithm. The decision as to which move to select is based on the mobility values of the cells. The mobility
of a cell determines its move capability.

The generic PFM algorithm is given in Figure 6. The steps of the algorithm are explained in detail when
its time complexity is derived in Appendix. In PFM algorithm, the moves are inserted into the bucket lists
on the basis of their mobility values but not on the basis of their gains. PFM algorithm uses the following
parameters: N, f(-), S, and e. The parameter N determines the total number of cell moves in a pass.
Based on our main claim, we set N > n. The other parameters are explained in Section 2.2. We report
experiments on these parameters in Section 4.4. We can establish an analogy between PFM algorithm and
SA algorithm. Both algorithms allow multiple moves for individual cells. The expression for the mobility of
a cell is similar to that for the probability of accepting an uphill move in SA algorithm. SA algorithm always
accepts a downhill move, but accepts an uphill move with a probability that decreases during partitioning.
SA algorithm selects a move randomly, but PFM algorithm selects the move with the maximum mobility.



Algorithm: Multiway Partitioning by Locked Moves.
Input: An initial k-way partition of a hypergraph H = (V, E) with |V| = n,
an initial cutsize of that partition.

Output: A locally minimum k-way partition of H.

1 Initialize bucket [ist pointers
2 repeat /* for each pass */

3

0 N O ot W

for each of N,y: phases do
Compute initial costs of cells, and initialize cells as unlocked
Insert cells into bucket lists on the basis of their move gains
repeat
Select a legal move (and so a cell) with the maximum move gain

9
10
11

Delete that cell from bucket lists, and lock it

Tentatively make that move

Update costs and gains of all affected cells
until N;, times or there is no legal move any more

12
13

if Ni, < n then
Free bucket list nodes for remaining unlocked cells

14

15
16
17

Find the maximum prefix sum Gr, and determine the maximum
prefix subsequence of the tentative moves
if Gr > 0 then /* if there is a decrease */
Permanently make the moves in the maximum prefix subsequence
Decrease the cutsize by Gr

18 until Gr <0

Figure 5: The generic direct multiway partitioning by locked moves (PLM) algorithm.

3.3 Data Structures and Initial Partitioning

We use adjacency lists to store a circuit. We also employ the bucket data structure introduced in [7]. Since
our algorithms are also direct multiway partitioning algorithms like FMS algorithm, we adapted the bucket
data structure proposed in [22] for a direct multiway partitioning. In this data structure, there is one bucket
array for each move direction, and one bucket list containing those cells with the same move gain (or the
same mobility) is connected to each slot of a bucket array. Our data structure differs from those in [22] in
the following ways. We did not use the level gain concept, and so our data structure is simpler. For FMS
algorithm and PLM algorithm, each bucket array has a size of 2G,q: + 1; yet, for PFM algorithm, each
bucket array has a size of §. Recall from [22] that finding a bucket list for a cell and inserting a cell to a
bucket list take constant time, and deleting a cell from a bucket list takes O(Gpmaqz) time. Hence, a cell can
be inserted into (k — 1) bucket lists in O(k) time in both PLM and PFM algorithms. However a cell can be
deleted from (k — 1) bucket lists in O(kGpqae) and O(kS) times in PLM and PFM algorithms, respectively.
Details of this data structure are given in [22].

Like FMS algorithm, our algorithms need an initial k-way partition as input. We generate an initial
k-way partition as follows. The algorithm handles each cell only once, and randomly assigns each cell to
one of the parts with the minimum size. For a given balance criterion, if the partition obtained is infeasible,
we increase the parameter 7 in Equation 4 by a small value such as 0.05 until either we obtain a feasible
partition, or 7 becomes equal to or larger than 1.0. In the latter case, the algorithm outputs an error message
and we do not start the partitioning process. This algorithm runs in O(pk) time. If still a more balanced
partition, i.e., the one with a tighter balance criterion, is required, then we have a number partitioning
problem [11], and we can use the differencing method proposed in [12], which runs in O(nlgn) time for
2-way partitioning. If the number of parts is not fixed and we want to minimize it, we can use the FFD
algorithm [8] as suggested in [20].

3.4 Complexity Analysis

The following propositions establish the time and space complexity of FMS, PLM, and the PFM algorithms.
Each time complexity corresponds to the worst-case time complexity per pass. The time complexity of each
algorithm below can be reduced by using a binary heap to speed up the move selection operation [22]. For
example, the time complexity of FMS algorithm can be reduced to O(pk(lgk + Gmaz)) [22] by using a
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Algorithm: Multiway Partitioning by Free Moves.

Input: An initial k-way partition of a hypergraph H = (V, E) with |V| = n,
an initial cutsize of that partition.

Output: A locally minimum k-way partition of H.

1 Initialize bucket [ist pointers
2 repeat /* for each pass */

3 Compute initial costs of cells, and initialize their move counts

4 Insert cells into bucket lists on the basis of their mobility values

5  repeat

6 Select a legal move (and so a cell) with the maximum mobility

7 Tentatively make that move

8 Increment move count of the cell

9 Update costs, gains, and mobility values of all affected cells

10  until N times or there is no legal move any more

11 Find the maximum prefix sum Gr, and determine the maximum
prefix subsequence of the tentative moves

12 if Gr > 0 then /¥ if there is a decrease */

13 Permanently make the moves in the maximum prefix subsequence

14 Decrease the cutsize by Gr

15 Free all bucket list nodes

16 until Gz <0

Figure 6: The generic direct multiway partitioning by free moves (PFM) algorithm.

binary heap.

Proposition 3.1 ([22]) The time complezity of FMS algorithm for a k-way partitioning of a circuit with
p pins is O(pk(k + Gmaz)), and its space complezity is O(pk + k*>Gmaz)-

Proposition 3.2 The time complezity of PLM algorithm for a k-way partitioning of a circuit with p pins is
O(Nouipk(k+Gmaz)) where Noy: is the number of phases per pass. Its space complezity is O(pk +k*Gmaz +
pNout)-

We usually set N = nk® and N;, = ©(n) where 0 < 8 < 2. Then, the worst-case time complexity of
PLM algorithm per pass becomes O(pkP*!(k+Gmaz)), and its space complexity becomes O(pk? +k%Gmaz)-

Proposition 3.3 The time complezity of PFM algorithm for a k-way partitioning of a circuit with p pins
is O(k(p+ kS + N(k+ Dy maz De,mazS))) where Dy maz and De maz are the mazimum cell and net degrees,
respectively, and N is the number of moves per pass. Its space complezity is O(pk + k2S + N).

We usually set N = nkP where 0 < @ < 2. Then, the worst-case time complexity of PFM algorithm per
pass becomes O(k%S + pk(k + Dy maz DemazS)) for B = 0 and O(pkP+(k + Dy maz DemazS)) for B > 0.
Its space complexity becomes O(pk + k%S) for 8 = 0 and O(pk? + k25) for 8 > 0.

4 Experimental Results and Discussion

This section presents the details of the experimental framework and gives the experimental results. We
evaluated three versions of both PLM and PFM algorithms in comparison with FMS algorithm (and so FM
algorithm) and SA algorithm.

4.1 Size of Search Space

After FM algorithm, all the partitioning algorithms have used the move-neighborhood structure. In a move-
neighborhood structure, we proceed from one partition to another by means of a single cell move. Our
algorithms as well as FMS algorithm use the move-neighborhood structure. Let A'[A] denote the number
of different solutions (partitions) explored per pass by a KL-based algorithm A. A move-neighborhood
structure for k-way partitioning of a n-cell circuit contains at most n(k — 1) partitions at each move in a
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pass, as each of n cells has (k — 1) possible moves at each move in a pass. Note that, for an algorithm A
using the locking mechanism, only unlocked cells should be considered when computing AN'[A]. Then, we
have N[FMS] < (k — 1)n(n + 1)/2, N[PLM] < N(k — 1)(2n — Nin + 1)/2, and N[PFM] < Nn(k — 1)
where N denotes the number of cell moves in a pass, and N = n for FMS algorithm. If there are exactly
k(k — 1) legal move directions at each step in a pass, then these upper bounds become tight. Intuitively,
the larger the value of N for an algorithm, the larger the number of different partitions explored by that
algorithm, and so the better the quality of the solution delivered by that algorithm as well as the larger
the running time of that algorithm. Our experimental observations provides support for this intuitive view.
Almost all of the solutions explored by FMS algorithm per pass are different; however, some of the solutions
explored by PLM and PFM algorithms per pass may be the same since they allow multiple moves for a
cell. If we assume that all the solutions explored are different, PFM algorithm explores more solutions per
pass than PLM algorithm does per pass even when the number, N, of moves per pass is the same for both.
For example, set N = nkP and B8 > 0 for PFM algorithm, and set N = nkP, 8 > 0, and N;, = n/2 for
PLM algorithm. Then, N'[PF M] is larger than N[FMS] by a factor of 2k?, and N[PLM] is larger than
N[FMS)] by a factor of 3k?/2. Moreover, both of our algorithms explore more solutions per pass than the
FMS algorithm does per pass even when all perform the same number of moves in a pass. For example, for
B =0, i.e., when all the algorithms perform the same number of moves in a pass, N[PFM] is larger than
N|[FMS] by a factor of 2, and N[PLM] is larger than N'[FMS] by a factor of 3/2.

When computing the total number of solutions explored by an algorithm, we should take into account
not only the number of different solutions explored per pass but also the number of passes that the algorithm
executes as well as the number of feasible solutions since the number of passes that a KL-based algorithm
executes is usually very small but not known in advance, and such an algorithm sometimes cannot explore
a solution depending on the tightness of the balance criterion. In general, our algorithms explore more
solutions than FMS algorithm especially for multiway partitioning even when the number of passes are
considered. Thus, we can say that our algorithms explore the search space more effectively than FMS
algorithm.

4.2 Experimental Framework

By setting the parameters of PLM and PFM algorithms to different values, we generated three versions of
each of these algorithms. Henceforth these versions of PLM algorithm (PFM algorithm) will be referred to
as PLMz: algorithms (PFM3 algorithms) for 2 = 1,2, 3. The values of the parameters and the names of these
versions are presented in the following table, where

R = 5/(2Gmas + 1) (12)

is the ratio of the bucket size in a version of PFM algorithm to that of FMS algorithm.

Versions of PLM and PFM Alg.’s
N | N; Name N R Name
n n/2 | PLM1 || n 2 | PFM1
nk | n/2 | PLM2 || nk 8 | PFM2
nk? | n/2 | PLM3 || nk? | 128 | PFM3

Thus, each cell makes N/n moves on the average in a pass of each algorithm. Let N[A] denote the
number of cell moves in a pass of a KL-based algorithm A. Then, for this setting, we have N[FMS] =
N[PLM1] = N[PFM1], N[PLM2] = N[PFM2], and N[PLM3] = N[PFM3]. We say that a PFM:
algorithm corresponds to a PLMj algorithm if 4 = j, e.g., PFM2 algorithm corresponds to PLM2 algorithm.

The level parameter of FMS algorithm in our implementation was set to 1 in order to allow a fair
comparison between FMS algorithm and our algorithms since the level gain concept [22] is also applicable
to our algorithms, and we did not incorporate it in our algorithms. Moreover, our aim was not to present
an extensive experimental evaluation of the previous multiway partitioning algorithms in comparison with
our algorithms but to present experimental results enough to show the potential of our algorithms. Since
FMS algorithm with the level parameter set to 1 exactly corresponds to a direct multiway implementation
of FM algorithm, we will refer to it as FM algorithm for bipartitioning and as FMS algorithm for multiway
partitioning but FMS algorithm also subsumes FM algorithm.

All the algorithms were coded in the C programming language. All the experiments were carried
out on a SUN SPARC station (SPARC 10) under SunOS operating system. (SUN SPARC station and

SunOS operating system are trademarks of Sun Microsystems, Inc.) We used 12 benchmark circuits as our
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Table 1: Properties of benchmark circuits. Here, n is the number of cells, m is the number of nets, p is the
number of pins, D, is the average cell degree, D, is the average net degree, D, mq, is the maximum cell degree,
De mae is the maximum net degree, and D is the density of the circuit.

PROBLEM
Full Name I Short Name I n I m I P I D, I D, I Dy maz I De,maz I D
struct struct 1888 | 1888 5375 | 2.85 | 2.85 4 16 | 0.004490
primary2 prim2 3014 | 3029 | 11219 | 3.72 | 3.70 9 37 | 0.008204
c7552 c7552 2247 | 2140 6171 | 2.75 | 2.88 5 137 | 0.008676
c1355 c1355 650 618 1745 | 2.68 | 2.82 5 11 | 0.010065
3540 ¢3540 1038 | 1016 3131 | 3.02 | 3.08 5 23 | 0.011204
c2670 c2670 924 860 2375 | 2.57 | 2.76 5 30 | 0.011444
primaryl priml 833 902 2908 | 3.49 | 3.22 9 18 | 0.018056
s838 s838 495 460 1261 | 2.55 | 2.74 5 33 | 0.019801
industryl ind1 2271 2186 7731 3.40 3.54 9 318 0.038276
test03 test03 1607 1618 5807 | 3.61 3.59 54 225 0.050714
playout.balu | balu 701 702 2493 | 3.56 3.55 9 117 | 0.052924
test06 test06 1752 1641 6638 | 3.79 4.05 6 388 0.079830

test instances from LayoutSynth92 standard cell test suite and Partitioning93 test suite in ACM/SIGDA
Design Automation Benchmarks (also known as MCNC Benchmarks). The properties of these circuits are
summarized in Table 1. The circuits in all the tables in Section 4 are ordered in ascending density. We
deleted certain nonessential features of these circuits as in [7, 23]: all the nets with only one terminal were
removed, and each net containing a cell more than once as a terminal was enforced to contain that cell only
once. In order to give to the reader a better interpretation of the experimental results, we set each cell
and net weight to 1; however, it should be noted that our formulation and also our implementation allow
non-uniformly weighted cells and nets without any change.

When constructing our test instances, we took the following points into account: we tried to choose
those circuits that were used in previous works on circuit partitioning, e.g., priml and prim2 from [27], to
choose circuits having a variety of properties, e.g., struct has a regular structure, s838 is a small circuit,
and prim2 is a large circuit, to choose circuits that were intended specifically for performance evaluation of
partitioning algorithms, e.g., those circuits from Partitioning93 test suite such as c1355, to choose some
circuits that were not used in previous works, e.g., balu, to choose circuits that were not so large that they
take a lot of time for such time-consuming algorithms as SA algorithm. Note that the time complexity of
each of our algorithms is linear in the size of the circuit so that large circuits do not pose any problem for
our algorithms to partition.

We used the initial partitioning algorithm as explained in Section 3.3. We set the parameter 7 to 0.10 in
the balance criterion, i.e., we allow each part size to be 10% more or 10% less than its value in a perfectly
balanced partition. This balance criterion always led to feasible initial partitions. After a number of
experiments, we adopted the following to improve the performance of our algorithms. We slightly modified
PFM algorithm in that a cell was not selected in two successive moves. All PFM: algorithms used the
mobility function in Equation 11. We set the parameter o in Equation 9 to 1/2. We used a table lookup
technique to speed up the calculation of the exponential function values in Equation 9. The n{ values
in Equation 9 can also be obtained with a table lookup technique but we did not try it. Henceforth, the
performance of an algorithm refers to the quality of the cutsize it produces.

We set the number k of parts to 2, 4, 6, and 8 as in similar works. Following [26], we ran FMS algorithm
500 times, each of our algorithms 30 times, and SA algorithm 10 times on each test instance starting from
different initial partitions. The running times were measured in seconds. The running time of an algorithm
included all the times from that of reading the input circuit up to that of outputting a final locally minimum
partition. The parameter settings discussed in this section will be referred to as the default settings.

We implemented SA algorithm according to the cooling schedule in [10]. This cooling schedule was
also used in a work [26] similar to ours. Since Johnson et al. [10] gave an implementation of SA algorithm
for graph bipartitioning, we incorporated the guidelines supplied in [10, 11, 14] to adapt SA algorithm for
multiway circuit partitioning. We made the following three changes in the cooling schedule in [10]. The
starting temperature was set to 10 as in [14] where the acceptance rate was larger than 90%, whereas
Johnson et al. [10] suggested a starting temperature where the acceptance rate was 40% for a speedup. The
termination condition was met when either the acceptance rate was less than 2% as in [10], or the same
cutsize was encountered n/2 times, which is necessary because the presence of a large number of moves with
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zero gain usually prevents the acceptance rate to be less than 2%. The final change was in the form of the
cost function. Johnson et al. [10] used a penalty function approach so that their scheme allowed infeasible
partitions to be accepted. In order to ensure that each algorithm we compared selects a move in the same
way, we did not use the penalty function approach in our implementation of SA algorithm. However, we
should mention that the penalty function approach improves the performance of SA algorithm [10].

4.3 Results with Default Settings and Discussion

Table 2 presents the average cutsizes found by each algorithm. The values in parentheses give the ratio
of the average cutsize found by the respective algorithm to that by FMS algorithm. To find the percent
improvement done by an algorithm in the average cutsize with respect to FMS algorithm, we should subtract
the values in parentheses from 1.00. For example, for 4-way partitioning of struct, PFM3 algorithm
produced an average cutsize that is 63%, i.e., 1.00 — 0.37 = 0.63, smaller (better) than the one by FMS
algorithm. For 2-way partitioning of struct, PFM3 algorithm produced an average cutsize that is —4%,
i.e., 1.00 — 1.04 = —0.04, better than one by the FM algorithm; yet, a negative improvement means that
PFM3 algorithm was beaten by FM algorithm. Note that the smaller the value in parenthesis, the better
the respective algorithm with respect to FMS algorithm. Table 3 gives the minimum cutsizes found by
each algorithm. The values in parentheses give the ratio of the minimum cutsizes found by the respective
algorithm to those by FMS algorithm. The interpretation of the values in parentheses is similar to the one
explained above for the average cutsizes. Table 4 presents the average running time of each algorithm. In
all the tables, the bold values in a row correspond to the best value for that row. Recall that the best
cutsize is the smallest cutsize, and the best running time is also the smallest running time.

Table 5 summarizes the average results for each algorithm in terms of seven comparison measures labelled
A through G. In this table, the averages for each algorithm were computed by considering the performance
of the algorithm on all the circuits. This table also includes the averages for the results in Table 2, Table 3,
and Table 4. This table helps us to estimate the relative performance of the algorithms on the whole test
suite.

Let x[A] and T[A] denote the cutsize (average or minimum cutsize) found by an algorithm A and the
running time of an algorithm A, respectively. In general, the performance of each algorithm differ depending
on the value of the number, k, of parts, and thus, we usually examine the performance of algorithms for
bipartitioning, i.e., & = 2, and for multiway partitioning, i.e., k > 2, separately.

From Table 5(A), we observe the following. For bipartitioning, the algorithms can be ordered with respect
to the quality of the average cutsizes they produce as follows: x[PLM3] < x[FM] < x[SA] < x[PLM?2] <
X[PLM1] < x[PFM3] < x[PFM?2] < x[PFM1]. Thus, PLM3 algorithm outperforms all the others. Also
note that FM algorithm is the second in the performance rank. Although FM algorithm performs better
than many of the algorithms in terms of the average quality of the average cutsizes, FM algorithm does
not display the same relative performance when the circuits are considered separately. For example, PLM3
and SA algorithms yield better performance than FM algorithm on the bipartitioning of 10 and 9 circuits,
respectively, out of 12 circuits in Table 2. From Table 5(A), the algorithms for multiway partitioning can be
ordered as follows: x[SA] < x[PFM3] < x[PFM2] < x[PLM3] < x[PLM2] < x[PFM1] < x[PLM1] <
x[FMS]. Thus, SA algorithm outperforms all the others, and each of the proposed algorithms produces
better average cutsizes than FMS algorithm does. The improvement achieved by PFM3 algorithm with
respect to FMS algorithm is as large as 66% (on 4-way partitioning of ind1 in Table 2).

From Table 5(B), we see that FM algorithm outperforms all the other algorithms in terms of the average
quality of the minimum cutsizes for bipartitioning. Besides, FM algorithm produces the smallest cutsizes
in all the circuits except struct and priml as seen in Table 3. For multiway partitioning, PFM3 algorithm
delivers the smallest cutsizes. SA algorithm is the second in rank, and each of the proposed algorithms
outperforms FMS algorithm. The improvement achieved by PFM3 algorithm with respect to FMS algorithm
is as large as 73% (on 4-way partitioning of ind1 in Table 3).

From Table 5(F), we can say that, in general, the algorithms can be ordered according to their running
times regardless of the number of parts as follows: T[SA] > T[PLM3] > T[PFM3] > T[PLM2] >
T[PFM2] > T[PLM1] > T[PFM1]> T[FMS]. The running time of SA algorithm is far larger than those
of the others. FMS algorithm takes the smallest running time. For any of PFM3: and PLM3: algorithms, we
derived the following empirical inequality for the ratio of their running times (total as in Table 5(F) or per

pass as in Table 5(E)) to that of FMS algorithm

T[4]  2N[A]
TIFMS] < = (13)
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where A is any of PFM: and PLM: algorithms, and N[A] is the number of cell moves per pass of the
algorithm A as mentioned earlier. Recall that N[F M S] = n. This inequality shows that the number of cell
moves per pass is the dominant factor in determining the running times of the algorithms.

From Table 5(G), we observe that, for bipartitioning, FM algorithm executes the largest number of
passes; however, for multiway partitioning, PFM1 algorithm executes the largest number of passes, and
PFM3 algorithm executes the smallest number of passes. The number of passes that an algorithm executes
decreases as the number of cell moves performed per pass of this algorithm increases. Also note that the
average of the average number of passes that any algorithm executes is less than 10.0. Hence, the number
of passes for FMS algorithm as well as our algorithms can be considered to be a constant.

We will call an algorithm stable if the ratio, the stability ratio, of the standard deviation of the average
cutsize to the average cutsize that the algorithm produces is small, and unstable otherwise. From Table 5(D),
we note that, for bipartitioning, FM algorithm is the least stable, and PLM3 algorithm is the most stable.
For multiway partitioning, SA and FMS algorithms are the most stable, and our algorithms are less stable
than FMS algorithm. Moreover, a PLMj3 algorithm is more stable than a corresponding PFM3 algorithm but
margins are very small. Even though FMS algorithm seems to be a stable algorithm, any of our algorithms
(except PFM1 algorithm for bipartitioning) and SA algorithm improve upon FMS algorithm in terms of
the average of the maximum cutsizes (Table 5(C)). That is, FMS algorithm produces the largest cutsizes.

From the experimental results explained above, we deduce the following. The performance of both PFM:
and PLM: algorithms gets better as the number of cell moves increases per pass. These provide support for
our claim that allowing each cell to move more than once improves the performance. Since the performance
of our algorithms is significantly better than that of FMS algorithm for multiway partitioning, we can say
that the phase and the mobility concepts seem to be very beneficial. Moreover, since the performance
of each PFM: algorithm is better than the corresponding PLM: algorithm as well as the performance of
PFM2 algorithm is better than any PLMz: algorithm for multiway partitioning, we can say that the locking
mechanism prevents an algorithm to explore the search space of the problem more effectively. It should
also be noticed that SA algorithm like PFM3 algorithms does not restrict the move capability of cells, and
this feature of SA algorithm may count for its superior performance.

We can say that our algorithms outperform FMS algorithm for multiway partitioning as shown in
the tables. We can also argue that our algorithms outperform FMS algorithm as the circuit becomes
more sparse. To see this, note that the circuits are ordered in ascending density in the tables, and the
performance of our algorithms gets better as we go up in the tables displaying the cutsizes. For example,
PFM3 algorithm performs 63% better for multiway partitioning of struct and 50% better for multiway
partitioning of prim2 than FMS algorithm on the average. However, there do exist some anomalies such
as the performance on prim2 and test06. The reason for such anomalies seems to be that the circuits not
only vary in their densities but also in their structures as well as their sizes. Such anomalies are expected to
decrease if we can generate circuits such that only their densities were different but all the other properties
were the same. Our experiments on randomly generated circuits that vary only in their density support the
conclusion above. The better performance of our algorithms on sparse circuits is very promising because
real applications as well as circuits difficult to partition are usually very sparse. As a test instance gets
denser, even the performance of a simple greedy algorithm becomes comparable to that of KL algorithm [2].

For bipartitioning, we have a different situation. FM algorithm usually dominates the other algorithms
in terms of the average quality of the minimum cutsizes. It also performs better than the others except for
PLM3 algorithm in terms of the average quality of the average cutsizes. Surprisingly, FM algorithm has the
largest stability ratio, i.e., the most unstable algorithm, and usually executes the largest number of passes.
We think that the following reasons usually account for the dominance of FM algorithm. As mentioned in
Section 4.1 and shown by the experimental results in this section, the performance of an algorithm tends
to improve as the number of partitions examined per pass of that algorithm increases; however, we should
also consider the number of passes that the algorithm executes. The number of partitions examined per
pass of each of our algorithms is larger than that of FM algorithm, but we should multiply the number of
passes by the number of partitions examined per pass to find the total number of partitions examined by
an algorithm. Since FM algorithm has the largest number of passes, it is very likely that it examines more
partitions than some of our algorithms. For example, the total number of solutions examined by PLM1
algorithm on the average is less than FM algorithm. Besides, our algorithms may explore the same solutions
more than once since they relax the locking mechanism. Thus, even though some of our algorithms, e.g.,
PFM1 algorithm, may examine more partitions in total than FM algorithm, the total number of different
partitions may be the same for both. Note that the performance of our algorithms gets better as we permit
more cell moves per pass, thereby increasing the number of different solutions examined per pass. The
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moves with zero gain can also be a problem for our algorithms for bipartitioning. Since our algorithms
allow a particular move to occur more than once, a move with zero gain may waste a substantial portion of
the total number of moves allowed per pass without any decrease in the cutsize. To eliminate this problem
at least partially, we did an experiment with PFMz algorithms by setting a in Equation 9 to 1 so that the
move capability of moves declined. We observed a performance improvement, suggesting the presence of
better mobility functions for bipartitioning. Moreover, since PLM3 algorithm beats FM algorithm on the
average quality of the average cutsizes, a greedy strategy like the locking mechanism should be preferred
for bipartitioning, and, again, allowing more cell moves per pass yields better results, as claimed. Finally,
note that SA algorithm basically selects the cell moves randomly, and so longer runs of SA algorithm tend
to give better results than multiple shorter runs of it [10]. Since our algorithms like SA algorithm employs
a less greedy strategy in selecting cell moves, their longer runs, i.e., more cell moves per pass, happen to
give better results, as shown by the experimental results.

The running times of the proposed algorithms are basically proportional directly to the number, N, of
cell moves per pass in practice, as shown by Equation 13. Thus, their running times must be larger than
that of FMS algorithm. This results also shows that the proposed algorithms are efficient. The running
times of PFM: algorithms are not affected much by such time-consuming operations as the exponential
function evaluation due to the table look-up technique used. In general, we trade better solution quality
(smaller cutsize) against larger running time in all the algorithms we compared.

For large k and best results, SA algorithm is the best choice if the time is not a hard constraint. However,
if we are faced with the problem of finding the best solution in shorter time, then the best choice seems to
be PFM2 algorithm. For small k (k > 2), we suggest the use of either PFM3 algorithm or PFM2 algorithm.
For bipartitioning, we should use FM algorithm to obtain good partitions in very short time, but PLM3
algorithm or SA algorithm if more time is allowed. In short, since any of our algorithms and SA algorithm
outperform FMS algorithm for multiway partitioning, and PLM3 algorithm outperforms FM algorithm
for bipartitioning, we should choose them by taking into account the tradeoff between the better solution
quality and shorter running time. We can conceive that we can run FMS algorithm a large number of times
so as to obtain better partitions than any of the other algorithms since the running time of FMS algorithm
is small compared to those of the other. However, it seems that we cannot make a substantial improvement
in the average cutsize. For example, we obtained almost no improvement in the average cutsize but only a
10% improvement in the minimum cutsize in an experiment with FMS algorithm for 4-way partitioning of
c1355 involving 100,000 runs. Finally, after some experimentation, we observed that a partition that is a
local minimum for FMS algorithm was not a locally minimum partition for the proposed algorithms, but a
partition that is a local minimum for the proposed algorithms was usually a locally minimum partition for
FMS algorithm. Also, any partition that is a local minimum for a PLM: algorithm with N;, = n is always
a locally minimum partition for FMS algorithm.

Figures 7 and 8 illustrate the evolution of the cutsize with the cell moves in PLM2 and PFM2 algorithms
for 4-way partitioning of s838 with 495 cells. Each interval between two successive vertical lines corresponds
to a pass. The “current cutsize” curve corresponds to the tentative moves, whereas the “final cutsize” curve
corresponds to the permanent moves, i.e., those moves in the maximum prefix subsequence. In Figure 7,
each spike roughly corresponds a phase. The height of each spike is smaller compared to those in Figure 1.
The evolution of the cutsize in PLM2 algorithm is similar to that in FMS algorithm since they both use
the locking mechanism though in different ways. The evolution of the cutsize in PFM2 algorithm is very
different. As seen in Figure 8, almost all the moves in a pass (especially those in initial passes) are included
in the maximum prefix subsequence, and there are no high spikes like those in the other figures.

4.4 Experiments on Algorithm Parameters and Discussion

In order to see the effect of the scale factor on the performance of PFM: algorithms, we did a number of
runs for each value of R starting with the same initial partitions for each PFM3 algorithm. Table 6 presents
the average of the 5 best cutsizes for PFM3 algorithm. We also did experiments with PFM1 and PFM2
algorithms but did not report them here in tables due to lack of space. In Table 6, struct is very sparse,
balu is very dense, and c2670 is in between.

We expect that, as S increases, the performance of a PFM3 algorithm gets better because, at small S, a
bucket list may contain many moves with the same mobility but have large differences in their move gains,
thereby preventing moves with larger gains to be selected during the early stages of a pass. Note that,
at § = 1, PFM algorithm degenerates to a variant of a random search algorithm. As shown in Table 6,
the performance gets better as the scale factor S increases, as expected. Also note that PFM3 algorithm
outperforms FMS algorithm even when R = 1, i.e., § = 2Gpqz + 1. It seems that the performance gets
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Figure 7: Evolution of cutsize with respect to cell moves for the PLM2 Algorithm on 4-way partitioning of
5838 with 495 cells. Each interval between two successive vertical lines corresponds to a pass. The current
cutsize and the final cutsize curves correspond to the set of tentative and permanent cell moves, respectively.
The initial cutsize is 379, and the final cutsize is 77.
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Figure 8: Evolution of cutsize with respect to cell moves for the PFM2 Algorithm on 4-way partitioning of
5838 with 495 cells. Each interval between two successive vertical lines corresponds to a pass. The current
cutsize and the final cutsize curves correspond to the set of tentative and permanent cell moves, respectively.
The initial cutsize is 379, and the final cutsize is 54.
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better as the circuit becomes more sparse, but the performance does not improve steadily as the scale factor
increases. We think that a very large value for the scale factor prevents the selection of uphill moves, those
moves increasing the cutsize, thereby forcing the algorithm to converge prematurely; yet, a very small value
for the scale factor tends to forbid the algorithm to find better solutions for difficult test instances such
as very sparse circuits. We suggest that a large R should be chosen when the circuit is sparse, when k& is
large, and when G,,q4; 1s small. Any R > 1is a safe choice in that the results are better than those of FMS
algorithm.

In order to see the effect of the parameters N and N;, on the performance of PLM algorithm, we did
a number of runs for different values of these parameters starting with the same initial partitions. Table 7
presents the average of the 5 best cutsizes for each combination of these parameters. Note that the column
with N = n and N;, = n corresponds to FMS algorithm. In Table 7, struct is very sparse, balu is very
dense, and ¢2670 is in between.

We see that, for bipartitioning, the best performance is produced when N;, = nfor N = n and N = nk,
and when Nj, = n or N;, = n/2 for N = nk?. Thus, for bipartitioning, each phase should contain n moves
when N is small, and n or n/2 moves when N is larger. For multiway partitioning, the best performance
is produced when N;;, = 3n/4 for N = n and N = nk, and when N;, = n/2 or N;,, = 3n/4 for N = nk?.
Note that as the number, N, of moves per pass increases, the results get better, and that the overall best
results are produced at N = nk? on struct and test03, as well as at N = nk and N = nk? on c2670.
One of the reasons why we set N;, = n/2 in our default setting was to allow each cell to be moved twice
on the average. It should also be noted that almost all of the cutsizes in these tables are better than those
by FMS algorithm, which provides another support to our claim.

5 Conclusions and Future Work

All the KL-based algorithms employ the locking mechanism which enforces each cell to be moved exactly
once per pass. In this paper, we proposed two novel approaches for multiway circuit partitioning to overcome
this limitation. The proposed approaches are based on our claim that performance gets better by allowing
each cell to be moved more than once per pass. The first approach introduces the phase concept, and the
second introduces the mobility concept. Each approach leads to a generic algorithm whose parameters can be
set in such a way that better performance is obtained by spending more time. By setting the parameters, we
generated three different versions of each of our algorithms. The proposed algorithms were experimentally
evaluated in comparison with FMS algorithm and the SA algorithm on a subset of benchmark circuits. The
experimental results show that the proposed algorithms outperform FMS algorithm significantly especially
on multiway partitioning as well as partitioning of sparse circuits. The performance of some of the proposed
algorithms is comparable to that of SA algorithm even though the running time of SA algorithm is far larger
than those of the proposed algorithms. We performed some experiments on the parameters of the proposed
algorithms, and suggested guidelines for good parameter settings. Besides, we gave a time and space
complexity analysis of our algorithms. Experimental results and our arguments on the size of the search
space explored by the algorithms compared seem to provide support for our claim. The proposed approaches
are easily applicable to almost all of the existing KL-based algorithms such as those in [16, 18, 22, 24, 26, 27],
and also the approaches in those works such as multilevel gains [22], the ratio cut metric [27], and so on,
are easily applicable to our algorithms.

We now mention some areas for further research. First, we think that better mobility functions are
possible. But, a simple function such as f;(s,t) = (Gi(s,%) + Gmaz)/(2n8Gmaz) does not work. Second,
a simple way to reduce the running time of the KL-based algorithms is to use an adaptive scheme in that
the number of cell moves per pass can vary. Usually, the number of cell moves in the maximum prefix
subsequence in a pass is smaller than that in the previous pass. Hence, the number of cell moves in a pass
can be set to a fraction of that in the previous pass. This fraction can be determined by experimental
analysis for each algorithm, but we think that it depends also on the size and structure of the test instance
being partitioned. An adaptive scheme for PLM3 algorithms can also change the number of cell moves in
each phase. Third, a phase concept similar to the phase concept can be used for the PFM algorithm. Each
pass can contain a number of phases, and after each phase, we initialize each move count to zero and start
another phase. This phase concept seems promising since the mobility values of cells get smaller and smaller
during partitioning, thereby partially preventing the selection of the moves with larger gains. This problem
can be avoided by the usage of a large scale factor also. Fourth, we can change the way the move counts are
incremented in that we can penalize the moves with smaller gains more and more. Fifth, an application of
our algorithms to VLSI placement problem seems to be promising, as there are a number of very successful
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VLSI placement systems based on partitioning [6, 15, 19].
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Appendix

Proposition 2.1: A net e; is critical if and only if either there exists a part P; such that §;(s) = |e;|, or
there exist two different parts P, and P, such that §;(s) = 1 and §;(t) = |ej| — 1.

Proof: We first prove that if a net is critical then either there exists a part P, such that d;(s) = |e;|, or
there exist two different parts P, and P; such that é;(s) = 1 and é;(¢) = |e;| — 1. Let A; denote the number
of parts that e; connects. Note that if A; > 2, then e; is in the cutset. If A; > 3, then any move of cells on
e; can decrease A; by at most one, and so cannot remove e; from the cutset, i.e., e; is not critical. Thus,
we must have A; < 2. If e; is critical, then it has a cell that either would remove e; from the cutset or
insert it into the cutset if it is moved. For a cell to insert e; into the cutset, we must have A; = 1, and
so 6;(s) = |e;| for some part P;. For a cell to remove e; from the cutset, we must have A; = 2, and so
3;(s) = 1 and §;(t) = |e;| — 1 for two different parts P, and P; so that the move of the cell from P, to P,
can remove e; from the cutset.

Now, let us prove that a net e; is critical if either there exists a part P, such that §;(s) = |e;|, or there
exist two different parts P, and P; such that §;(s) = 1 and 4,(¢) = |e;j| — 1. If §,(s) = |e;| for some part P;,
then the move of a cell on e; from P, to another part in the partition will insert e; into the cutset, and so
e; is critical. If é;(s) = 1 and §;(¢) = |e;j| — 1 for two different parts P, and P;, then the move of a cell on
e; from P, to P, will remove e; from the cutset, and so e; is critical.

Proposition 2.3: Consider the move of cell v; from P, to P;. Let the cutsize before and after the move
be denoted by x(II) and x'(II), respectively. Then, x'(Il) = x(II) — G;(s,t) where G;(s,t) is the move gain
of v; before the move.

Proof: By Propositions 2.1, 2.2, and the definition of costs of a cell, the move of cell v; from P, to P;
can only change the cutstates of the nets in F;(s,t) and I;(s), which consist of critical nets. For each net
e; in E;i(s,t), the move yields 4;(t) = |e;|, and, for each net e; in I;(s), it yields é;(s) = |ej| — 1 and
d;(t) = 1. That is, the move removes the nets in F;(s,t) from the cutset and inserts those in E;(s,t) to the
cutset. By Equation 5, the decrease in the cutsize due to the nets in F;(s,t) is equal to the C;(s,t), and,
by Equation 6, the increase in the cutsize due to the nets in I;(s) is equal to C;i(s, s). Therefore, we have,
x'(IT) = x(IT) — Ci(s, ) + Ci(s, s) = x(IT) — (Ci(s, ) — Ci(s, 5)) = x(IT) — Gi(s, ).

Proposition 2.4: The initial cost computation algorithm given in Figure 3 computes costs of each cell as
defined in Equations 5 and 6. Furthermore, it has a time complexity of O(pk).

Proof: The for loop of lines 1-10 performs the same operations for each cell; hence, let us consider a cell v;
in P,. The for loop of lines 2-3 initializes each cost of v; to zero. By Proposition 2.2, the costs of v; depend
only on critical nets, and these costs are computed as in Equation 5 and Equation 6. Thus, for each net
e; on v;, we first check whether e; is critical or not using Proposition 2.1. If §;(s) = 1 and there exists a
part P such that §;(t) = |e;j| — 1, then e; is critical and line 8 increments C;(s,t) by ¢; as in Equation 5.
If §;(s) = |ej|, then line 10 increments C;(s, s) by ¢; as in Equation 6.

We now determine the time complexity of this algorithm. The for loop of lines 2-3 is executed O(k)
times, as each cell has k costs. Lines 7-8 and line 10 take constant time. Line 6 requires O(k) time because
we should check every part in the partition in the worst case. The for loop of lines 4-10 iterates d; times.
Since Y., d; = p by Equation 1, the algorithm takes O(pk) time.

Proposition 2.5: The cost update algorithm given in Figure 4 updates the costs of the cell moved and
those of its neighbors as defined in Equations 5 and 6. Furthermore, if the locking mechanism is used, then
this algorithm takes O(pkGpqae) time for n cell moves. If not, then it takes O(kGmaz Dy, maz De,maz) time
per move where Dy pmq, is the maximum cell degree, and De pmq, is the maximum net degree.

Proof: For each net e; on v;, we must have d,(s) > 1 before the move, and §;(¢) > 1 after the move since
v; is moved from P, to P;. Moreover, by Proposition 2.2, we should only consider the critical nets on v; for
the cost updates. Hence, by Proposition 2.1, the remaining cases are as follows:

1. A net e; on v; is critical before the move if and only if one of the following cases holds:
l.a) 4;(s) = 1 and there exists a part P; such that &;(1) = |e;| — 1,
1.b) 4;(s) = |ej| — 1 and there exists a part P; such that §;(!) = 1, and
1c) 5(5) = Il

2. A net e; on v; is critical after the move if and only if one of the following cases holds:
2.a) 6;(t) = 1 and there exists a part P; such that §;(I) = |ej| — 1,
2.b) 4;(t) = |ej| — 1 and there exists a part P; such that §;(l) = 1, and
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2.c) &(t) = lesl.

Now, case (1.a) is equivalent to case (2.c) for | = ¢, whereas it can be handled by cases (1.b) and (2.b)
for I #t when |e;j| = 2. Similarly, case (2.a) is equivalent to case (1.c) for [ = s, whereas it can be handled
by cases (1.b) and (2.b) for I # s when |e;| = 2. Note that, cases (1.a) and (2.a) for I # ¢ and for | # s,
respectively, do not involve any updates when |e;| > 2. Hence, it suffices to consider only cases (1.b), (1.c),
(2.b), and (2.c). In the algorithm, lines 3-6, lines 7-10, lines 13-16, and lines 17-20 handle cases (1.c), (1.b),
(2.c), and (2.b), respectively.

In case (1.c), since d;(s) = |e;| before the move, c; is already included in the internal costs C,(s,s) of
each cell v, on e;. After the move, e; is a cut net and does not contribute to the internal costs of these cells;
hence, its weight, c;j, should be subtracted from these internals costs, which is done in line 5. In case (1.b),
since d;(s) = |ej| — 1 before the move, ¢; is already included in the external cost C,(l,s) of a cell v, in P,
where | # s. After the move, e; is not critical any more, and so its contribution to this external cost should
be eliminated, which is done in lines 9. Lines 11-12 update ¢;(s) and §;(¢), as the number of terminals of e;
in P, should be decremented by 1, and that in P, should be incremented by 1 with the move of v;, which
is on e;, from P, to P;. In case (2.c), since §;(t) = |e;| after the move, e; should contribute to the internal
costs Cy(t,t) of each cell v, on e;, which is done in lines 15. In case (2.b), since d;(¢) = |ej| — 1 after the
move, e; becomes a critical net. Then, e; should contribute to the external cost C,(l,t) of a cell v, in P,
where [ # ¢, which is done in lines 19.

Since the mobility values of a cell depend on its gains, which in turn depend on its costs, any cost
change should be forwarded to the corresponding gains both for the PLM and the FMS algorithms, and to
the corresponding gains and mobility values for the PFM algorithm. The gain (and mobility) updates of
neighbor cells are performed in lines 6, 10, 16, and 20 using Equations 7 and 11.

For the cell moved, which is v;, there are no changes in its costs, but the interpretation of its costs
changes, and so its gains (and mobility values) should be updated. To see this, note that v; is moved
from P, to P;. If 6;(s) = |e;| for a net e; on v; before the move, then ¢; is already included in C;(s, s).
After the move, we have §;(s) = |e;| — 1 and §;(t) = 1, and so ¢; should be included in C;(¢, s), but, since
Ci(t,s) = Ci(s,s), it is already included. If §;(s) = 1 and é;(¢) = |ej| — 1 for a net e; on v; before the
move, then ¢; is already included in Cj(s,t). After the move, we have &;(t) = |e;|, and so c; should be
included in C;(t,t), but, since Ci(t,t) = C;(s,t), it is already included. On the other hand, if §;(s) = 1
and §;(l) = |ej| — 1 for a net e; on v; where | # t before the move, then ¢; is already included in C;(s,!).
After the move, we have §;(t) = 1 and 4;(I) = |e;| — 1, and so ¢; should be included in C;(t,!), but, since
Ci(t,1) = Ci(s,1), it is already included. Hence, no changes are necessary in the costs of v;.

Next, we determine the time complexity of the cost update algorithm. Assume that the locking mech-
anism is used, and so each cell is locked immediately after it is moved and it is not moved any more. We
will prove that, for each net, we need to do a constant number of update operations. Recall that the com-
putation of a gain or mobility of a cell takes constant time provided that the associated costs are computed
already, and also that each cell has k costs, and P, and P; represents the source and target parts in a move,
respectively.

For a net e;, lines 4-6 are executed at most once because all the unlocked cells on e; can only be in P;,
and, after a move involving a cell on e; from P;, we can no longer have §;(s) = |e;|. For a net e;, lines 8-10
are executed at most three times. To see this, if §;(s) = |e;| — 1 and 4;(!) = 1 for some part P; before a
move, then only P, and P; can again be a source part for a move involving a cell on e;. Now, since P; can
have only one unlocked cell that is a terminal of e;, then we can have ¢;(l) = |e;| — 1 at most once. Also,
if 8;(s) = |e;| — 1 before a move of a cell on e; from P,, then, later, we can have §;(s) = |ej| — 1 at most
once again only if the only terminal of e; in P; has been moved to P;.

For a net e;, lines 14-16 are executed at most once because all the terminals of e; are already in P;, and
P, cannot be a target part again satisfying §;(¢) = |e;j|. For a net e;, lines 18-20 are executed at most three
times. To see this, if we already have §;(t) = |e;| — 1 after a move to P, then e; has at least one locked cell
in P,. Assume that all the other cells on e; are unlocked and the only cell of e; which is not in P, is in P,
after the move. If all the unlocked cells of e; in P, are moved to P; then we will have ¢;(l) = |e;| — 1 after
the last move. Final execution of these lines may occur only if |e;| = 3, and the last unlocked cell of e; in
P, is moved to P,. Therefore, it follows that for a net e;, lines 4-6 and lines 14-16 are executed at most
once, respectively, and lines 8-10 and lines 17-20 are executed at most three times, respectively.

The for loop of lines 4-6 takes O(kGmaqz|€;|) time since we update (k — 1) gains for each cell on e; and
these gain updates can involve (k — 1) deletions from bucket lists. Line 8 requires O(k) time, line 9 takes
constant time, and line 10 takes O(Gmaz) time since it can involve only one deletion from a bucket list. The
for loop of lines 14-16 takes O(kGmaz|€;|) time since we update (k — 1) gains for each cell on e; and these
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gain updates can involve (k — 1) deletions from bucket lists. Finally, line 18 requires O(k) time, line 19
takes constant time, and line 20 takes O(Gmaz) time since it can involve only one deletion from a bucket
list. Moreover, line 1 requires O(kGmqz) time since it can involve (k — 1) deletions from bucket lists. In
total, the cost update algorithm runs in time O(kGpae + Z;nzl 2(kGmazlej| + 3k + 3Gmaz)) = O(PkGmaz)

for n cell moves.

If the locking mechanism is not used, we cannot predict how many times each cell will be moved, but
can do the following worst-case analysis for a single cell move. The for loop of lines 2-20 can iterate at most
Dy, maq times where Dy 4 is the maximum cell degree. The for loops of lines 4-6 and 14-16, respectively,
can iterate at most De pqe times where Dg rqq is the maximum net degree. Since, from the preceding time
complexity analysis, we know how much time each of the other operations takes, the cost update algorithm
runs in time O(kGmaz + 2Dy, maz (kGmaz De,maz + k + Gmaz)) = O(kGmaz Dy maz De,maz ) for a cell move.
If we assume that the mobility concept is used, and so the size of each bucket array is equal to the scale
factor S, the time complexity becomes O(kS Dy, maz De,maz)-

Proposition 3.2: The time complexity of PLM algorithm (Figure 5) for a k-way partitioning of a circuit
with p pins is O(Noyu:pk(k + Gmaz)) where Ny, Is the number of phases per pass. Its space complexity Is
O(pk + kZGmam + pNout)-

Proof: Line 1 initializes bucket list pointers in k(k — 1) bucket arrays to null, and each bucket array has
2Gmaz + 1 buckets. Thus, line 1 takes ©@(k?Gpmqz) time. Line 4 uses the initial cost computation algorithm
in Figure 3, and thus requires O(pk) time by Proposition 2.4. In line 5, the move gains of each cell are
computed, and each cell is inserted into the bucket lists in ©(nk) time since the computation of a move gain
and insertion to a bucket list require constant time. Since there are k(k — 1) different move directions, a
search for the move with the maximum gain involves only one move at the front of each bucket list indexed
by the maximum gain pointer. Thus, line 7 can be done in ©(k?) time. A deletion of a cell from k bucket
lists in line 8 requires O(kGmqz) time. Line 10 takes constant time since it only involves locking the cell
moved and changing the part in which the cell moved lies. In line 11, the cost update algorithm in Figure 4
is used, and this algorithm takes O(pkGpqz) time for n cell moves by Proposition 2.5. For the next move-
and-lock phase, the moves of the unlocked cells remaining in the bucket lists should be removed. Line 13
does this if there are unlocked cells, i.e., if N;, < n. Since there are (n — Njy,) cells that are not moved yet,
and each of them has (k—1) moves in the bucket lists, line 13 takes O(nkGmqez). Line 13 can also be done in
O(k%G oz +kn) time by searching each slot in all the bucket arrays and deleting each bucket node in the non-
empty bucket lists. We will use the first expression for simplicity. Hence, the repeat loop of lines 6-11 takes
Nin(0(k?) + O(kGmaz) + O(1)) + O(pkGumaz) = O(pk? + pkGumaz) time since N, = ©(n) = O(p), and the
for loop of lines 3-13 takes Nuy: (O (pk)+O0(nk)+O0(pk? +pkGmaz ) +O(nkGmaz)) = O(Nous(pk? +0kGmaz )

time.

Constructing the maximum prefix subsequence in line 14 involves a visit to every move performed and
saved in a sequence. Thus, line 14 takes O(N) = O(NyyutNin) = O(Noy:p) time. In line 16, every move
included in the maximum prefix subsequence is made permanent, and the distribution of nets on the cell
moved is updated; hence, line 16 requires O(N)O(Noy:p) time. Also, lines 15 and 17 take constant time.
Therefore, the time complexity of the PLM algorithm per pass (lines 2-18) is O(Nout(pk? + pkGmaz)) +
O(Nautp) + O(Nautp) = O(Nout (sz + kamam)) time-

For the space complexity analysis, consider a hypergraph H = (V, E) with n cells, m nets, and p
terminals to be partitioned into k parts. The cells require O(n) space, the distributions of the nets to the
parts require O(mk) space, and the nets need O(p) space. There are k(k — 1) bucket arrays each with a
size of 2Gpqae + 1, and there are n(k — 1) bucket list nodes, as each cell is inserted into (k — 1) bucket lists.
Hence, the bucket list data structure takes O(k?Gumaz + nk) space. Since we also save each tentative move
performed during a pass, we need a space of size N where N = O(N,y:p). Hence, the total amount of space
required is O(pk + k2Gmaz + NowtD).

Proposition 3.3: The time complexity of PFM algorithm (Figure 6) for a k-way partitioning of a circuit
with p pins is O(k(p+ kS + N(k + Dy, mazDe,macS))) where Dy mae and Dg mqq are the maximum cell and
net degrees, respectively, and N is the number of moves per pass. Its space complexity is O(pk + k2S + N).
Proof: Line 1 initializes bucket list pointers in k(k — 1) bucket arrays to null, and each bucket array has
S buckets. Thus, line 1 takes ©(k2S) time. Line 3 uses the initial cost computation algorithm in Figure 3,
and thus requires O(pk) time by Proposition 2.4. In line 4, the move gains of each cell are computed,
and each cell is inserted into the bucket lists on the basis of their mobility values in ©(nk) time since the
computation of a move gain as well as mobility and insertion to a bucket list require constant time. Since
there are k(k — 1) different move directions, a search for the move with the maximum mobility involves only
one move at the front of each bucket list indexed by the maximum mobility pointer. Thus, line 6 can be
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done in ©(k?) time. Line 8 takes constant time. In line 9, the cost update algorithm in Figure 4 is used,
and this algorithm takes O(kSDy,maz De,maz) time for a single cell move by Proposition 2.5. Hence, the
loop of lines 5-10 takes N(©(k?) + O(1) + O(1) + O(kS Dy maz De,maz)) = O(N(k? + kS Dy maz De,maz))
time for each move.

Constructing the maximum prefix subsequence and finding the maximum prefix sum Gr are exactly
the same as in the the proof of Proposition 3.2, and so line 11 requires O(N) time. Line 12 and line 14
take constant time. Line 13 is similar to the one in the PLM algorithm, but takes O(N Dy maz) time.
Since the PFM algorithm does not remove moves from the bucket lists at each cell move, all the moves for
each cell in the bucket lists should be deleted for the next pass. Thus, line 15 takes O(k%S + kn) time.
Therefore, the time complexity of the PFM algorithm per pass (lines 2-16) is O(pk) + ©(nk) + O(N (k% +
kSDy maz De maz) + O(N) + O(N Dy maz) + O(k%S + kn) = O(pk + k%S + N (k? + kSDy maz De maz) time.

The space complexity analysis is exactly the same as the one in the proof of Proposition 3.2 except for
the size of a bucket array, which is equal to S for the PFM algorithm. Hence, the total amount of space
required is O(pk + k25 + Noy:p).
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Table 2: Cutsize averages for benchmark circuits. The number of parts is denoted by k. Each value in
parentheses give the ratio of the average cutsize found by the respective algorithm to that of FMS algorithm.
Bold values are the best values in each row.

PROBLEM CUTSIZE AVERAGES
Name | k | FMS || PLMi | PLMz | PLM3s || PFMI | PFM2z | PFM3 | SA
2 56.8 || 62.3 (1.10) | 54.5 (0.96) | 54.7 (0.96) || 99.9 (1.76) | 60.2 (1.06) | 59.2 (1.04) 67.2 (1.18)
4 || 300.4 || 259.3 (0.86) | 230.2 (0.77) | 211.4 (0.70) || 166.6 (0.55) | 126.3 (0.42) | 111.2 (0.37) || 130.0 (0.43)
struct | 6 | 408.4 || 321.3 (0.79) | 289.5 (0.71) | 267.1 (0.65) || 260.1 (0.64) | 214.0 (0.52) | 183.3 (0.45) || 160.6 (0.39)
8 || 496.8 || 432.2 (0.87) | 394.0 (0.79) | 371.6 (0.75) || 369.5 (0.74) | 303.7 (0.61) | 295.1 (0.59) || 180.0 (0.36)
2 |[ 2782 || 367.7 (1.32) | 312.5 (1.12) | 268.9 (0.97) || 284.2 (1.02) | 259.0 (0.93) | 239.7 (0.86) || 226.0 (0.81)
4| 8287 || 771.8 (0.93) | 718.2 (0.87) | 671.6 (0.81) || 657.1 (0.79) | 454.1 (0.55) | 416.4 (0.50) || 424.2 (0.51)
prim2 | 6 || 9685 || 873.2 (0.90) | 833.8 (0.86) | 822.8 (0.85) || 839.4 (0.87) | 592.6 (0.61) | 537.4 (0.55) | 508.0 (0.52)
8 || 1043.2 || 982.6 (0.94) | 941.0 (0.90) | 901.5 (0.86) || 942.3 (0.90) | 666.5 (0.64) | 626.5 (0.60) || 565.8 (0.54)
2 48.6 || 61.4 (1.26) | 56.4 (1.16) | 52.6 (1.08) || 107.6 (2.21) | 90.8 (1.87) | 76.9 (1.58) 83.6 (1.72)
4 || 388.2 || 340.8 (0.88) | 350.5 (0.90) | 330.4 (0.85) || 303.7 (0.78) | 184.8 (0.48) | 162.7 (0.42) || 171.4 (0.44)
c7552 | 6 | 498.2 || 435.9 (0.88) | 399.6 (0.80) | 372.8 (0.75) || 420.7 (0.84) | 262.6 (0.53) | 218.1 (0.44) || 219.2 (0.44)
8 || 550.7 || 517.1 (0.94) | 484.0 (0.88) | 444.0 (0.81) || 478.4 (0.87) | 306.1 (0.56) | 257.8 (0.47) || 259.4 (0.47)
2 38.7 || 41.0 (1.06) | 40.7 (1.05) | 36.4 (0.94) || 48.7 (1.26) | 35.3 (0.91) | 80.6 (0.79) 34.6 (0.89)
4 96.9 || 90.9 (0.94) | 81.1(0.84) | 75.7(0.78) || 87.5(0.90) | 62.0 (0.64) | 57.1 (0.59) 68.4 (0.71)
c1355 | 6 | 112.1 || 102.1 (0.91) | 94.3 (0.84) | 88.1(0.79) || 102.0 (0.91) | 72.1 (0.64) | 68.4 (0.61) 77.6 (0.69)
8 || 122.2 || 112.4 (0.92) | 101.1 (0.83) | 93.1 (0.76) || 110.2 (0.90) | 78.1 (0.64) | 74.1 (0.61) 80.4 (0.66)
2 83.8 || 101.4 (1.21) | 92.3 (1.10) | 80.3 (0.96) || 110.5 (1.32) | 92.6 (1.11) | 72.9 (0.87) 77.2 (0.92)
4 || 249.1 || 230.6 (0.93) | 222.1 (0.89) | 216.4 (0.87) || 225.2 (0.90) | 168.7 (0.68) | 129.6 (0.52) || 144.8 (0.58)
3540 | 6 | 290.6 || 273.2 (0.94) | 261.0 (0.90) | 246.8 (0.85) || 271.5 (0.93) | 201.6 (0.69) | 165.5 (0.57) || 183.0 (0.63)
8 || 317.9 || 303.1 (0.95) | 281.1 (0.88) | 263.0 (0.83) || 294.4 (0.93) | 218.4 (0.69) | 181.5 (0.57) || 197.4 (0.62)
2 51.4 || 61.0 (1.19) | 57.2 (1.11) | 53.7 (1.05) || 170.3 (1.37) | 54.0 (1.05) | 43.8 (0.85) 44.8 (0.87)
4| 131.1 || 119.6 (0.91) | 114.3 (0.87) | 108.2 (0.83) || 119.4 (0.91) | 81.2 (0.62) | 70.0 (0.53) 77.4 (0.59)
c2670 | 6 | 162.8 || 142.1 (0.87) | 131.4 (0.81) | 120.8 (0.74) || 139.6 (0.86) | 91.9 (0.56) | 78.7 (0.48) 85.8 (0.53)
8 || 185.2 || 168.7 (0.91) | 149.3 (0.81) | 127.4 (0.69) || 157.1 (0.85) | 101.4 (0.55) | 87.8 (0.47) || 85.8 (0.46)
2 76.4 || 82.6 (1.08) | 74.3 (0.97) | 65.9 (0.86) || 84.7 (1.11) | 72.4 (0.95) | 72.8 (0.95) 73.8 (0.97)
4 || 205.8 || 181.5 (0.88) | 161.0 (0.78) | 144.6 (0.70) || 152.6 (0.74) | 123.6 (0.60) | 111.8 (0.54) || 113.6 (0.55)
priml | 6 | 244.7 || 217.4 (0.89) | 192.7 (0.79) | 172.6 (0.71) || 199.6 (0.82) | 145.4 (0.59) | 130.6 (0.53) || 131.0 (0.54)
8 || 274.0 || 253.7 (0.93) | 218.3 (0.80) | 191.5 (0.70) || 227.8 (0.83) | 159.0 (0.58) | 148.7 (0.54) || 144.2 (0.53)
2 26.6 || 30.0 (1.13) | 27.9 (1.05) | 24.0 (0.90) || 31.7 (1.19) | 27.3 (1.03) | 23.2 (0.87) || 22.2 (0.83)
4 85.3 || 80.2(0.94) | 75.7(0.89) | 76.6(0.90) || 79.4 (0.93) | 50.4 (0.59) | 40.6 (0.48) 46.8 (0.55)
$838 6 | 107.4 || 99.3(0.92) | 94.4(0.88) | 83.2(0.77) || 100.2 (0.93) | 65.3 (0.61) | 54.3 (0.51) 61.0 (0.57)
8 || 121.3 || 116.1 (0.96) | 103.8 (0.86) | 94.3 (0.78) || 111.3 (0.92) | 75.6 (0.62) | 62.6 (0.52) 68.4 (0.56)
2 57.9 || 61.5 (1.06) | 62.5 (1.08) | 53.8 (0.93) || 93.9 (1.62) | 82.9 (1.43) | 77.6 (1.34) 71.2 (1.23)
4 || 438.2 || 374.1 (0.85) | 320.0 (0.73) | 295.7 (0.67) || 339.9 (0.78) | 190.7 (0.44) | 148.2 (0.34) || 184.8 (0.42)
ind1 6 || 530.6 || 475.0 (0.90) | 445.2 (0.84) | 413.0 (0.78) || 461.4 (0.87) | 305.3 (0.58) | 266.4 (0.50) || 263.4 (0.50)
8 || 579.6 || 550.6 (0.95) | 521.6 (0.90) | 474.3 (0.82) || 529.5 (0.91) | 381.4 (0.66) | 339.0 (0.58) || 293.2 (0.51)
2 |[ 1134 || 122.9 (1.08) | 105.3 (0.93) | 100.9 (0.89) || 174.5 (1.54) | 157.9 (1.89) | 157.9 (1.39) | 89.8 (0.79)
4 || 336.0 || 314.1 (0.93) | 268.1 (0.80) | 240.3 (0.72) || 362.4 (1.08) | 245.6 (0.73) | 245.6 (0.73) || 157.4 (0.47)
test03 | 6 | 400.2 || 371.3 (0.93) | 344.3 (0.86) | 322.6 (0.81) || 424.7 (1.06) | 320.1 (0.80) | 320.1 (0.80) || 226.8 (0.57)
8 || 437.1 || 413.4 (0.95) | 384.2 (0.88) | 364.6 (0.83) || 457.1 (1.05) | 348.2 (0.80) | 348.2 (0.80) || 250.8 (0.57)
2 36.0 || 40.5 (1.13) | 38.3 (1.07) | 33.8(0.94) || 51.4 (1.43) | 46.7 (1.30) | 43.2 (1.20) || 83.2 (0.92)
4| 169.7 || 156.2 (0.92) | 134.6 (0.79) | 118.0 (0.70) || 146.4 (0.86) | 100.4 (0.59) | 74.6 (0.44) 76.2 (0.45)
balu 6 || 206.0 || 193.7 (0.94) | 181.1 (0.88) | 168.3 (0.82) || 182.9 (0.89) | 155.5 (0.75) | 123.9 (0.60) || 125.6 (0.61)
8 || 224.9 || 213.2 (0.95) | 201.5 (0.90) | 190.8 (0.85) || 204.7 (0.91) | 170.8 (0.76) | 158.9 (0.71) || 146.2 (0.65)
2 89.5 || 85.6 (0.96) | 84.1(0.94) | 80.8 (0.90) || 140.2 (1.57) | 93.3 (1.04) | 91.8 (1.03) 81.8 (0.91)
4 || 289.7 || 273.0 (0.94) | 262.5 (0.91) | 248.6 (0.86) || 264.6 (0.91) | 153.8 (0.53) | 137.8 (0.48) || 151.2 (0.52)
test06 | 6 | 356.5 || 328.4 (0.92) | 303.6 (0.85) | 286.0 (0.80) || 321.4 (0.90) | 204.5 (0.57) | 175.1 (0.49) || 173.0 (0.49)
8 || 394.0 || 374.4 (0.95) | 349.6 (0.89) | 319.0 (0.81) || 361.2 (0.92) | 233.1 (0.59) | 203.2 (0.52) || 191.8 (0.49)
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Table 3: Minimum Cutsizes for benchmark circuits. The number of parts is denoted by k. Each value in
parentheses give the ratio of the minimum cutsize found by the respective algorithm to that of FMS algorithm.
Bold values are the best values in each row.

PROBLEM MINIMUM CUTSIZES
Name | k || FMS || PLMi_ | PLM2z | PLM3 || PFMi_ | PFM2z | PFMS | 54
2 40 || 43 (1.07) 3 (1.07) | 47 (1.18) || 58 (1.45) 3 (0.82) | 33 (0.82) 36 (0.90)
4| 202 || 206 (1.02) | 175 (0.87) | 173 (0.86) || 136 (0.67) | 83 (0.41) | 76 (0.38) || 121 (0.60)
struct | 6 || 302 || 268 (0.89) | 231 (0.76) | 220 (0.73) || 212 (0.70) | 159 (0.53) | 122 (0.40) || 145 (0.48)
8 || 406 || 391 (0.96) | 310 (0.76) | 280 (0.69) || 317 (0.78) | 235 (0.58) | 257 (0.63) || 163 (0.40)
2 || 154 || 238 (1.55) | 190 (1.23) | 205 (1.33) || 218 (1.42) | 215 (1.40) | 182 (1.18) || 182 (1.18)
4|l 731 || 713 (0.98) | 635 (0.87) | 602 (0.82) || 527 (0.72) | 409 (0.56) | 351 (0.48) || 388 (0.53)
prim2 | 6 | 883 || 821 (0.93) | 785 (0.89) | 765 (0.87) || 774 (0.88) | 519 (0.59) | 479 (0.54) || 487 (0.55)
8 || 991 936 (0.94) | 883 (0.89) | 866 (0.87) 815 (0.82) | 598 (0.60) | 576 (0.58) || 535 (0.54)
2 21 || 38 (1.81) | 37 (1.76) | 32 (1.52) 9 (2.81) | 56 (2.67) | 37 (1.76) 76 (3.62)
4| 295 || 298 (1.01) | 287 (0.97) | 256 (0.87) 243 (0.82) | 157 (0.53) | 120 (0.41) || 159 (0.54)
c7652 | 6 || 445 || 400 (0.90) | 359 (0.81) | 315 (0.71) || 369 (0.83) | 211 (0.47) | 164 (0.37) || 208 (0.47)
8 || s01 455 (0.91) | 442 (0.88) | 409 (0.82) 403 (0.80) | 263 (0.52) | 200 (0.40) || 243 (0.49)
2 20 || 30 (1.50) | 27 (1.35) | 22 (1.10) || 40 (2.00) | 21 (1.05) | 19 (0.95) 22 (1.10)
4 78 || 81 (1.04) | 70 (0.90) | 66 (0.85) || 77 (0.99) | 56 (0.72) | 53 (0.68) 64 (0.82)
c1355 | 6 96 || 93(0.97) | 85(0.89) | 81 (0.84) || 86 (0.90) | 61 (0.64) | 64 (0.67) 73 (0.76)
8 | 107 104 (0.97) | 89 (0.83) | 83 (0.78) 102 (0.95) | 71 (0.66) | 68 (0.64) 78 (0.73)
2 56 || 72 (1.29) | 64 (1.14) | 66 (1.18) || 72 (1.29) | 56 (1.00) | 56 (1.00) 69 (1.23)
4 || 210 || 190 (0.90) | 195 (0.93) | 183 (0.87) || 200 (0.95) | 151 (0.72) | 84 (0.40) || 141 (0.67)
c3640 | 6 || 260 || 250 (0.96) | 227 (0.87) | 230 (0.88) || 255 (0.98) | 175 (0.67) | 148 (0.57) || 176 (0.68)
8 | 284 276 (0.97) | 261 (0.92) | 246 (0.87) 281 (0.99) | 191 (0.67) | 161 (0.57) || 184 (0.65)
2 22 || 44 (2.00) | 46 (2.09) | 43 (1.95) || 50 (2.27) | 36 (1.64) | 27 (1.23) 39 (1.77)
4 92 || 104 (1.13) | 100 (1.09) | 90 (0.98) || 94 (1.02) | 62 (0.67) | 63 (0.68) 73 (0.79)
c2670 | 6 || 134 || 115 (0.86) | 111 (0.83) | 104 (0.78) || 124 (0.93) | 79 (0.59) | 68 (0.51) 80 (0.60)
8 | 155 146 (0.94) | 126 (0.81) | 111 (0.72) 134 (0.86) | 87 (0.56) | 75 (0.48) 84 (0.54)
2 48 || 61 (1.27) | 51 (1.06) | 49 (1.02) || 65 (1.35) | 51 (1.06) | 47 (0.98) 67 (1.40)
4| 160 || 159 (0.99) | 138 (0.86) | 127 (0.79) || 125 (0.78) | 111 (0.69) | 97 (0.61) || 109 (0.68)
primi | 6 || 201 || 181 (0.90) | 170 (0.85) | 151 (0.75) || 172 (0.86) | 123 (0.61) | 114 (0.57) || 126 (0.63)
8| 224 zzz (0.99) 182 (0.81) 161 (0.72) 196 (0.88) 137 (0.61) | 126 (0.56) 131 (0.58)
2 16 2 (1.38) 1 (1.31) 7 (1.06) 3 (1.44) 6 (1.00) | 16 (1.00) 6 (1.00)
4 65 || 62 (0.95) | 65(1.00) | 63(0.97) || 61 (0.94) | 36(0.55) | 32 (0.49) 43 (0.66)
838 6 84 || 86(1.02) | 83(0.99) | 74 (0.88) || 88 (1.05) | 54 (0.64) | 45 (0.54) 58 (0.69)
8| 102 101 (0.99) | 90 (0.88) | 82 (0.80) 102 (1.00) | 63(0.62) | 53 (0.52) 64 (0.63)
2 20 || 30 (1.50) | 27 (1.35) | 25 (1.25) || 30 (1.50) | 37 (1.85) | 39 (1.95) 48 (2.40)
4 || 341 || 269 (0.79) | 235 (0.69) | 198 (0.58) || 212 (0.62) | 118 (0.35) | 93 (0.27) || 153 (0.45)
ind1 6 || 438 || 414 (0.95) | 391 (0.89) | 348 (0.79) || 378 (0.86) | 235 (0.54) | 200 (0.46) || 219 (0.50)
8 || 522 506 (0.97) 489 (0.94) 424 (0.81) || 455 (0.87) | 284 (0.54) | 249 (0.48) 27s (0.53)
2 60 || 88 (1.47) | 86 (1.43) | 82 (1.37) || 124 (2.07) | 110 (1.83) | 110 (1.83) 83 (1.38)
4| 262 || 260 (0.99) | 206 (0.79) | 191 (0.73) || 282 (1.08) | 194 (0.74) | 194 (0.74) || 142 (0.54)
test03 | 6 || 339 || 335 (0.99) | 307 (0.91) | 285 (0.84) | 388 (1.14) | 283 (0.83) | 283 (0.83) || 212 (0.63)
8| 3m 37s (1.02) 353 (0.95) 331 (0.89) 416 (1.12) 313 (0.84) | 313 (0.84) 239 (0.64)
2 27 7 (1.00) 7 (1.00) 7 (1.00) 7 (1.00) 7 (1.00) | 27 (1.00) 7 (1.00)
4| 132 130 (0.98) 115 (0.87) | 76 (0.58) 117 (0.89) | 69 (0.52) | 46 (0.35) 54 (0.41)
balu 6 || 171 || 173 (1.01) | 164 (0.96) | 134 (0.78) || 154 (0.90) | 131 (0.77) | 99 (0.58) || 106 (0.62)
8 || 200 198 (0.99) 182 (0.91) 174 (0.87) 183 (0.92) 135 (0.68) | 129 (0.65) 140 (0.70)
2 62 || 73 (1.18) | 70 (1.13) | 65 (1.05) || 91 (1.47) | 72 (1.16) | 74 (1.19) 75 (1.21)
4 || 187 || 237(1.27) | 219 (1.17) | 217 (1.16) || 190 (1.02) | 104 (0.56) | 107 (0.57) || 137 (0.73)
test06 | 6 || 297 || 289 (0.97) | 265 (0.89) | 248 (0.84) | 264 (0.89) | 158 (0.53) | 144 (0.48) || 153 (0.52)
8 || 344 || 345 (1.00) | 319 (0.93) | 275 (0.80) || 299 (0.87) | 183 (0.53) | 157 (0.46) || 170 (0.49)
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Table 4: Execution time averages for benchmark circuits. The number of parts is denoted by k. Bold values
are the best values in each row.

PROBLEM EXECUTION TIME AVERAGES (in seconds)
Name | k FMS | PLM1 | PLM2 | PLM3 | PFM1 | PFM2 | PFM3 | SA
2 1,99 1.76 2.83 445 2.0t 315 9.08 155.28
4 3.32 5.40 17.12 60.99 6.62 13.43 67.52 415.06
struct | 6 4.88 8.21 35.03 | 172.36 11.16 31.93 | 220.90 697.88
8 6.91 9.42 58.17 | 409.30 13.63 53.71 | 383.23 950.30
2 5.56 4.08 7.38 14.25 4.31 6.52 22.13 913.96
4 7.28 8.94 42.51 | 168.66 11,55 37.03 | 172.54 3565.84
prim2 6 9.41 17.24 76.33 | 337.94 15.78 79.55 | 453.64 | 18406.74
8 13.18 21.44 | 127.35 | 860.38 20.74 | 123.10 | 743.87 | 37304.18
2 2.89 2.74 4.07 6.85 2.34 3.26 8.75 565.02
4 5.01 8.05 22.38 84.94 6.22 17.55 82.04 3742.70
c75562 6 6.77 14.14 53.45 | 250.42 9.70 43.68 | 258.13 | 10692.46
8 9.66 18.09 84.43 | 646.58 14.51 79.65 | 494.32 | 17971.80
2 0.55 0.45 0.86 1.49 0.41 0.77 2.43 161.12
4 0.63 1.02 3.31 13.53 0.90 2.92 13.55 565.60
c13565 6 0.88 1.60 6.99 43.89 1.22 6.07 33.73 1058.70
8 1.20 2.08 13.39 94.95 1.77 10.42 70.24 1395.08
2 1.26 0.83 1.74 2.94 0.94 1.40 2.93 584.76
4 1.53 2.30 6.58 25.42 1.61 6.57 29.00 1507.28
¢c3540 6 2.16 3.02 15.60 79.89 2.48 13.61 76.69 2491.46
8 2.87 3.89 29.63 | 188.76 3.38 25.80 | 174.31 3497.48
2 0.90 0.67 1.11 2.05 0.56 1.25 3.15 240.12
4 1.17 1.40 5.85 21.33 1.32 4.29 16.54 1046.72
c2670 6 1.74 2.65 11.80 68.54 2.25 9.64 58.37 1873.30
8 2.51 3.48 25.20 | 177.20 3.03 17.35 | 122.16 3049.84
2 0.91 0.90 1.35 2.59 0.64 1.01 3.42 205.12
4 1.31 2.24 6.77 22.05 2.07 4.63 24.98 1235.46
primi 6 2.07 3.62 14.13 70.12 3.38 10.64 84.67 2788.42
8 2.84 5.05 22.35 | 180.91 4.41 20.63 | 151.04 2747.78
2 0.34 0.34 0.52 1.03 0.22 0.37 1.10 87.58
4 0.54 0.90 2.89 8.28 0.55 2.35 11.06 352.32
s838 6 0.79 1.51 5.66 30.29 0.78 5.48 33.16 604.66
8 1.06 2.04 11.29 74.31 1.14 9.09 74.54 830.38
2 3.57 3.35 4.57 7.87 2.63 4.08 11.02 526.50
4 4.84 8.69 31.65 | 106.00 6.91 22.34 | 121.60 4932.18
ind1 6 6.45 13.22 51.71 | 269.21 9.71 48.60 | 287.05 | 11504.72
8 8.61 15.29 76.97 | 604.14 11.21 65.75 | 479.60 | 19825.56
2 2.22 2.00 3.44 4.66 2.81 7.37 1.45 864.48
4 3.46 5.30 17.44 63.90 3.64 19.71 0.27 2947.66
test03 | 6 4.80 8.02 29.99 | 163.29 5.20 32.98 0.38 6693.38
8 6.76 11.42 58.52 | 368.39 6.85 42.98 0.45 | 11201.86
2 0.71 0.77 1.15 2.22 0.64 0.79 2.50 61.22
4 0.92 1.49 5.16 19.76 1.23 5.34 26.18 587.58
balu 6 1.28 2.32 9.93 53.89 1.85 7.58 73.85 1200.98
8 1.72 2.83 13.95 | 114.94 1.94 15.14 | 135.98 1584.56
2 2.11 2.06 3.62 6.36 1.79 2.68 7.46 145.24
4 3.27 4.36 14.45 59.78 3.73 10.73 63.89 3237.82
test06 | 6 4.18 6.49 30.22 | 156.73 5.57 25.32 | 167.44 8134.66
8 5.44 8.25 50.57 | 375.36 7.10 44.10 | 390.10 | 13701.64
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Table 5: Average (Avr) results for performances of algorithms. Averages were taken over all our test instances.
k is the number of parts. Bold values are the best values in each row.

k || FMS || PLM1 | PLM2 | PLM3 || PFM1 | PFM2 | PFM3 || SA
A) Avr % Improvement in Avr Cutsizes wrt FMS Algorithm
2 0.0 -13.1 -4.5 5.1 -45.0 -17.2 -6.5 -0.5
4 0.0 9.0 16.4 21.8 15.4 42.8 50.5 48.1
6 0.0 10.1 16.5 22.4 12.3 37.7 45.5 46.1
8 0.0 6.6 14.1 21.0 10.6 35.9 41.9 46.5
B) Avr % Improvement in Minimum Cutsizes wrt FMS Algorithm
2 0.0 -41.7 -32.8 -25.1 -67.2 -37.3 -24.2 -51.6
4 0.0 -0.5 8.3 16.2 12.5 41.4 49.5 38.1
6 0.0 5.4 12.2 19.2 9.1 38.2 45.7 40.7
8 0.0 2.8 12.3 19.7 9.4 38.1 43.3 42.3
C) Avr % Improvement in Mazimum Cutsizes wrt FMS Algorithm
2 0.0 10.4 20.3 30.6 -11.4 6.6 16.7 32.4
4 0.0 13.8 18.5 23.1 15.1 40.0 48.0 52.0
6 0.0 11.8 17.1 24.0 13.5 36.0 42.9 49.0
8 0.0 9.7 16.1 23.9 13.7 34.7 41.3 50.5
D) Stability: Avr % Ratio of Standard Deviation to Avr Cutsize
2 22.6 17.3 15.6 14.8 17.9 19.7 19.0 15.2
4 6.6 6.6 7.8 8.5 9.3 11.5 11.7 7.2
6 4.8 5.6 5.9 5.6 6.5 8.5 8.9 5.5
8 4.2 4.7 5.2 5.1 5.0 7.5 7.3 4.1
E) Avr Ratio of Avr Running Times per pass to those of FMS Algorithm
2 1.0 1.4 2.5 4.7 1.0 1.9 5.6 -
4 1.0 1.6 5.8 22.6 1.2 4.3 24.3 -
6 1.0 1.7 9.1 51.7 1.3 6.9 53.3 -
8 1.0 1.7 11.8 95.2 1.3 8.7 83.8 -
F) Avr Ratio of Avr Running Times to those of FMS Algorithm
2 1.0 0.9 1.5 2.6 0.8 1.4 3.3 219.7
4 1.0 1.5 5.2 18.9 1.3 4.4 19.0 769.5
6 1.0 1.8 7.4 38.5 1.4 6.6 38.7 1273.7
8 1.0 1.6 9.3 66.8 1.4 8.1 55.1 1464.9
G) Avr of Avr Number of Passes
2 8.7 5.6 4.9 4.5 7.4 6.4 5.1 -
4 7.7 7.5 7.1 6.7 9.2 8.0 6.0 -
6 7.9 8.2 6.5 5.7 9.3 7.9 5.7 -
8 8.1 7.9 6.3 5.6 8.9 7.6 5.0 -
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Table 6: Cutsize averages by PFM3 for different values of the scale factor S. Gua. is the maximum move
gain possible. Bold values are the best values in each row.

PROBLEM R = 5/(2Gmas + 1)

Name I k 0.5 I 1 I 2 I 4 I 8 I 16 I 32 I 64 I 128
2 207.4 80.0 76.4 71.6 55.4 62.2 59.0 51.0 42.0
4 328.8 | 137.8 | 121.6 | 116.2 107.6 | 116.4 | 123.4 121.0 | 114.8

struct 6 438.8 | 246.4 | 236.4 | 224.0 215.8 | 210.8 | 215.8 219.6 | 206.4
8 485.6 | 317.0 | 296.4 | 289.6 276.6 | 275.8 | 264.2 | 264.0 275.6
2 55.8 44.2 43.4 42.4 42.0 45.6 38.0 40.4 40.6
4 85.4 81.6 74.8 73.8 73.6 72.2 73.4 70.0 70.4

c2670 6 109.0 97.2 88.8 88.6 81.8 81.2 78.6 78.0 78.6
8 121.0 | 103.6 99.2 92.2 92.0 88.8 86.4 89.6 84.6
2 48.0 51.8 48.2 52.4 43.2 38.4 45.8 43.8 43.8
4 102.6 83.8 66.0 70.8 78.6 66.0 73.4 84.6 79.2

balu 6 163.0 144.8 137.0 129.6 121.6 127.6 134.8 128.2 130.4
8 186.0 180.2 168.6 162.4 159.6 163.0 163.8 158.4 161.4

Table 7: Cutsize averages by PLM for different values of N;, and N where N is the total number of cell moves
per pass, N;, is the number of move-and-lock phases per pass, n is the number of cells, and k is the number

of parts. Bold values are the best values in each row.
PROBLEM N=n N =nk N = nk?
N; Nin N;

Name | k n/4 [ 2n/4 [ 3n/4 | 4n/4 [ n/4 [ 2n/4 [ 3n/4 | 4n/4 | n/4 | 2n/4 | 3n/4 | 4n/4
2 || 744 | 750 | 64.4 | 52.0| 61.4 | 53.2 | 60.8 | 50.6| 51.6| 49.0 50.6 | 50.6
4 || 270.0 | 261.4 | 197.2 | 296.6 | 256.6 | 232.8 | 169.6 | 179.4 | 255.0 | 208.2 | 150.0 | 197.4

struct | 6 || 380.8 | 343.2 | 332.6 | 421.2 | 372.2 | 305.4 | 322.0 | 334.8 | 370.4 | 294.6 | 314.2 | 307.2
8 || 455.0 | 403.2 | 393.2 | 487.2 | 460.0 | 393.4 | 394.8 | 405.0 | 456.6 | 356.0 | 390.8 | 405.8
2 || 59.0 | 55.8 | 56.8 | 46.4 | 54.8 | 55.8 | 47.4 | 45.0 | 55.0 | 51.6 | 50.4 | 45.0
4 || 123.8 | 123.4 | 101.0 | 134.2 | 119.0 | 118.0 | 96.4 | 93.4 | 116.6 | 109.0 | 95.2 | 96.8

c2670 | 6 || 152.2 | 142.0 | 135.2 | 165.0 | 148.0 | 124.8 | 123.2 | 112.2 | 148.2 | 119.2 | 117.0 | 113.2
8 || 177.2 | 174.8 | 154.2 | 186.2 | 176.4 | 141.6 | 147.4 | 146.2 | 174.2 | 122.2 | 129.0 | 131.0
2 || 98.0 | 113.6 | 114.4 | 121.2 | 100.0 | 103.4 | 113.0 | 95.6 | 105.6 | 94.2 97.6 | 95.6
4 || 303.2 | 308.6 | 234.2 | 328.2 | 276.6 | 273.8 | 244.0 | 259.6 | 263.0 | 226.8 | 220.0 | 219.8

test03 | 6 || 379.8 | 347.6 | 332.0 | 389.0 | 359.4 | 332.6 | 311.4 | 315.6 | 364.4 | 317.0 | 292.0 | 294.2
8 || 421.2 | 418.6 | 413.4 | 439.0 | 418.4 | 380.0 | 376.0 | 378.8 | 416.6 | 355.0 | 367.8 | 364.4
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