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Abstract

In this paper we use genetic algorithms to learn feature weights for the Nearest
Neighbor classification algorithm. We represent feature weights as real values in [0..1]
and their sum is 1. A new crossover operation, called continuous uniform crossover,
is introduced where the legality of chromosomes is preserved after the crossover
operation. This new crossover operation is compared with three other crossover
operations—one-point crossover, two-point crossover, and uniform crossover—all
of which require normalization after the crossover operation. Four genetic algo-
rithms using each of these four crossover operations are implemented. Each genetic
algorithm tries to learn feature weights to improve the classification accuracy of
the Nearest Neighbor algorithm. Then the learned weights are assigned to features
to be used in distance calculations of the Weighted Nearest Neighbor classification
algorithm and the resulting classification accuracies in our datasets are compared.

1 Introduction

In recent years, instance-based learning algorithms (Dasarathy 1990, Aha et al. 1991,
Wettschereck 1994) have been shown to work as well as other sophisticated machine learn-
ing methods despite their simplicity. One of the most common instance-based scheme is
the Nearest Neighbor (NN) algorithm which classifies new instances depending on some
distance measure between instances. The classical Nearest Neighbor classification algo-
rithm treats all features as equivalent, thus performs poorly in the presence of irrelevant,
weakly relevant, and/or noisy features.

To reduce the impact of irrelevant and weakly relevant features and to increase the
impact of the strongly relevant features on the distance measure, several feature weighting
methods have been proposed. In Wettschereck and Aha (1995), a five-dimensional frame-
work that categorizes automated weight-learning methods is introduced. The first dimen-
sion, called feedback dimension, concerns whether the feature weighting method receives
feedback from the induction algorithm trying to be improved. The methods that receive
feedback are called feedback methods and the others that do not receive any feedback are



called ignorant methods. In Kohavi et al. (1995), feedback methods are called as wrapper
methods. One group of feedback methods, called incremental hill-climbers (Wettschereck
and Aha, 1995), modify feature weights incrementally to increase similarity between a test
instance and nearby training instances in the same class, and to decrease its similarity with
nearby training instances in other classes. IB4 (Aha, 1992), EACH’s weighting method
(Salzberg, 1991), and CFP’s weighting method (Giivenir and Sirin, 1996) are examples
of incremental hill-climbers. The other group of feedback methods, called continuous
optimizers (Wettschereck and Aha, 1995), iteratively update feature weights using only
training instances. GA-WKNN (Kelly and Davis, 1991), GA-CFP (Giivenir and Sirin,
1993), and k — N Ny sy (Wettschereck, 1994) are examples of continuous optimizers.

In this paper, we present a new weight learning algorithm applied to the nearest
neighbor classification algorithm which can be categorized into continuous optimizers
under feedback weighting methods defined in Wettschereck and Aha (1995)’s framework.
In this approach, we use a genetic algorithm to search in the space of feature weights.

Genetic algorithms are search and optimization algorithms based on the mechanics
of natural selection and natural genetics. They have been developed by John Holland
(Holland, 1975) and have drawn increasing interest. In our work, a genetic algorithm
is designed to optimize feature weights used in the distance computation of NN. A new
crossover operator (called continuous uniform crossover) is proposed, such that it produces
valid chromosomes given that the parent chromosomes are valid. Unlike GA-WKNN
(Kelly and Davis, 1991), our genetic algorithm does not use many genetic operators,
instead only crossover operation is used. The aim for doing so is to evaluate the continuous
uniform crossover alone and for this purpose we compared it by three common crossover
operators: one-point crossover, two-point crossover, and uniform crossover.

The experimental results show that assigning weights to features have improved the
accuracy of the Nearest Neighbor algorithm in real-world datasets. The amount of im-
provement in accuracy seems to be worth for the effort of learning the weights. We observe
that the genetic algorithm using our new crossover operator, continuous uniform crossover,
learns weights which improve the NN algorithm more than the genetic algorithms using
other crossover operators in most of the domains.

In the next section, a brief introduction to the NN algorithm and its weighted version is
given. In the third section, the use of genetic algorithms in weight learning and continuous
uniform crossover is described. Section 4, presents the experimental results comparing
the genetic algorithms using four different crossover operators. Finally, the last section
will summarize the conclusions.

2 The Nearest Neighbor Algorithm

The Nearest Neighbor classification algorithm is based on the assumption that the nearest
neighbor of an unclassified instance in the training dataset should belong to the same class
as that instance. To measure the distance between two instances, several distance metrics
have been proposed by Salzberg (1991), of which the Euclidean distance metric is the
most common. Given two instances * =< x1,29,...,2, > and ¥y =< y1,Y2,...,Y, > On
an n dimensional space, the Euclidean distance between z and y is computed as:



dist(z,y) = Vo wg < diff(f.2,y)? (1)
|zs —yg| if f is linear
diff(f,z,y) = 0 if f is nominal and zy = y; (2)
1 if f is nominal and x # y;

Here wy denotes the weight for feature f and for all features wy = 1in NN and di ff(f, z,y)
denotes the difference between the values of instances x, and y on feature f. Feature values
are normalized to ensure that they have the same range.

The NN algorithm is a specialization of the k-NN classification algorithm where the
classification of a new instance is done by a majority voting among its k& (k > 1) nearest
neighbors.

Nearest Neighbor algorithms are reported to be effective on many real-world domains,
although they are simple and require no training time. Unfortunately, they are less
effective when the dataset contains irrelevant, weakly relevant, and/or noisy features.
The reason is that all the features have equal impact on the distance computations (1).
To improve NN, weights can be assigned to features, wy in (1), and there are several
variants of Weighted Nearest Neighbor (WNN) which try to assign higher weights to
more relevant features and lower weights to less relevant or irrelevant features such as

GA-WKNN (Kelly and Davis, 1991) and k& — N Ny sy (Wettschereck, 1994).

3 Weight Learning Genetic Algorithms for NIN

The genetic algorithm is used to assign real-valued weights to features in order to reduce
the impact of irrelevant and weakly relevant features and increase the impact of strongly
relevant features on the classification of the new instance in NN. Among the weighting
methods, which receive feedback from the induction algorithm trying to be improved,
continuous optimizers are more robust than incremental hill-climbers (Wettschereck and
Aha, 1995) which are sensitive to the presentation order of training instances. Weight
learning genetic algorithms are continuous optimizer feedback weight learning algorithms
(Wettschereck and Aha, 1995) which search for the optimum feature weights that maxi-
mizes the classification accuracy of WNN. Four weight learning genetic algorithms using
different crossover operators are designed and compared in this work.

In Section 3.1, the representation of the points in our search space and the fitness
measure of chromosomes will be described. In Section 3.2, the crossover operators, mainly
the continuous uniform crossover is explained.

3.1 Representation and Fitness Measure

Chromosomes are vectors of positive real-valued feature weights between 0 and 1 inclusive
such that they sum up to 1. The length of a chromosome is equal to the number of features.
The initial population is randomly generated taking care of alleles being between 0 and 1
and the sum of alleles being equal to 1.



The fitness function used to evaluate the chromosomes is the cube of the classification
accuracy of the Weighted Nearest Neighbor algorithm using the feature weights encoded
in the chromosome in (1). In order to get the classification accuracy, five-way cross-
validation is used. That is, the whole dataset is partitioned into 5 subsets. One of the
subsets is used as the training set, and the other subset is used as the test set, and this
process is repeated 5 times once for each subset being the test set. Classification accuracy
is the average of these 5 runs.

3.2 Genetic Operators

The main operators of a genetic algorithm are reproduction, crossover, and mutation. We
use only reproduction and crossover operators and not the mutation operator in order to
see the ability of several crossover operators alone.

Although the initial population is setup in a way that all chromosomes represent legal
codings (each allele is between 0 and 1 inclusive and the sum of the alleles is 1), standard
crossover operations can result in illegal codings. Here a new form of uniform crossover,
called continuous uniform crossover (CUCQ) is proposed, that guarantees the legality of
the offsprings.

Given two chromosomes ¢ =< z1,%9,...,2, > and y =< y1,¥2,..., Y, > such that n is
the number of genes in a chromosome, the offsprings are defined as ' =< ), z},..., 2, >
and y' =< y1,vy5,...,y. >, where
ri=sxz;+(1—s)xy (3)
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yi=sxy + (1 —s)xa; (4)

Here s, called stride, is constant through a single crossover operation. This crossover
operation guarantees that the sum of the alleles of an offspring is still 1 given that the
sum of the parents’ alleles is 1. Given that > ;z; =1 and > ; y; = 1,

g rr=sx i+ (1 =-s)x Y yi=s+(1—35)=1

and similarly for the sum of y;.
In order to preserve further legality of the offsprings such as the alleles being between
0 and 1, the choice of the stride s should be restricted. Since, for any value of s, the sum
of the alleles is 1, it will be guaranteed that each allele would be less than 1 as long as
each allele is ensured to be greater than 0. In order to have 2} > 0 and y! > 0 for all :
(1 <e¢<n),
— T < s < Yi

Yi—Ty — — YT

where y; > x;. Each allele pair (z;, y;) brings an upper bound, call it upper; and a lower
bound, call it lower;, on s where

upper; = ylzi’% >1

lower; = =% <)

Yi—%i —




Among n upper and lower bounds we choose a global upper bound, call it upper and a
global lower bound, call it lower, for the stride such that

upper = min,( ylzi’% )

lower = maz;( y,__g”; )
? ?

The stride s should be in the range [lower..upper] to preserve the legality of the offsprings.

There is a symmetry between two strides, s; and sy, when s;+ s, = 1. Here symmetry
means that continuous uniform crossover on two given parents produces same offsprings
in both use of the strides s; and s;. For example, the strides s; = 0.5 and s; = 0.5,
s1 = —2 and sy = 3 are symmetric. There is always a symmetric stride value for each
value of strides. Further, the symmetric stride of a given stride greater (less) than 0.5
is less (greater) than 0.5. So we can discard the stride values less than 0.5 in the global
range for s, since there is a stride in the range [0.5..upper] symmetric to the stride in the
range [lower..0.5].

If we think of some special values of s, we see that when s = 1 or s = 0, the offsprings
are same as their parents. When s = 0.5, the alleles of the offsprings are the average of the
alleles of their parents. When s > 1 or s < 0, the alleles of the offsprings are greater than
the maximum of the corresponding allele pair of their parents and less than the minimum
of the corresponding allele pair of their parents. Hence, the stride being greater than 1
or less than 0 enables the crossover operation to try the outer values of the alleles of the
parents. Because of the symmetry we have discarded the strides less than 0.5, having a
range [0.5..upper| for s. When upper value is greater than 1, we restrict s to be in the
range [l..upper| in order to try the outer values of the parent alleles. But when upper
bound is equal to 1, s is restricted to be in the range [0.5..1].

Let us see an example CUCQO operation. Let the parent chromosomes be
r =< 0.4,0.6 >, and y =< 0.5,0.5 >. The first allele pair (z; = 0.4, y; = 0.5) requires
—4 < s < 5, and the second allele pair (y2 = 0.6, 2 = 0.5) requires —5 < s < 6. From
the lower bounds we choose the maximum (i.e. —4) and from the upper bounds we choose
the minimum (i.e. 5). We get the requirement for s to be in the range [—4..5]. By using
the symmetry property, s is restricted to be in the range [0.5..5]. Since upper > 1, s is
randomly selected from the range [1..5].

Let the randomly chosen value of s be 3:

e =3xa+(1-3)xy =12 1.0=02 (5)
ro=3xXz2+(1-3)xy; =1.8—-1.0=0.8 (6)

Hence, one of the offsprings became 2’ =< 0.2,0.8 > where Y7, 2/ = 1. The other
offspring alleles are as follows:
yy=3xy1+(1—=3)xz;=15-08=0.7 (7)
Yo =3Xy2+ (1 —=3) xay=15-12=0.3 (8)
Hence, the other offspring became y’ =< 0.7,0.3 > where 37, y/ = 1. Note that the

symmetric stride s = —2 would give the offsprings '’ =< 0.7,0.3 > and 3’ =< 0.2,0.8 >
which are the same as the offsprings produced by using s = 3.
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Three other operators that are chosen to compare with CUCQO are one-point crossover
(1PCO), two-point crossover (2PCO), and uniform crossover (UCO). One-point crossover
cuts the parent chromosomes at one site randomly and exchanges their cross parts. Two-
point crossover cuts the parent chromosomes at two random sites and the middle part
between the sites are exchanged. Uniform crossover swaps two corresponding alleles of
parent chromosomes with some probability to get offsprings. All of these three crossover
operations require a normalization of the offsprings.

In addition to the crossover operator, the elitism operator is used, that is the fittest
chromosome in the current generation is always copied to the next generation.

4 Experimental Results

One of the purposes of the experiments was to compare each of the four weighted nearest
neighbor algorithms listed as follows:

1. Weighted NN learning feature weights using a genetic algorithm which uses one-

point crossover (1PCO-WNN)

2. Weighted NN learning feature weights using a genetic algorithm which uses two-
point crossover (2PCO-WNN)

3. Weighted NN learning feature weights using a genetic algorithm which uses uniform

crossover (UCO-WNN)

4. Weighted NN learning feature weights using a genetic algorithm which uses contin-

uous uniform crossover (CUCO-WNN)

with the Nearest Neighbor which does not assign weights to features. The other purpose
was to compare each of the above four weighted versions of NN (i.e. 1IPCO-WNN, 2PCO-
WNN, UCO-WNN, CUCO-WNN) with each other.

In the following subsections, we will give the experimental parameters, the datasets
used, and the results with some discussion.

4.1 Experiment Parameters and Datasets Used

The representation of chromosomes was defined in Section 3.1. In each run of the genetic
algorithms a population of size 100 was used. The runs terminated after 200 generations.
The fitness proportionate roulette wheel selection in reproduction was used. In each of
the four genetic algorithms using different crossover operators, the crossover probability
was given as 0.8. The swap probability for uniform crossover was given as 0.5.

The algorithms NN, 1IPCO-WNN, 2PCO-WNN, UCO-WNN, CUCO-WNN have been
tested using four of the real-world datasets from the collection of datasets provided by
the machine learning group at the University of California at Irvine (Murphy 1995).
The properties of the four datasets chosen is given in Table 1. Since Nearest Neighbor
algorithms use geometric distance between feature values, we preferred the datasets with
only continuous features.



Table 1: Properties of the real-world datasets used in the comparisons.

Data Set: iris glass wine liver
No. of Instances 150 214 178 345
No. of Features 4 9 13 6
No. of Classes 3 6 3 2
No. of Missing values 0 0 0 0

Table 2: Accuracy(%) of NN, IPCO-WNN, 2PCO-WNN, UCO-WNN, and CUCO-WNN

obtained by 5 way cross-validation on four real-world datasets

Data Set: iris glass wine liver
NN 93.98 68.66 94.4 63.48
1PCO-WNN 95.34 85.96 99.44 71.9
2PCO-WNN 96 84.10 99.44 69.3
UCO-WNN 95.34 85.5 100 68.42
CUCO-WNN 97.34 86.86 98.86 72.2

4.2 Results and Discussion

The experiments have been done on four algorithms listed in the beginning of Section
4. The fitness measure used to evaluate a feature weight set in each of the genetic
algorithms was the classification accuracy which is measured by 5-way cross-validation
explained in detail in Section 3.1. For this reason we compare the algorithms according
to their accuracy measured by 5-way cross-validation in Table 2.

The accuracies in Table 2 show that in all of the four datasets used, weighted versions
of nearest neighbor algorithm outperforms unweighted version of the nearest neighbor
algorithm. These results indicate that assigning different weights to features in all these
domains improves the classification accuracy of the nearest neighbor algorithm. Another
important observation from the experiments is that CUCO-WNN generally has higher
accuracies than other three weighted nearest neighbor algorithms.

In the iris domain CUCO-WNN has the highest classification accuracy, and UCO-
WNN and 1PCO-WNN have the worst accuracy. In the glass domain CUCO-WNN
again has the highest classification accuracy, and 2PCO-WNN has the worst accuracy.
The accuracy improvement gained by assigning weights to features is very significant in
the glass domain where the smallest improvement is 15.44% with the learned weights
< 0.375,0.083,0.12,0.007,0.018,0.207,0.186,0,0.004 > respectively. In the liver domain,
CUCO-WNN again has the highest classification accuracy, and UCO-WNN has the low-
est classification accuracy. Only in the wine domain we observed that UCO-WNN has
the highest classification accuracy, IPCO-WNN and 2PCO-WNN follow it, and CUCO-
WNN has the lowest classification accuracy; however the differences in the accuracies
are insignificant. In Figure 1 the comparison of the four algorithms on four real-world
datasets for increasing number of generations is shown.

Experiments have shown that CUCO-WNN generally outperforms other three weighted
nearest neighbor algorithms because CUCO-WNN learns the best feature weights by
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Figure 1: Comparison of IPCO-WNN, 2PCO-WNN, UCO-WNN, and CUCO-WNN on

real-world datasets for increasing number of generations. The accuracy results are ob-

tained by 5 way cross-validation.



which the best classification accuracy is obtained. However, what we also have observed
is that the classification accuracies of these four weighted nearest neighbor algorithms are
close to each other.

5 Conclusions

In this paper, weight learning genetic algorithms for the Nearest Neighbor classifier are
presented. These weight learning approaches receive feedback from the WNN such that
the classification accuracy of WNN, given the weights encoded in a chromosome, is used as
the fitness measure of that chromosome. The classification accuracies of four different ge-
netic algorithms using either one-point crossover, two-point crossover, uniform crossover,
or continuous uniform crossover are compared.

The continuous uniform crossover preserves the legality of the offspring chromosomes
given that the parent chromosomes are legal. A legal chromosome has alleles greater than
0 and the sum of the alleles is 1. Other crossover operations destroy these properties
during the crossover operation and therefore require normalization after the crossover.

The results have shown that all the weight learning genetic algorithms improved the
unweighted version of the nearest neighbor algorithm, thus weighting features is a good
idea to further improve the nearest neighbor algorithm. The comparison between the
four algorithms shows that CUCO-WNN generally has higher classification accuracies
than other three weighted nearest neighbor algorithms.
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